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Decision-making in incomplete markets with
ambiguity—a case study of a gas field acquisition
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We apply utility indifference pricing to solve a contingent claim problem, valuing a connected pair
of gas fields where the underlying process is not standard Geometric Brownian Motion and the
assumption of complete markets is not fulfilled. First, empirical data are often characterized by
time-varying volatility and fat tails; therefore, we use Gaussian generalized autoregressive score
(GAS) and GARCH models, extending them to Student’s t-GARCH and t-GAS. Second, an important
risk (reservoir size) is not hedgeable. As a result, markets are incomplete which makes preference
free pricing impossible and thus standard option pricing methodology inapplicable. Therefore, we
parametrize the investor’s risk preference and use utility indifference pricing techniques. We use Least
Squares Monte Carlo simulations as a dimension reduction technique in solving the resulting stochastic
dynamic programming problems. Moreover, an investor often only has an approximate idea of the
true probabilistic model underlying variables, making model ambiguity a relevant problem. We show
empirically how model ambiguity affects project values, and importantly, how option values change
as model ambiguity gets resolved in later phases of the projects. We show that traditional valuation
approaches will consistently underestimate the value of project flexibility and in general lead to overly
conservative investment decisions in the presence of time-dependent stochastic structures.

Keywords: Real option valuation; Option pricing; Least Squares Monte Carlo; Incomplete market;
Model ambiguity; Strategic decision-making; Energy market

JEL Classification: C61, D81, G1, G31, G34, Q40

1. Introduction

Firms need project evaluation techniques for many purposes:
capital budgeting assessment, risk management, mergers and
acquisitions (M&A) activities and so forth. The most popular
and well-adopted evaluation method over the past decades is
the net present value (NPV) approach, for whose calculations
only one time discount rate and a series of future cash flows
are required. The NPV approach is simple and straightforward,
but to achieve that needs strong assumptions and suffers from
rigidity and inflexibility. Problems arise when investors be-
lieve that they may benefit from the flexibilities embedded
in the projects: within a NPV framework, there is no way of
quantifying the benefits of such flexibilities.As a consequence,
NPV structurally underestimates the value of projects with
flexible investment opportunities. Real option valuation (ROV),
which quantifies the value of embedded flexibilities through
option pricing techniques, is a more appropriate tool for projects
with flexibilities, for instance, a not-to-exceed value for M&A
activities. Before applying any option evaluation methods, ad-
ditional analytical procedures need to be carefully executed.

∗Corresponding author. Email: s.j.g.vanwijnbergen@uva.nl

The investor first has to reformulate the development plan into
a strategic one, which highlights all the inherent managerial
flexibilities embedded in the investment project. Next, in order
to determine an optimal investment strategy, the investor has to
consider mainly three aspects: the dynamics of the underlying
asset returns, the constraints on the investment strategy, and
the value of the investor’s strategy. Each aspect affects the
final decisions significantly and has to be carefully taken into
consideration.

The so-called real option problem embedded in investment
projects is of particular concern for the energy industry. The
energy industry is highly capital intensive, but subject to nu-
merous uncertainties. Some of them are market related, such as
gas or oil price uncertainty, but some have no correlation with
any tradable asset, for example uncertainty about reservoir size
facing companies having to decide on exploration or bringing
discovered fields in production. Yet investment decisions are
made on daily basis based on valuation results where projects
are evaluated by simply discounting their future cash flows
under various mutually exclusive scenarios. But this approach
ignores the value of flexibility that the ability to respond to
new information coming on stream during the project life span
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gives rise to. If there is any value to this flexibility, ignoring the
value of flexibility then structurally undervalues projects that
offer flexibility when compared with projects that involve more
rigid, irreversible choices. Further complications arise when
there is ambiguity on the precise probabilities to be attached to
various possible outcomes of random variables. In this paper,
we show how ROV offers a way out of those problems. We
demonstrate this approach in valuing a set of connected gas
fields based on real North Sea data.

Real option approaches have been known for a long time,
but have by and large been dismissed in practice; there exists a
highly sophisticated literature, but one focusing on obtaining
analytical results which therefore has to make very restrictive
assumptions, such as risk neutral preferences and constant
variance Geometric Brownian Motion (GBM) processes. We
allow for much less restrictive assumptions on both scores: we
introduce different attitudes towards risk, and various models
of stochastic volatility. The resulting problems require solving
quintessentially non-linear stochastic dynamic optimization
problems (SDP), and the numerical problems solving them
become rapidly insurmountable as the problem’s dimension-
ality increases: SDP is plagued by the curse of dimension-
ality. We demonstrate, however, that a dimension reduction
approach long used in the solution of problems posed by the
valuation of American options (i.e. options with endogenous
exercise timing) can also be applied successfully to the stochas-
tic dynamic programming problems arising in complex high
dimensionality real option problems. We analyse a real-world
case study, the valuation of two connected offshore gas fields
in the presence of price uncertainty with variable volatility
(using t-GAS models, on which more below), inter-temporally
correlated uncertainty and even model ambiguity concerning
the reservoir size of the two connected gas fields. Our analysis
shows substantial payoffs to explicitly introducing asymmet-
ric stochastic variance modelling, substantial option values
in the presence of unhedgeable risks (although in that case
we show them to depend on investor’s risk preferences) and
the importance for decision-making of taking into account
(declining) model ambiguity. Before going into the existing
literature on real options, we elaborate on the major differences
of our analysis with standard option pricing models, focusing
on market incompleteness, more realistic models of volatility
than the constant variance GBM model used routinely, and
finally on the important topic of model ambiguity.

1.1. Incomplete markets

One difficulty of applying standard option techniques to real-
life problems is that the decision-maker often is facing an asset
pricing problem in an incomplete market setting, where not
all underlying risks are hedgeable through the market. For
instance, in the gas field valuation problem considered in this
paper, we have two major uncertainties: the reservoir size† and
the gas price. Reservoir uncertainty cannot be hedged away in
any existing market. In fact, even price risk cannot be fully

†Geophysicists are not able to measure the exact reservoir size of one
gas field before any development starts. The best approximation of
reservoir size is a truncated lognormal distribution. For more research
on reservoir distribution, see Hanna et al. (2011).

hedged since the derivative market built on the Dutch gas
contracts is still young and immature.‡Another cause of market
incompleteness is the stochastic volatility characterizing the
underlying process driving asset returns (gas prices), because
the dynamics of the second moment of the process cannot be
hedged through the market either. Therefore, classical option
pricing models such as the Black–Scholes formula (Black and
Scholes 1973), are not applicable, since they are based on the
assumption of complete markets. The traditional option pricing
methods are based on ruling out arbitrage between the option(s)
considered and an equivalent replicating portfolio consisting
of traded financial instruments, but such a replicating portfolio
does not exist in an incomplete markets environment. One
consequence of the absence of replicating portfolios is that
preference free (risk neutral) pricing becomes impossible: an
individual’s risk preference has to be parametrized and taken
into account. This is exactly what we do in applying what
is called utility indifference pricing (UIP) to the real options
problem considered.

1.2. Heteroskedasticity

The volatility of underlying processes obviously matters for
option pricing problems. Van Wijnbergen and Zhao (2016)
show in an application of ROV to an energy-related project
similar to the one analysed in this paper that a Gaussian GARCH
specification outperforms one in which one assumes constant
variance in modelling the dynamics of the underlying asset
returns, in this case gas prices. Van Wijnbergen and Zhao
(2016) have also shown that switching from constant vari-
ance to Gaussian GARCH has a dramatic impact on option
values, so modelling the structure of volatility clearly mat-
ters. In this paper, we again consider GARCH models as well
as a more general volatility modelling approach, generalized
autoregressive score (GAS) models, which are capable of cap-
turing some unique characteristics of the latent volatilities of
the time series. This GAS model family, first proposed and
developed by Harvey (2013) and Creal et al. (2013), is a more
general set-up compared to GARCH models. By adding the
first derivatives of its likelihood function as the latent factor of
dynamics, this model specification takes full advantage of the
changing directions of likelihood. Creal et al. (2013) claims
that the GAS framework demonstrates superior features and
better empirical fit over Gaussian GARCH models, which is
consistent with our findings in this paper for Dutch gas prices.
Note that GARCH(1,1) processes can be seen as a special case
of a more general GAS(1,1) structure.

Furthermore, the diagnostic test on residuals from both
Gaussian GARCH and Gaussian GAS models rejects the nor-
mality assumption. This is commonly found in financial data,
where one often encounters what is referred to as ‘black swans’:
extreme outcomes happen more often than implied by normal
distributions, with consequent failure of normality tests. There-
fore, we switch to Student’s t-GARCH and t-GAS variants to
capture the fat-tail characteristics of the data. The estimated
degrees of freedom for both models are smaller than 4, which

‡The Dutch gas spot market is called title transfer facility (TTF). The
first TTF Natural Gas Options were launches by ICE in December
2011.
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strongly confirms the fat-tail hypothesis. Hence a simple Gaus-
sian assumption would unduly underestimate the high occur-
rence of extreme events and lead to incorrect characterization
of the stochastic structure generating the data.

To our knowledge, this is the first study to derive option pric-
ing results under a stochastic process of t-GAS structure; we
compare the t-GAS based results with option valuations based
on constant variance and results based on Gaussian GARCH
assumptions. Even though we solve the problem within a real-
option set-up, the results are doubtlessly relevant to the valua-
tion of finance options traded in the market.

1.3. Model ambiguity

Another important issue in decision-making problem involves
model ambiguity. This occurs when the decision-maker is un-
certain about the true probabilistic model generating the data,
which is often referred to as Knightian uncertainty (Knight
1921) or model ambiguity. Note that a decision problem with
ambiguity is different from one under risk: the latter refers to a
decision problem with the true probability distribution known
and the former is one without the true probability known.
Model ambiguity is a realistic and robust assumption because
an investor often does not have access to the true probabilistic
model underlying relevant variables and may only have an
approximation for the true one at the best.

In applications like the one in this paper concerning gas field
evaluation, model ambiguity occurs often due to the relatively
unsophisticated existing technology for reservoir size estima-
tion. Geophysicists estimate parameters for reservoir distribu-
tion based on imperfect exploration data, often supplemented
by insights derived from their own past experiences, which
makes model ambiguity a particularly important issue for val-
uation problems. Mathematically, model ambiguity possibly
presents new complications, such as time inconsistency; we
discuss this issue in detail in the numerical methods and the
results sections below (Sections 4.4 and 5.3).

1.4. Guide to the reader

This paper is arranged as follows. Section 2 reviews related
literature on real options, model ambiguity, GARCH and GAS
models. Our representative gas field case study problem is
described in section 3. The econometric models and option
pricing models are explained in the following section 4.
Section 5 demonstrates the results and section 6 concludes.

2. Literature review

2.1. Real option valuation

McDonald and Siegel (1986) initiated the application of option
pricing technology to decisions involving irreversible ‘real’
projects. They solve for optimal investment rules using a con-
tingent claim setting and find significantly positive value of
waiting. Following their work, Pindyck (1991) provides

methodology for practitioners. He emphasizes two major char-
acteristics of investment opportunities: irreversible expendi-
ture and postponement of execution. These features both have
a profound effect on investment decision, and share similarities
with financial options.

Borison (2005) criticizes existing applications of real
option theory for requiring assumptions that are not realis-
tic in practice, thereby invalidating the pricing methodologies
chosen. He surveys the applicability and assumptions of all ex-
isting approaches, including the classic approach (Brennan and
Schwartz 1985, Amram and Kulatilaka 1999), the subjective
approach (Howell 2001), the MAD approach (Copeland et al.
1994), the revised classic approach (Dixit and Pindyck 1994),
and the integrated approach (Smith and Nau 1995, Smith and
McCardle 1998). All of them except the last one assume mar-
ket completeness (hedgeable risks), which is however rarely
the case in real-life problems. Furthermore, the first two ap-
proaches explicitly assume the underlying asset follows a con-
stant variance GBM process, which is also not always a good
approximation of real life situations as we demonstrate in our
analysis of natural gas prices.

2.2. Discount rate

In an incomplete market setting, a proper discount rate should
not only reflect the decision-maker’s risk aversion and her time
discounted value, but also the structure of the uncertainty em-
bedded in the project itself. In practice, the appropriate choice
of discount rates is not always clear to the decision-maker,
managers are often struggling in determining the time discount
factor, especially for individual projects.According to a survey
conducted by Mukerji and Tallon (2001), the most popular
valuation method chosen by CFOs is discounted cash flow, i.e.
the NPV method, but when applying this approach, the CFOs
are not clear on the choice of discount rate. They typically use
one of the following four discount rates: the acquiring firm’s
weighted average cost of capital, the acquiring firm’s cost of
equity, the target’s weighted average cost of capital, or other
rates such as the target’s cost of equity. Each discount rate has
its pros and cons, and the choice may also depend on the (size
of the) M&A project itself. This apparently confuses CFOs
and may lead to biased (too optimistic or pessimistic) results.
And anyhow project structures may be such that the use of
any constant discount rate is inappropriate because the risk
structure changes over time.

Borison (2005) points out that the weighted average cost-
of-capital (WACC) is often used without clearly identifying its
risk coverage, i.e. whether it reflects private risk† only or the
overall risk of the investment. Therefore, we decompose the
discount rate and discuss how each aspect inherent in discount
rate determination affects the decision-making process.

2.3. Dynamic processes of underlying assets

As is explained in Van Wijnbergen and Zhao (2016), the
dynamic of gas prices follows a complicated structure with

†As defined in Amram and Kulatilaka (2000), ‘Risks not captured in
the price fluctuations of traded securities are known as private risks’.
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Figure 1. Development plan.

time-varying volatilities, which cannot be captured by a GBM
process. Therefore, the classic approach, the subjective
approach and the revised classic approaches mentioned before
become inapplicable, since they rely on the GBM assumption
for their pricing formulas.

In this paper, we consider GAS/GARCH models accounting
for volatility, where both are able to reproduce the volatile
volatility. Creal et al. (2013) explain that GAS models can
be specialized into GARCH models by selecting appropriate
factors. They also compare different dynamic copula models
and conclude that the likelihood information is extensively
exploited under a GAS framework.As shown inAndres (2014),
the model with dynamic scores outperforms autoregressive
conditional duration (ACD) models in terms of the rate of
convergence and reliability. Note that an ACD model, as pro-
posed in Engle and Russell (1998), is analogous to a Gaussian
GARCH model.

Furthermore, financial data often contain fat-tails: extreme
outcomes happen too often for a normal distribution to be
capable of accounting for the outliers. By applying GARCH
and GAS models to global equity returns, Creal et al. (2011)
find that t-GAS produces highly persistent estimated factors
and improves the log-likelihood substantially.

2.4. Real options and incomplete markets

As mentioned above and in Borison (2005), most real
option approaches assume market completeness, which results
in problematic applications when there are unhedgeable risks.
For example, the subjective approach (Howell 2001) uses sub-
jective probability; therefore, it is incapable of shedding light
on the market trading price. The MAD approach (Copeland
and Antikarov 2001) argues that traditional NPV serves as
an unbiased replicating portfolio; however, the no-arbitrage
assumption cannot be satisfied with this argument only, arbi-
trage opportunities may persist due to the use of subjective
data. Several attempts have been made to resolve the incom-
plete market problem. For example, Smith and Nau (1995)
and Smith and McCardle (1998) attempt to remedy the issue by
assuming some of the risks are hedgeable and some are not and

apply a mixed method, combining a zero arbitrage approach
for the hedgeable risks and UIP for the unhedgeable risks,
an approach also used in Van Wijnbergen and Zhao (2016).
Carmona (2009) states the effectiveness of UIPmechanisms for
option pricing problems in an incomplete market, where risk
preferences are built into the model to acknowledge attitudes
to risks. UIP comes down to determining a price at which an
investor becomes indifferent between on the one hand paying
that price and receiving an uncertain claim, vs. not paying that
price but also not receiving that claim, all the time maintaining
an optimal trading strategy. See in particular Carmona (2009)
for an extensive introduction to and coverage of the approach.
In this paper, we opt for UIP for all risk dimensions since even
the gas prices are characterized by unhedgeable volatility risk
factors.

2.5. Model ambiguity

The concern for modelling ambiguity can be traced back to
Knight (1921), who describes ambiguity as ‘uncertainty’
(hence the oft used term ‘Knightian uncertainty’). The essential
difference between risk and Knightian uncertainty (or ambi-
guity, as we refer to it here) is whether the true probability is
known or unknown. The breakthrough made by Gilboa and
Schmeidler (1989) solves the ambiguity problem numerically
through a maxmin utility with multiple priors, by showing that
under certain conditions an ambiguity averse agent will focus
on the worst case scenario, again assuming an optimal trading
strategy throughout.

Camerer and Weber (1992) give an extensive survey on
ambiguity aversion, including both theoretical and empirical
papers. In earlier experimental studies, e.g. Heath and
Tversky (1991), subjects were shown to exhibit strong ambi-
guity aversion in many circumstances. However, the results
for the effect of ambiguity on asset prices are not always
coherent. For example, Camerer and Kunreuther (1989) show
that even though ambiguity has changed the market structure, it
did not affect asset prices systematically. But Sarin and Weber
(1993) claim that ambiguity drives prices down, slightly but
significantly. Chen and Epstein (2002) investigate the effect
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Figure 2. Development timeline.

of ambiguity also by considering multiple-priors utility. Their
continuous time based approach allows them to decompose
excess returns into a risk premium and an ambiguity premium.
Maccheroni et al. (2006) consider models of decision-making
under ambiguity that take the form of so-called variational
preferences, which include both multiple preference parame-
ters and multiple priors as special cases. Furthermore, market
incompleteness and model ambiguity may mutually reinforce
each other: Mukerji and Tallon (2001) argue that the markets
are less complete due to the effect of ambiguity aversion.

Several authors have looked at ambiguity in a real options
context. Assuming a standard GBM process, Nishimura and
Ozaki (2007) find that higher risk leads to higher valuation of
the investment opportunity; however, higher Knightian uncer-
tainty results in a lower project value. We find similar results in
this paper. However, their results are based on the simplifying
but severely restrictive assumption that the decision-maker is
risk neutral. This paper relaxes this assumption and allows
the risk preference to play a role in valuation, a key issue in
an incomplete markets setting. Trojanowska and Kort (2010)
consider a finite investment problem, as opposed to the per-
petual one studied by McDonald and Siegel (1986), Dixit and
Pindyck (1994) and Nishimura and Ozaki (2007).Again, given
an ambiguity averse investor and a maxmin strategy, a higher
degree of ambiguity yields a lower risk- and ambiguity aver-
sion adjusted NPV. Different from Nishimura and Ozaki (2007)
and Trojanowska and Kort (2010), Thijssen (2011) studies an
irreversible investment problem under ambiguity by assuming
that ‘ambiguity is solely about the appropriate rate at which
the cash-flows should be discounted’. Despite the different
model setting, Thijssen (2011) reaches a similar conclusion,
that ambiguity delays the investments.

Hellmann and Thijssen (2015) investigate a two-player
investment game under ambiguity. A sequential game with
stochastic payoffs and a with a first mover advantage is care-
fully studied. Under such a setting, they conclude that the
worst-case prior is equivalent to the ‘lowest trend’ of the diffu-
sion process (they assume a GBM process) if the leader knows
she will be the leader. However, there is an opposing force
under which the other player might also invest early in which
case it is not necessarily true anymore that the lowest trend
is the worst-case prior. We analyse a single player valuation
problem, but similar time consistency problems can arise in a
single player model too.† In our case, such time consistency

†We are indebted to a referee for pointing that out.

problems cannot arise because of the strong monotonicity in
our different priors: the same prior from a given set of priors
(or any linear combination thereof) is always inferior under
optimizing behaviour conditional on a given prior because of
their symmetry combined with positive risk aversion.

Cheng and Riedel (2013) focus on the time-varying feature
of ambiguity like we do also in the second half of section 5.3
below, because ‘it is rational to change one’s belief about the
worst drift’. We also investigate time-varying ambiguity and in
particular demonstrate the effect of resolving ambiguity over
time on project valuations if it is known in advance that reso-
lution will take place as the project unfolds. For more recent
references on indifference valuation, incomplete markets and
ambiguity, see Laeven and Stadje (2014).

3. Problem description

The investment problem we analyse in this study corresponds
to a real-world valuation problem of a set of two undevel-
oped gas fields located (geographically) close to each other in
the North Sea. The investor needs precise valuations for the
project for acquisition reasons. The recoverable reservoir size
of FieldAis currently estimated to be low and not economically
attractive by itself. However, if the development of the nearby
Field B turns out to be successful, a more precise estimate of
field A can be made: Field B yields valuable information about
the reservoir size of Field A. So given the possible information
updates, the investor designs a strategic developing plan as
displayed in figure 1. If the drilling on B is successful and
the reservoir of Field B turns out to be of a sufficiently large
volume, the producer may decide to build a new platform on
Field A, which allows the productions of both A and B at the
same time due to a platform’s larger capacity compared to one
single pipeline. Thus Field A can be considered as an extension
option on Field B, which should be exercised only when the
reservoir of B reveals a sufficiently good state.

The development timeline is illustrated in figure 2. T is
the license expiration date for the development of the area
covering FieldAand B. TA and TB are the estimated production
durations of A and B, and tA and tB are the starting date of their
productions, respectively. Interval I is the maximum waiting
period before starting B; B needs to be started at the latest
at the end of I to allow for both the exploitation of B and A
before the overall license expires at T. So the investor could
start developing B any time in time interval I , the choice of
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Figure 3. TTF daily logarithmic return data.

timing reflects the exercise time of a waiting option. After B
has been brought on stream, information about its reservoir size
becomes available and additional information on the reservoir
size ofAmay become available if for example the two reservoir
sizes are correlated.

We explore various different correlation scenario’s in what
follows. Once the information of B has become available (along
with new gas price developments), the investor may choose to
develop A; Exploitation of B unlocks the option on A. If she
starts A, she should do so at the latest before the end of time
interval II to stay within the time limit set by the expiry date of
the overall license. Our aim is to value Field B accurately, so
that the valuation can serve as a reserve price for the acquisition
of the area combining both A and B. Since B unlocks the
option on A, the project value of B should include the value of
managerial flexibility embedded in Prospect A.

3.1. Reservoir distribution

Possibility of success (POS) stands for the probability of a
successful drilling. So the probability of a dry well (zero reser-
voir) is 1 − P O S. Based on a successful drilling, the investor
expects a reservoir size R following a certain distribution.
Three commonly used assumptions for the distribution of R
are a triangular distribution, a lognormal distribution and a
variant on the latter, a truncated lognormal distribution.

The triangular distribution is the industry standard for capital
budgeting problems due to its simplicity. It considers only
three outcomes of R, namely P10, P50, and P90. Naturally,
in line with the concept of a Cumulative Density Function,
reservoir amount RP10 of P10 case means the probability that
the realization of the gas reservoir size is lower than RP10 is
90%. This simple representation is popular among decision-
makers, because it provides reasonable and easy proxies for
low/medium/high reserve size cases, based on which a scenario
analysis can be set up for capital budgeting procedures.

Despite the simplicity of triangular distribution, geophysi-
cists prefer a lognormal distribution because it provides more
insights into the reservoir distribution. However, a standard

lognormal distribution ranges from 0 to infinity, which is obvi-
ously an unrealistic range for gas reservoir size distributions.
Therefore, we use a truncated lognormal distribution for the
simulation of the reservoir volume size. To fully approximate
the estimations provided by the geophysicists, the reservoir
distribution sometimes cannot solely be characterized by a
single truncated lognormal one. For example, the reservoir
size of Field B here is better described by the sum of two
weighted lognormal probability distribution functions.The two
lognormal distributions are truncated at 99% quantile, one with
parameters (−0.1772, 0.5336)† and a weight of 0.8661, the
other with parameters (−26.6623, 0.0002)‡ and a weight of
0.1339.

3.2. Option characteristics of the valuation problem

The strategic plan followed by the firm is divided into two steps.
First, the firm might wait and meanwhile observe the market
price of gas to decide whether to start developing B or not. This
decision has to be made within three years (before the end of
time period I), so as not to exceed the remaining life of the
relevant exploration licenses. This set-up means that the firm
has a wait-and-see Bermuda-type§ option on B with a maturity
of three years. Once this development option is exercised, the
firm may build a platform and further developAbased on a not-
worse-than-P10 realized reservoir amount of B (figure 1). If the
firm has waited the maximum amount of time with B, the option
to bring A into development can thus be seen as the unlocking
of a European option. If tB < T − TA − TB , the second
option has Bermuda characteristics too. Thus, Project B has
multiple and compound option characteristics with a sequential
structure, whose values are calculated in section 5. How we
formally price this complicated set of options is explained in
section 4.5.

4. Methodology

We first present the econometric approach to analyse gas prices
and in particular their volatility structure. We apply both
GARCH and GAS models to analyse daily returns and their
volatility, using data obtained from TTF, the Dutch gas market.
We then introduce the UIP approach and its implementation for
the option pricing problem.

4.1. Data

For this study, two sources of data are needed. One is gas
price data, i.e. the publicly traded TTF price, which we obtain
from Datastream. TTF trades gas in euros per megawatt hour.
Statistical descriptions of the price data are shown in table 1.
The other source of data concerns the information on reservoir
size of the fields under consideration, which has been received
from the geophysicists involved in an actual North Sea project.

†(Mean, standard deviation).
‡(Mean, standard deviation).
§A Bermuda option is an American option with a set of predetermined
exercise timing possibilities.
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Figure 4. Residual tests.

Geophysical data include the estimated reservoir size distribu-
tion, the production profiles and production costs.

The gas daily return series ranges from 5 March 2012 to 27
September 2013, shown in figure 3. The time series is stationary
by both Dickey–Fuller test and Phillips–Perron test.

4.2. GAS models

The GAS model follows Creal et al. (2013). yt is the
demeaned daily log return of gas on the TTF market and has a
probability distribution function p (yt | ft ; θt ), where ft stands
for unobserved time-varying factors and θt contains unknown
parameters.

yt = σtεt

ft+1 = ω + Ast + B ft

st = St∇t

St = −Et−1
[∇t∇′

t

]−1

∇t = ∂ log p (yt | ft ; θt )

∂ ft

The scaling matrix St equals the Fisher information matrix and
∇t stands for the ‘score’ as in ‘GAS’. Hence, st is also called
the scaled score function. We assume that εt follows a standard
normal (Gaussian) distribution but also investigate the possi-
bility of fatter tails by basing the GAS model on a Student’s t
distribution with estimated degrees of freedom, which allows

us to test for normality. The model collapses into a Gaussian
GARCH or a t-GARCH one with the appropriate assumptions
on the factor ft as we show in appendix A.1.1; as GARCH
turns out to be a special case of GAS, choosing between them
can be done on the basis of a simple log-likelihood ratio test.

4.3. Estimation results and diagnostic tests

Our econometric analysis shows that the Gaussian GAS model
yields a lower log-likelihood value, −672.36, comparing to
−614.76 for the Gaussian GARCH model. Thus a Gaussian
GARCH model outperforms a Gaussian GAS model by 9%
in terms of log-likelihood. And the kernel density plots and
the QQ-plots in figure 4 imply that the residuals from both
Gaussian GARCH and Gaussian GAS models present fat tail
leading to a rejection of the normality hypothesis. Therefore
we proceed with a Student’s t-based GAS model, to capture
the impact of the fat tails embedded in the data.

Table 2 lists the estimation results from all four models
considered. The estimated degree of freedom for the Student’s
t distribution is 3.95 and 3.91 for Student’s t-GARCH and
Student’s t-GAS model respectively, and is significant for both
models.† In addition, the log-likelihood from the models with
Student’s t distribution is significantly larger than the one from

†Arguably more important, the degrees of freedom parameter is very
significantly lower than the number where the difference between
t-distribution and the normal becomes negligible (higher than 30).



1766 L. Zhao and S. van Wijnbergen

2012 2013 2014
−0.5

0

0.5

1

1.5

2

Year

 

 
Log Return Series
Volatility from Gaussian GARCH
Volatility from Gaussian GAS
Volatility from Student GARCH
Volatility from Student GAS

Figure 5. Comparison of estimated volatility with Gaussian/Student’s-t GARCH/GAS models.

Table 1. Statistical description of the gas prices.

Observations Mean Standard deviation Min Max

Gas price 400 25.678 2.571 20.595 39.391
Gas price return 399 1.955×10−4 0.027 −0.178 0.140

Table 2. Estimation results.

Gaussian Student’s t

GARCH GAS GARCH GAS

ω 4.6086 0.1823 3.7312 0.2447
(1.4039) (0.6241) (1.2269) (0.6235)

A 0.3822∗∗∗ 0.2245∗∗∗ 0.2860∗∗∗ 0.2434∗∗∗
(9.4001) (8.7826) (7.3775) (7.6351)

B 0.9803∗∗∗ 0.9329∗∗∗ 0.9704∗∗∗ 0.9205∗∗∗
(57.7331) (56.8993) (32.7113) (35.0938)

ν 3.9511∗∗∗ 3.9096∗∗∗
(Degree of freedom) (5.0168) (4.6893)
LogLikelihood −614.759 −672.361 −595.759 -593.894∗∗∗

t statistics are reported in parentheses.
***1% significance level.
**5% significance level.
*10% significance level.



Decision-making in incomplete markets with ambiguity 1767

(a) Student’s t-GARCH

(b) Student’s t-GAS

Figure 6. Option pricing results using a cost-of-capital approach.
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Figure 7. Spot prices vs. option value under a Student’s t-GAS specification.

those with Gaussian distributions, which also confirms our
findings from the residual plots. The result of a log-likelihood
ratio test† between Gaussian-GAS and Student’s t-GAS is
significant, implying the existence of fat-tails in the data series.

Figure 5 demonstrates the variances σ 2
t estimated from all

four models. As can be seen, a model with constant variance
assumption is not able to capture all the relevant features of this
time series adequately.All Gaussian/Student’s-t GARCH/GAS
models are able to characterize the high volatility periods,
contrary to a constant volatility model. As illustrated in fig-
ure 3, two highly volatile periods in mid 2012 and mid 2013
can be easily replicated using the stochastic volatility models,
which would obviously be impossible using a constant volatil-
ity model.

The Student’s t-GAS model produces a slightly more smooth
volatility series than the Student’s t-GARCH model: during
the high volatility periods, e.g. the estimated volatility for mid
2012 given by a Student’s t-GAS model is smaller than one
based on a Student’s t-GARCH model. This observation is
attributed to a characteristic feature of Student’s t-GAS models,
that they adjust quickly to new observations. Of course extreme
outcomes of returns do not necessarily stem from high volatil-
ity, the occurrence of tail events can occur in low volatility
periods also, but will be a much rarer, more unlikely event.

4.4. Evaluating the compound options

We present two methods to evaluate the complicated set of
options embedded in project B. First we take the more con-

†L R = 2 (−593.894 + 672.361) = 156.934 > χ2 (1) .
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Figure 8. UIP (Student’s t-GAS).

ventional approach starting from risk neutral preferences and
a constant discount rate: the cost of capital method (CoC).
This method is presented only because it provides an inter-
mediate approach between standard scenario analysis and our
preferred approach, UIP. The CoC method is easier to explain
to practitioners since it is closely related to standard NPV
approaches, but improves on it by incorporating the option
exercise decisions explicitly. However, the use of a constant
discount rate is not appropriate anymore under more general
preferences, hence the step to our preferred approach, UIP,
where we do not need to make such restrictive assumptions.
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Figure 10. Ambiguity in field A only (Student’s t-GAS).

4.4.1. Evaluating the compound options: the CoC. The
cost-of-capital method comes down to solving the following
optimization problem:

max
t∈I

E0
(
exp

(−r f t
)

max (Xt + At , 0)
)

where:

Xt = Et

[
N PV B

t |Ft−1

]
and,

At = Et

[
max
t∈I I

Et

(
exp

(−r f (t − tA)
)

× max
(

N PV A|B
t , 0

))
|Ft−1

]
Ft represents the market information and exploration informa-
tion obtained at t . Given a cost-of-capital value, N PV A|B

t is

the NPV of A based on the information obtained from B. The
optimization set-up under UIP is introduced in section 4.4.2
below.

4.4.2. Evaluating the compound options: UIP. Van Wijn-
bergen and Zhao (2016) apply an integrated approach adjusted
from Smith and Nau (1995) and Smith and McCardle (1998)
based on the assumption that (A) gas price risk can be hedged
so risk neutral valuation can be used in that dimension, but (B)
reservoir risk is not hedgeable so a preference based valuation
method becomes necessary in that dimension. A problem was
that the Gaussian GARCH(1,1) model for gas prices used in
Van Wijnbergen and Zhao (2016) violates the constant variance
property necessary for the applicability of risk neutral pricing
methods, but Duan (1995) has proposed a local variant on risk
neutral pricing which can be used in at most a GARCH(1,1)
setting, which is what we used in Van Wijnbergen and Zhao
(2016). But that mixed approach cannot be used here because
the more general and (in our case) statistically preferred GAS
models do not satisfy Duan’s conditions necessary for the
applicability of his local variant on risk-neutral pricing. Since
now the gas price volatility risks are unhedgeable too, we take
the logical next step and assume that neither risk can be hedged
and accordingly adopt multidimensional UIP for both the gas
price and reservoir size risks.

We assume the investor has an exponential utility function:
ut (xt ) = −exp(−xt/ρt ), where ρt represents the decision-
maker’s risk tolerance. This form of the preference function is
chosen because it implies independence of trading strategies
of the investor’s wealth, which we consider a desirable prop-
erty since we refer to a corporate decision analysis. A high
ρt implies a high tolerance for risk (low risk aversion). Our
basic criterion then relies on the discounted value of certainty
equivalence cash flows, where the certainty equivalence is
calculated using a specific value for ρ. Given the degree of
risk tolerance, the certainty equivalent x̃C E

t then represents the
project value, in comparison to the NPVs used above, as in the
following formula:

x̃C E
t = −ρt ln (Et [exp (−x̃t/ρt )])

where x̃t represents an uncertain cash flow at t .
Suppose a project has future cash flows{C F0, C F1, . . . , C FT }

and the NPV of the project is

vt = N PVt (C Ft )

=
{

0 if no exercise

Et

(
P O S ×∑T +t

i=t e−(i−t)r f C Ft

)
if exercise

where POS is the possibility of success and r f is the risk free
rate.

Combining the above formulas, we write down the formula
for effective certainty equivalent EC Et+1 (·), which is defined
by taking expectations over period-t’s risk conditional on the
information available at time t .

EC Et+1 [vt+1|Ft ] = −γt+1 ln

(
Et

[
e
− vt+1

γt+1 |Ft

])

where γt = ∑T
τ=t

ρτ

(1+r f )
τ−t is the NPV of the future risk

tolerances.
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(a) A has a truncated lognormal distribution
(b) Truncation Update

(c) Mean Update (d) Variance Update

Figure 11. Reservoir correlation examples.

Therefore, under the UIP setting, the option problem comes
down to solving maximization problem:

max
t∈I

E0
(
exp

(−r f t
)

max (Xt + At , 0)
)

where:

Xt = −γt ln

(
Et

[
e− vB

t
γt |Ft−1

])

At = −γt ln

(
Et

[
e− maxt∈I I Et

(
exp(−r f (t−t))max

(
v

A|B
t , 0

))
γt |Ft−1

])
.

4.5. Implementing UIP: the Least Squares Monte Carlo
Method

As indicated earlier, UIP comes down to determining the price
at which a risk averse investor becomes indifferent between
on the one hand paying that price and receiving an uncertain
claim, vs. not paying that price but also not receiving that
claim, all the time maintaining an optimal trading strategy.

The ‘maintaining an optimal trading strategy’condition implies
that an explicit Dynamic Stochastic Programming approach is
called for, based on an explicit modelling of preferences (i.e.
an explicit utility function). There is no closed form solution
to the particular optimization problem we have to analyse,
since we are adopting the GARCH and GAS frameworks in
addition to the presence of unhedgeable reservoir size risks.
Another complication is related to the various endogenous
exercise moments; no analytical solution exists for such op-
tions either (in asset pricing jargon: we are dealing with what
would be called American options in continuous time, or, more
appropriately given our discrete time framework, Bermuda-
type options). We solve the valuation problem using SDP, and
reduce the dimensionality problem using the Least Squares
Monte Carlo approach proposed by Longstaff and Schwartz
(2001). SDP sets the current value equal to current utility plus
the value of continuing in the future. It is the latter component
that triggers an exploding dimensionality problem. Longstaff–
Schwartz Monte Carlo (LSMC) approximates the continuation
value of the claim as a function of the state variables by re-
peated application of regression techniques on simulated data.
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A flowchart (figure A8) in appendix 1 explains how this algo-
rithm works.

5. Results

The number of Monte Carlo simulations used for LSMC is
100 000. Here, POS for drilling atAis 90% and POS for drilling
at B is 30%. We first sketch the cost-of-capital method, as an
intermediate step going from scenario based NPV analysis to
UIP.

5.1. Cost-of-capital method

5.1.1. NPVs vs. option values. The results are shown over a
range of values for the cost-of-capital (3–15%) rates in figure 6.
Note that the rates refer to real rates, everything is expressed
in period zero prices.

Figure 6(a) gives the results based on assuming a
t-GARCH(1,1) process for gas prices, and figure 6(b) shows
the same set of results but based on assuming a t-GAS(1,1)
structure for the volatility process of gas prices.

In both graphs, option values and NPVs of both fields are
declining when the assumed cost-of-capital increases, as one
should expect given the time structure of cash flows. The hor-
izontal solid (red) line stands for a break-even project, which
sets a standard for accepting and rejecting investment projects.
The gray-circled line illustrates the NPV of B at time zero
without any option values counted. The dashed gray line stands
for the NPV of the strategic plan without the wait-and-see
Bermuda option on B, i.e. a fixed starting time at t = 0.

The first interesting result stems from comparing the two
graphs: the option values assuming t-GAS(1,1) are about 0.5–1
million euros higher than the project values based on assuming
a t-GARCH(1,1) specification. Note that the t-GARCH and t-
GAS models explain the data with similar power in terms of
log-likelihood, therefore this difference of option values results
from the different volatility structure predicted by two models.

As is shown in figure 6(b) (and table A2 in appendix 1),
with a t-GAS specification, the gray circled line intersects the
break-even line at a cost-of-capital of 10%, so on a NPV should
be positive criterium, the firm would reject the entire project
B for any cost-of-capital higher than (or equal to) 10%. But
taking into account the various waiting option values changes
that outcome: the discounted net project value with all options
incorporated more than doubles for a WACC of 3%, declines
with higher WACC but the overall project value with options
included stays significantly positive for all values of the WACC
considered. It does decline with higher discount rates, obvi-
ously, because the high CAPEX come upfront but the revenues
come later in time. Note also that a platform may have further
uses that we do not incorporate: for example, it can be used for
gas storage at a later stage. Nevertheless, it is evident that the
strategic development plan including a waiting option is worth-
while because the net project value including option values
stays positive given cost-of-capitals varying from 3 to 15%. So
a second conclusion is that incorporating the option values is a
meaningful exercise: otherwise the wrong investment decision
would be taken under a wide range of cost-of-capital estimates.

Similar patterns can be found under the t-GARCH specifica-
tion with slightly lower option values, as demonstrated in figure
6(a) (and table A2 in appendix 1). For example, the break-even
point of NPV of B is at a cost-of-capital of 9.5%, compared to
10% in case of a t-GAS model.

The strategic plan is valued less than the NPV of project B
without incurring the costs of project A (and thus also fore-
going any of its revenue). Later, we show that the strategic
plan becomes more valuable if more information will become
available in the future.

From here on, we will not report the GARCH results any-
more.† They are obviously qualitatively similar to the GAS-
based results, but the GAS specification has a stronger basis in
the econometric results of our data analysis.

5.1.2. State dependency. As in regular option pricing the-
ory, the option value in our analysis depends on the current
market state, in this case the gas price, since the econometric
analysis suggests that the best prediction for the future return
is mainly influenced by the current state. Figure 7 shows that
the value of the project increases with the spot market price. For
example, when the spot price is lower than 15 euros per
megawatt hour, the option value is close to zero, so for ex-
tremely low spot prices, the project has not only a negative
NPV but the embedded options are also almost worthless, with
a definite rejection at all discount rates as a result.

5.2. Utility indifference pricing

Figure 8 gives the calculated option values based on UIP for a
range of values for the risk tolerance parameter ρ. These results
are presented in more detail in table A1 in appendix 1. For both
pricing models (cost-of-capital and UIP), the option values
ranges between 10 and 15 million euros. As one should expect,
option values are increasing in the investor’s risk tolerance.‡
Or, to put it differently, the more risk averse an investor is, the
less value she attaches to a risky project. It is evident that taking
into account the option values once again leads to higher project
values, and to a different outcome in terms of the decision
to proceed or not. Note that the valuation increases steadily
initially as the risk tolerance of the decision-maker goes up
from 5 to 40; however, from a risk tolerance of 40 onwards, the
valuation flattens out. These findings are similar to the results
obtained by Van Wijnbergen and Zhao (2016).

One interesting observation can be made by comparing fig-
ures 6(b) and 8. In figure 8, when the risk tolerance of the
investor increases and she/he becomes almost risk neutral, the
valuations are similar to the ones obtained from the cost-of-
capital method with a cost-of-capital of 3%. Since we assume
a risk-free rate of 3%, the valuations obtained using these
two methods indeed coincide provided the complete market
assumption holds or the investor is risk neutral.

†Corresponding GARCH-based results can be found in appendix 1.
‡This may sound plausible, but it is not trivial: note that such a result
is typical for real options (unhedgeable risk) only. For standard risk-
neutral option pricing methodology to be applicable, all risks need to
be hedgeable; in such a complete market environment, option values
do not depend on risk aversion.
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As one should expect, the UIP approach leads to a compar-
ison between the outcomes based on the different stochastic
specifications of the volatility processes that is similar to what
we saw comparing the outcomes under different cost of capital
values. For all levels of risk tolerance, the t-GAS-based analy-
sis leads to slightly higher valuations than the t-GARCH-based
approach due to higher estimated volatilities.

5.3. Model ambiguity

In the discussion so far we have proceeded on the assumption
that specific values for the reserve levels were unknown, but
their probability distribution was known with full certainty. Of
course that may be overly optimistic: there is likely ambiguity
about the distribution itself, model ambiguity in short. In this
subsection, we take model uncertainty into consideration and
show how it affects the project values. We also assume that the
investor is ambiguity averse. This implies that she considers
the worst-case scenario when facing ambiguity, she follows a
maxmin strategy: take the minimum value of the maximized
outcomes/valuations over the different distributional possibil-
ities (see Gilboa and Schmeidler (1989)). In this example, we
assume ambiguity exists in the mean of the reservoir distribu-
tion only, and we take the variance of the reservoir distribution
as known from the geological structure of the locations. In
particular, no ambiguity implies one single known pdf for
the reserve size distribution; ambiguity implies there are two
different pdf’s, with the means further apart for higher levels
of ambiguity. In each case, two pdf’s are chosen such that
with 50/50 weights their expected values average out to the
mean of the no-ambiguity case. Initially, we assume the same
ambiguity on the reservoir sizes of both A and B. Of course we
can apply similar methods based on the assumption of different
ambiguity levels for A and B. Of special interest is the case
where ambiguity levels are reduced when information becomes
available halfway the project. We consider that possibility ex-
plicitly in the next section, section 5.3.1.

The structure of ambiguity introduced in this section also
implies that the time consistency issues highlighted by Thijssen
(2011) and Hellmann and Thijssen (2015) cannot arise. First
of all, the pdfs summarizing gas reservoir size distributions
are uncorrelated with the stochastics governing the gas price
itself.† Without correlation between gas prices and reservoir
uncertainty, the different priors can be ranked monotonically
as long as there is positive risk aversion since they have equal
variance but different means for any given level of ambiguity.
So for any given ambiguity level, the same prior will always
represent the worst case at all points in time and no time incon-
sistency problems arise. We have also verified this numerically.
Finally, as a referee has pointed out, the Minimax approach
advocated by Gilboa and Schmeidler (1989) requires the set of
priors giving rise to ambiguity to be closed and convex, which
our two prior assumption clearly does not satisfy. However,
allowing any linear combination of the two priors into the

†Note that that is not necessarily true under all extraction cost
structures. If marginal extraction costs depend on remaining reservoir
volumes, the gas price will have an impact on what is called
recoverable reserves. That problem does not arise, however, under
the extraction cost structure assumed in this study.

ambiguity set does make it closed and convex, and does not
change any of our results precisely because of the strong mono-
tonicity property our specific ambiguity structure implies.‡

Figure 9 shows that the project value decreases with higher
ambiguity levels.Ahigher ambiguity level means the decision-
maker is less certain about the mean of the reservoir distribu-
tion, which leads to a lower level of valuation as a conse-
quence of the Minimax strategy followed. Figure 9 also shows
that for higher levels of ambiguity, the valuation differences
between decision-makers with different risk tolerance shrink
accordingly.

These results provide interesting implications for insurance.
The mirror image (upside down) of these graphs can be in-
terpreted as how much the agent would be willing to pay for
insurance against a certain risk the agent faces. It implies that
for a given ambiguity level, risk averse agents are more likely to
buy insurance than high risk tolerance agents (not surprisingly)
because they attach a high value to the insurance. On the other
hand, for agents with the same risk tolerance, the decision of
purchasing the insurance contract depends on their ambiguity
level on the underlying processes. For example, according to
our results, agents with higher ambiguity levels will pay more
for insurance than those with lower ambiguity levels.

5.3.1. When ambiguity is resolved halfway of the process.
In the preceding section, we introduced persistent ambiguity,
i.e. uncertainty about the probability structure that remains
constant over time. However, it is more reasonable to assume
that once production in B has started, more information about
A, and more specifically, about the probability distribution
of possible outcomes of A, will become available, since the
geological structures of B and A are related. And declining
ambiguity again brings in rewards for waiting, in a sense once
again real option value. We explore the additional value project
B gets if its exploration reduces ambiguity over well A once B
is brought in production. In particular, we focus on reservoir
A ambiguity only, and assume it gets resolved after starting
on reservoir B. In other words, starting on B leads not only to
more specific information but also narrows down the range of
distributional possibilities.

For simplicity and focus we demonstrate the effect for the
case where there is just ambiguity aboutA, which gets resolved
once B is brought into operation. The no-ambiguity case is
obviously the same as shown in figure 9. But the interesting
results come once we assume that starting on B leads to reduced
ambiguity on A, for example, because the fields are contigu-
ous. If the ambiguity level of A is at a particular level at the
beginning and we know that ambiguity disappears after the
development of B, then the difference between no-ambiguity
and the project value at that particular Ambiguity-level should
be added to the project value of B. Figure 10 makes the point
for the two moderate ambiguity level (Level 2 and Level 3): it
shows the option values that resolution of ambiguity leads to as
a percentage of the original project value of B with ambiguity
persistent, and for different levels of risk tolerance.

It is clear from figure 10 that option values go up with
risk tolerance and also increase as the initial ambiguity level

‡See for an extreme example of a similar result Byder and
Dew-Becker (2016).
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Figure 12. Option pricing results for the general case with reservoir
correlation (Student’s t-GAS).

that gets resolved is higher. And the option value numbers are
substantial: in this example, the increase in project value due
to the reduction in ambiguity ranges between approximately
5 and 15% of the original project value depending on risk
tolerance and level of pre-existing ambiguity.

5.4. Reservoir correlation

Finally, we consider a plausible example of correlated infor-
mation, shown in figure 11(a). Assume that if B turns out to be
a successful development, the information about the reservoir
size distribution of A will be updated correspondingly. This
can also be interpreted as one example of ambiguity reduction.
Figure 11 shows some possible distribution updates for the
distribution of A, with the original distribution given in figure
11(a). The following diagrams figure 11(b)–(d) show three
different ways the distributional information could change: a
truncation point update, a shift in the mean and a reduction in
the variance.

In figure 11(b), we show how the distribution changes when
the truncation point shifts inwards, i.e. the range of possible
outcomes narrows down, as in the shadow area displayed in
figure 11(b). Alternatively, the mean could shift; figure 11(c)
shows an example where the mean shifts up. Finally, mean
and truncation points could be left unchanged but the variance
could be reduced as information from B becomes available
(figure 11(d)). In what follows we focus on the case where
the truncation point shifts inwards once B has started up, the
case shown in figure 11(b), to demonstrate how our option
technique works. We again present the results using both for
the cost-of-capital approach and the UIP approach.

5.4.1. Cost-of-capital method. Comparison of figure 12
with figure 6 shows that reservoir correlation has increased
the option value by about 1–5 million over the range of cost-
of-capital rates considered (as also shown in figure 13). The
reservoir correlation of course does not change the NPV of B,
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Figure 13. Comparison: option values with and without reservoir
correlation (Student’s t-GAS).
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Figure 14. UIP results for the general case with reservoir correlation
(Student’s t-GAS).

therefore the red dashed line and the gray circled line stay
the same as in figure 6. Moreover, the strategic plan now
outperforms the stand-alone project B for low cost-of-capital
estimates; this happens for rates below 10% under a t-GAS
specification.

5.4.2. Comparison with the case without reservoir
correlation. Furthermore, the shadow areas in figure 13 rep-
resent the differences of values between the projects with and
without reservoir correlation. It is evident that both the option
and strategic plan are valued higher when reservoir correla-
tion exists. In other words, the halfway resolution of reservoir
distribution ambiguity/correlation increases the project value
significantly by adding option value.
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Figure 15. Comparison: option values with and without reservoir
correlation (Student’s t-GAS).

5.4.3. Utility indifference pricing. When the evaluation is
based on UIP instead of on fixed cost-of-capital estimates,
similar to the comparison in section 5.4.1, the strategic plan
presented brings in more revenues (in NPV terms) than project
B on its own, shown in figures 14 and 15. But the more im-
portant point is that reduction of uncertainty, this time a nar-
rowing down of the range of possible outcomes, once again
leads to substantial option values and correspondingly higher
project value. So once again we find that ignoring option values
and information acquisition over time leads to overly conser-
vative project valuation and excessively conservative project
decisions.

5.4.3.1. Comparison with the case without reservoir cor-
relation. Similar to figure 13, the shadow areas in figure 15
represent the differences in valuation when comparing the
projects with and without reservoir correlation. Again we find
that ambiguity on A is reduced once B has been brought into
operation causes the option values to increase: the more future
information gets updated as the project moves ahead, the higher
the initial project value is.

6. Conclusion

This paper has focused on the real option approach to solv-
ing a contingent claim problem as an alternative method for
decision-making under uncertainty. We incorporate many as-
pects that complicate real-world asset pricing problems, such
as incomplete markets and unhedgeable risks, dynamic re-
lease of distributional information and non-normal volatility
assumptions, all of which invalidate traditional risk neutral
approaches to asset pricing. UIP is applied in face of mar-
ket incompleteness and t-GARCH/t-GAS models are used for
modelling the volatility of gas prices. We show in a real-world
example that the Student’s t-GARCH/-GAS model, with its
fatter tails, fits the observed data better than the Gaussian
GARCH/GAS model in terms of the associated log-likelihood
ratios.

UIP requires the explicit solution of Stochastic Dynamic
Programming problems; SDP is widely thought to suffer from
the curse of dimensionality to such an extent that it becomes
impractical for real-world size problems. But our analysis of a
pair of existing gas fields in the North Sea demonstrates that the
use of sophisticated simulation and approximation techniques
(LSMC) brings problems of real world complexity down to
manageable size.

We also take the analysis one step further by introducing
deep uncertainty, of the type that cannot be summarized by
formulating a probability density function, because it concerns
uncertainty about that very density function. In the literature,
this sort of uncertainty is referred to as Knightian uncertainty
or, the word we prefer, model ambiguity. In our case study,
we show that the existence of model ambiguity reduces asset
values in a risk averse world and will ceteris paribus lead to
more conservative project continuation decisions.

But we also introduce a new angle to this debate by
pointing out that for time structured projects with correlated
distributions, a new source of option value can emerge. If
executing one part of the project leads to reduced model am-
biguity concerning the later components of the project, the
initial blocks acquire additional option values, which in our
case study are shown to be substantial. As the ambiguity level
decreases as the project progresses, the initial project becomes
more valuable due to the information that will be brought in
along with development. The value of projects that allow for
that sort of flexibility will be underestimated consistently by
more traditional NPV-based valuation approaches. In our real
world case study, the biases are shown to be substantial.
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Appendix 1.

A.1. GAS models

A.1.1. Gaussian GARCH model. The model above can be re-
duced to a Gaussian GARCH model if ft = σ 2

t and εt ∼ N (0, 1),
i.e.

yt = σtεt

σ 2
t+1 = ω + A

(
y2

t − σ 2
t

)
+ Bσ 2

t

where ω, A, and B− A are parameters in a classical Gaussian GARCH
model.

A.1.2. Gaussian GAS model. Alternatively, if take ft = log σ 2
t ,

we obtain a Gaussian GAS(1,1) model, i.e.

yt = σtεt

log σ 2
t+1 = ω + A

(
y2

t

σ 2
t

− 1

)
+ B log σ 2

t

In this model, next period’s variance depends in a linear manner
on a constant, the current period’s variance and the square of the

standardized observations, y2
t

σ 2
t

.

A.1.3. Student’s t GARCH model. If the error term εt follows
a Student’s t distribution with degree of freedom ν, then it again
becomes a t-GARCH model. Similarly, if we still fit it into a GAS
framework, the model can be written as follows:

yt = σtεt

σ 2
t+1 = ω+ A

ν + 3

ν

⎛
⎝
(

1 + y2
t

(ν − 2) σ 2
t

)−1
ν + 1

ν − 2
y2

t − σ 2
t

⎞
⎠+Bσ 2

t

The estimation results can be found in figures A1–A8 and tables
A3–A6).

A.1.4. Student’s t GAS model. A Student’s t GAS(1,1) model is
obtained by choosing ft = log σ 2

t , and εt ∼ t (ν).

yt = σtεt

log σ 2
t+1 = ω + A

ν + 3

ν

⎛
⎝(1 + y2

t

(ν − 2) σ 2
t

)−1
(ν + 1) y2

t

(ν − 2) σ 2
t

− 1

⎞
⎠

+ B log σ 2
t .

http://cseg.ca/assets/files/members/cgf/Chapter3_PRMS_COGEH_CGF_DEC2011_FINAL.pdf
http://cseg.ca/assets/files/members/cgf/Chapter3_PRMS_COGEH_CGF_DEC2011_FINAL.pdf
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A.2. Results under a specification of the gas price volatility process as a Student’s t-GARCH model
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Figure A1. Spot prices vs. option value under a Student’s t-GARCH specification.
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Figure A4. Option pricing results for the general case with reservoir correlation (t-GARCH).
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Figure A5. Comparison: option values with and without reservoir correlation (Gaussian GARCH).
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A.3. Option results in detail

Table A1. UIP comparison (million euros).

Option value Option value
Risk tolerance (t-GARCH) (t-GAS) Difference

5 11.09 11.11 −0.02
10 12.31 12.63 −0.32
15 12.84 13.19 −0.35
20 13.35 13.87 −0.52
25 13.58 14.21 −0.63
30 13.60 14.37 −0.77
35 13.73 14.60 −0.86
40 13.74 14.74 −1.00
45 13.76 14.85 −1.08
50 13.83 14.90 −1.08
55 13.92 14.98 −1.06

Table A2. Option values vs. NPV of B at time 0 (million euros).

Student’s t-GARCH Student’s t-GAS

Cost-of-capital (%) Option values NPV of B at t = 0 Difference Option values NPV of B at t = 0 Difference

3 14.18 6.49 7.68 15.28 7.27 8.00
4 12.62 5.41 7.21 13.49 5.90 7.59
5 11.25 4.40 6.85 11.99 4.75 7.25
6 9.89 3.35 6.54 10.57 3.67 6.91
7 8.66 2.37 6.29 9.34 2.72 6.62
8 7.52 1.36 6.17 8.17 1.66 6.51
9 6.51 0.48 6.03 7.19 0.83 6.36
10 5.61 −0.34 5.95 6.30 0.00 6.29
11 4.83 −1.02 5.85 5.47 −0.79 6.26
12 4.12 −1.70 5.82 4.81 −1.43 6.24
13 3.52 −2.22 5.75 4.19 −2.04 6.23
14 2.93 −2.81 5.74 3.61 −2.65 6.25
15 2.48 −3.18 5.66 3.09 −3.28 6.37
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Table A3. Model ambiguity.

Risk Ambiguity level (left to right, low to high)

tolerance No ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

(a) Student’s t-GARCH
5 11.09 10.30 9.03 8.24 7.52 6.74
10 12.31 11.23 9.87 9.02 8.00 7.09
15 12.84 11.58 10.24 9.20 8.26 7.24
20 13.35 11.93 10.65 9.53 8.48 7.35
25 13.58 12.09 10.82 9.59 8.59 7.42
30 13.60 12.17 10.98 9.61 8.67 7.46
35 13.73 12.26 11.01 9.62 8.65 7.50
40 13.74 12.30 11.07 9.74 8.66 7.56
45 13.76 12.38 11.06 9.73 8.64 7.58
50 13.83 12.43 11.11 9.77 8.68 7.57
55 13.92 12.47 11.13 9.89 8.69 7.60

(b) Student’s t-GAS
5 11.11 10.21 9.25 8.41 7.87 7.05
10 12.63 11.43 10.39 9.29 8.46 7.55
15 13.19 11.98 10.80 9.67 8.71 7.74
20 13.87 12.58 11.29 10.04 9.00 7.99
25 14.21 12.88 11.48 10.24 9.10 8.12
30 14.37 13.04 11.55 10.35 9.19 8.19
35 14.60 13.16 11.62 10.40 9.22 8.22
40 14.74 13.15 11.69 10.40 9.25 8.24
45 14.85 13.17 11.73 10.47 9.22 8.23
50 14.90 13.16 11.77 10.51 9.24 8.25
55 14.98 13.18 11.90 10.56 9.26 8.22

Table A4. Model ambiguity of A only.

Risk Ambiguity level (left to right, low to high)

tolerance No ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

(a) Student’s t-GARCH
5 11.09 10.70 10.38 10.08 9.83 9.74
10 12.31 11.81 11.31 11.00 10.71 10.36
15 12.84 12.23 11.77 11.36 11.02 10.64
20 13.35 12.72 12.23 11.75 11.38 10.96
25 13.58 12.97 12.48 11.92 11.55 11.13
30 13.60 13.06 12.61 12.00 11.62 11.22
35 13.73 13.21 12.67 12.08 11.69 11.27
40 13.74 13.30 12.74 12.16 11.75 11.30
45 13.76 13.36 12.77 12.24 11.76 11.28
50 13.83 13.37 12.78 12.26 11.76 11.30
55 13.92 13.42 12.85 12.30 11.78 11.28

(b) Student’s t-GAS
5 11.11 10.89 10.56 10.21 9.96 9.71
10 12.63 12.16 11.90 11.46 10.98 10.75
15 13.19 12.75 12.43 11.95 11.51 11.22
20 13.87 13.36 12.97 12.51 12.00 11.69
25 14.21 13.66 13.21 12.75 12.27 11.87
30 14.37 13.86 13.34 12.87 12.42 12.01
35 14.60 14.01 13.45 12.96 12.49 12.08
40 14.74 14.11 13.48 13.07 12.49 12.13
45 14.85 14.21 13.54 13.08 12.56 12.17
50 14.90 14.26 13.61 13.10 12.62 12.25
55 14.98 14.35 13.66 13.13 12.70 12.27
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Table A5. Option values vs. NPV of B at time 0 (million euros) with reservoir correlation.

Student’s t-GARCH Student’s t-GAS

NPV of strategic NPV of strategic
Cost-of-capital (%) Option values plan starting at t = 0 Difference Option values plan starting at t = 0 Difference

3 18.18 10.62 7.57 19.14 11.27 7.87
4 16.11 8.44 7.66 16.83 9.01 7.82
5 14.35 6.72 7.63 15.18 7.36 7.82
6 12.59 4.90 7.69 13.40 5.59 7.81
7 10.96 3.22 7.74 11.79 3.92 7.87
8 9.68 1.92 7.76 10.49 2.59 7.90
9 8.44 0.61 7.83 9.20 1.22 7.98
10 7.35 −0.59 7.94 8.03 −0.01 8.04
11 6.39 −1.62 8.01 7.01 −1.16 8.17
12 5.55 −2.53 8.08 6.14 −2.16 8.30
13 4.75 −3.44 8.19 5.31 −3.10 8.41
14 3.99 −4.30 8.29 4.50 −4.10 8.60
15 3.41 −5.00 8.41 3.88 −4.76 8.64

Table A6. UIP comparison (million euros) with reservoir correlation.

Risk tolerance Option value under Option value under
a Student’s t-GARCH specification a Student’s t-GAS specification Di f f erence

5 11.19 11.33 −0.14
10 12.92 13.11 −0.19
15 13.63 13.81 −0.18
20 14.35 14.76 −0.41
25 14.66 15.19 −0.53
30 14.84 15.40 −0.56
35 14.84 15.72 −0.88
40 15.02 15.92 −0.90
45 15.19 15.87 −0.68
50 15.20 15.94 −0.74
55 15.40 15.94 −0.54



1782 L. Zhao and S. van Wijnbergen

Figure A8. Least Squares Monte Carlo Method (Longstaff and Schwartz 2001).
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