
Sequential PAttern Mining using A Bitmap Representation

Jay Ayres, Johannes Gehrke, Tomi Yiu, and Jason Flannick
Dept. of Computer Science

Cornell University

ABSTRACT
We introduce a new algorithm for mining sequential pat-
terns. Our algorithm is especially efficient when the sequen-
tial patterns in the database are very long. We introduce a
novel depth-first search strategy that integrates a depth-first
traversal of the search space with effective pruning mecha-
nisms.

Our implementation of the search strategy combines a ver-
tical bitmap representation of the database with efficient
support counting. A salient feature of our algorithm is that
it incrementally outputs new frequent itemsets in an online
fashion.

In a thorough experimental evaluation of our algorithm on
standard benchmark data from the literature, our algorithm
outperforms previous work up to an order of magnitude.

1. INTRODUCTION
Finding sequential patterns in large transaction databases

is an important data mining problem. The problem of min-
ing sequential patterns and the support-confidence frame-
work were originally proposed by Agrawal and Srikant [2,
10]. Let I = {i1, i2, . . . , in} be a set of items. We call a
subset X ⊆ I an itemset and we call |X| the size of X. A
sequence s = (s1, s2, . . . , sm) is an ordered list of itemsets,
where si ⊆ I, i ∈ {1, . . . , m}. The size, m, of a sequence is
the number of itemsets in the sequence, i.e. |s|. The length
l of a sequence s = (s1, s2, . . . , sm) is defined as

l def=
mX

i=1

|si|.

A sequence with length l is called an l-sequence. A sequence
sa = (a1, a2, . . . , an) is contained in another sequence sb =
(b1, b2, . . . , bm) if there exist integers 1 ≤ i1 < i2 < . . . <
in ≤ m such that a1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . If
sequence sa is contained in sequence sb, then we call sa a
subsequence of sb and sb a supersequence of sa.

A database D is a set of tuples (cid, tid, X), where cid is a
customer-id, tid is a transaction-id based on the transaction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02Edmonton, Alberta, Canada
Copyright 2002 ACM 1­58113­567­X/02/0007 ...$5.00.

Customer ID (CID) TID Itemset
1 1 {a, b, d}
1 3 {b, c, d}
1 6 {b, c, d}
2 2 {b}
2 4 {a, b, c}
3 5 {a, b}
3 7 {b, c, d}

Table 1: Dataset sorted by CID and TID

CID Sequence
1 ({a, b, d}, {b, c, d}, {b, c, d})
2 ({b}, {a, b, c})
3 ({a, b}, {b, c, d})

Table 2: Sequence for each customer

time, and X is an itemset such that X ⊆ I. Each tuple
in D is referred to as a transaction. For a given customer-
id, there are no transactions with the same transaction ID.
All the transactions with the same cid can be viewed as a
sequence of itemsets ordered by increasing tid. An analogous
representation for the database is thus a set of sequences of
transactions, one sequence per customer, and we refer to
this dual representation of D as its sequence representation.

The absolute support of a sequence sa in the sequence
representation of a database D is defined as the number of
sequences s ∈ D that contain sa, and the relative support is
defined as the percentage of sequences s ∈ D that contain sa.
We will use absolute and relative support interchangeably in
the rest of the paper. The support of sa in D is denoted by
supD(sa). Given a support threshold minSup, a sequence
sa is called a frequent sequential pattern on D if supD(sa) ≥
minSup. The problem of mining sequential patterns is to
find all frequent sequential patterns for a database D, given
a support threshold sup.

Table 1 shows the dataset consisting of tuples of (customer
id, transaction id, itemset) for the transaction. It is sorted
by customer id and then transaction id. Table 2 shows the
database in its sequence representation. Consider the se-
quence of customer 2; the size of this sequence is 2, and the
length of this sequence is 4.

Suppose we want to find the support of the sequence
sa = ({a}, {b, c}). From Table 2, we know that sa is a
subsequence of the sequences for customer 1 and customer
3 but is not a subsequence of the sequence for customer 2.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192600318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hence, the support of sa is 2 (out of a possible 3), or 0.67.
If the user-defined minimum support value is less than 0.67,
then sa is deemed frequent.

1.1 Contributions of This Paper
In this paper, we take a systems approach to the prob-

lem of mining sequential patterns. We propose an efficient
algorithm called SPAM (Sequential PAttern Mining) that
integrates a variety of old and new algorithmic contributions
into a practical algorithm. SPAM assumes that the entire
database (and all data structures used for the algorithm)
completely fit into main memory. With the size of cur-
rent main memories reaching gigabytes and growing, many
moderate-sized to large databases will soon become com-
pletely memory-resident. Considering the computational
complexity that is involved in finding long sequential pat-
terns even in small databases with wide records, this as-
sumption is not very limiting in practice. Since all algo-
rithms for finding sequential patterns, including algorithms
that work with disk-resident databases, are CPU-bound, we
believe that our study sheds light on the most important
performance bottleneck.

SPAM is to the best of our knowledge the first depth-
first search strategy for mining sequential patterns. An ad-
ditional salient feature of SPAM is its property of online
outputting sequential patterns of different length — com-
pare this to a breadth-first search strategy that first outputs
all patterns of length one, then all patterns of length two,
and so on. Our implementation of SPAM uses a vertical
bitmap data layout allowing for simple, efficient counting.

2. THE SPAM ALGORITHM
In this section, we will describe the lexicographic tree of

sequences upon which our algorithm is based. We will also
discuss the way we traverse the tree and the pruning meth-
ods that we use to reduce the search space.

2.1 Lexicographic Tree for Sequences
This part of the paper describes the conceptual framework

of the sequence lattice upon which our approach is based.
A similar approach has been used for the problem of mining
frequent itemsets in MaxMiner [3] and MAFIA [5]. We use
this framework to describe our algorithm and some pertinent
related works. Assume that there is a lexicographical order-
ing ≤ of the items I in the database. If item i occurs before
item j in the ordering, then we denote this by i ≤I j. This
ordering can be extended to sequences by defining sa ≤ sb

if sa is a subsequence of sb. If sa is not a subsequence of sb,
then there is no relationship in this ordering.

Consider all sequences arranged in a sequence tree (ab-
breviated, tree) with the following structure. The root of
the tree is labeled with ∅. Recursively, if n is a node in the
tree, then n’s children are all nodes n′ such that n ≤ n′ and
∀m ∈ T : n′ ≤ m =⇒ n ≤ m. Notice that given this defini-
tion the tree is infinite. Due to a finite database instance as
input to the problem, all trees that we deal with in practice
are finite.

Each sequence in the sequence tree can be considered as
either a sequence-extended sequence or an itemset-extended
sequence. A sequence-extended sequence is a sequence gen-
erated by adding a new transaction consisting of a single
item to the end of its parent’s sequence in the tree. An
itemset-extended sequence is a sequence generated by adding

{}

a

 a,a a,b (a,b)

a,a,a a,a,b a,(a,b) a,b,a a,b,b (a,b),a (a,b),b

a,a,(a,b) a,(a,b),a a,(a,b),b a,b,(a,b) (a,b),a,a (a,b),a,b (a,b),(a,b)

a,(a,b),(a,b) (a,b),a,(a,b) (a,b),(a,b),a (a,b),(a,b),b

(a,b),(a,b),(a,b)

 Level

1

2

3

4

5

6

= S-Step

= I-Step

Figure 1: The Lexicographic Sequence Tree

an item to the last itemset in the parent’s sequence, such
that the item is greater than any item in that last itemset.
For example, if we have a sequence sa = ({a, b, c}, {a, b}),
then ({a, b, c}, {a, b}, {a}) is a sequence-extended sequence
of sa and ({a, b, c}, {a, b, d}) is an itemset-extended sequence
of sa.

If we generate sequences by traversing the tree, then each
node in the tree can generate sequence-extended children se-
quences and itemset-extended children sequences. We refer
to the process of generating sequence-extended sequences as
the sequence-extension step (abbreviated, the S-step), and
we refer to the process of generating itemset-extended se-
quences as the itemset-extension step (abbreviated, the I-
step). Thus we can associate with each node n in the tree
two sets: Sn, the set of candidate items that are consid-
ered for a possible S-step extensions of node n (abbreviated
s-extensions), and In, which identifies the set of candidate
items that are considered for a possible I-step extensions
(abbreviated, i-extensions.

Figure 1 shows a sample of a complete sequence tree for
two items, a and b, given that the maximum size of a se-
quence is three. The top element in the tree is the null se-
quence and each lower level k contains all of the k-sequences,
which are ordered lexicographically with sequence-extended
sequences ordered before itemset-extended sequences. Each
element in the tree is generated only by either an S-step or an
I-step, e.g. sequence ({a, b}, {b}) is generated from sequence
({a, b}) and not from sequence ({a}, {b}) or ({b}, {b}).

2.2 Depth First Tree Traversal
SPAM traverses the sequence tree described above in a

standard depth-first manner. At each node n, the support
of each sequence-extended child and each itemset-extended
child is tested. If the support of a generated sequence s is
greater than or equal to minSup, we store that sequence

and repeat DFS recursively on s. (Note that the maximum
length of any sequence is limited since the input database is
finite.) If the support of s is less than minSup, then we do
not need to repeat DFS on s by the Apriori principle, since
any child sequence generated from s will not be frequent [2].
If none of the generated children are frequent, then the node
is a leaf and we can backtrack up the tree.

2.3 Pruning
The previous algorithm has a huge search space. To im-

prove the performance of our algorithm, we can prune can-
didate s-extensions and i-extensions of a node n in the tree.
Our pruning techniques are Apriori-based and are aimed at
minimizing the size of Sn and In at each node n. At the
same time, the techniques guarantee that all nodes corre-
sponding to frequent sequences are visited.

2.3.1 S­step Pruning
One technique used prunes S-step children. Consider a

sequence s at node n and suppose its sequence-extended
sequences are sa = (s, {ij}) and sb = (s, {ik}). Suppose sa

is frequent but sb is not frequent. By the Apriori principle,
(s, {ij}, {ik}) and (s, {ij , ik}) can not be frequent, since both
contain the subsequence sb. Hence, we can remove ik from
both Sm and Im, where m is any node corresponding to a
frequent sequence-extended child of s.

Example
Suppose we are at node ({a}) in the tree and suppose that

S({a}) = {a, b, c, d}, I({a}) = {b, c, d}.

The possible sequence-extended sequences are ({a}, {a}),
({a}, {b}), ({a}, {c}) and ({a}, {d}). Suppose that ({a}, {c})
and ({a}, {d}) are not frequent. By the Apriori principle,
we know that none of the following sequences can be fre-
quent either: ({a}, {a}, {c}), ({a}, {b}, {c}), ({a}, {a, c}),
({a}, {b, c}), ({a}, {a}, {d}), ({a}, {b}, {d}), ({a}, {a, d}), or
({a}, {b, d}). Hence, when we are at node ({a}, {a}) or
({a}, {b}), we do not have to perform I-step or S-step us-
ing items c and d, i.e. S({a},{a}) = S({a},{b}) = {a, b},
I({a},{a}) = {b}, and I({a},{b}) = ∅.

2.3.2 I­step Pruning
The second technique prunes I-step children. Consider the

itemset-extended sequences of s = (s′, {i1, . . . , in}). Sup-
pose the sequences are sa = (s′, {i1, . . . , in, ij}) and sb =
(s′, {i1, . . . , in, ik}), and suppose that ij < ik. If sa is fre-
quent and sb is not frequent, then by the Apriori principle,
(s′, {i1, . . . , in, ij , ik}) cannot be frequent. Hence, we can
remove ik from Im, where m is any node corresponding to a
frequent itemset-extended child of s. We can remove from
Sm the same items as we did using S-step pruning. For sup-
pose that during S-step pruning (s, {il}) was discovered to
be infrequent. Then so too will (sa, {il}) be infrequent for
any frequent itemset-extended child sa of s.

Figure 2 shows the pseudocode of our algorithm after both
I-step pruning and S-step pruning are added. After pruning
the correct items from Sm and Im, we pass the new lists
to the next recursive call. The lists are pruned exactly as
described in the previous sections.

DFS-Pruning(node n = (s1, . . . , sk), Sn, In)

(1) Stemp = ∅
(2) Itemp = ∅
(3) For each (i ∈ Sn)
(4) if ((s1, . . . , sk, {i}) is frequent)
(5) Stemp = Stemp ∪ {i}
(6) For each (i ∈ Stemp)
(7) DFS-Pruning((s1, . . . , sk, {i}), Stemp,

all elements in Stemp greater than i)
(8) For each (i ∈ In)
(9) if ((s1, . . . , sk ∪ {i}) is frequent)
(10) Itemp = Itemp ∪ {i}
(11) For each (i ∈ Itemp)
(12) DFS-Pruning((s1, . . . , sk ∪ {i}), Stemp,

all elements in Itemp greater than i)

Figure 2: Pseudocode for DFS with pruning

Example
Let us consider the same node ({a}) described in the pre-
vious section. The possible itemset-extended sequences are
({a, b}), ({a, c}), and ({a, d}). If ({a, c}) is not frequent,
then ({a, b, c}) must also not be frequent by the Apriori
principle. Hence, I({a,b}) = {d}, S({a,b}) = {a, b}, and
S({a,d}) = {a, b}.

3. DATA REPRESENTATION

3.1 Data Structure
To allow for efficient counting, our algorithm uses a ver-

tical bitmap representation of the data. A vertical bitmap
is created for each item in the dataset, and each bitmap has
a bit corresponding to each transaction in the dataset. If
item i appears in transaction j, then the bit correspond-
ing to transaction j of the bitmap for item i is set to one;
otherwise, the bit is set to zero.

To enable efficient counting and candidate generation, we
partition the bitmap such that all of the transactions of each
sequence in the database will appear together in the bitmap
(Figure 3). If transaction m is before transaction n in a
sequence, then the index of the bit corresponding to m is
smaller than that of the bit corresponding to n. We also use
different sized bitmaps depending on how many transactions
are present in a sequence; we postpone a discussion of this
until we discuss support counting.

This bitmap idea extends naturally to itemsets. Suppose
we have a bitmap for item i and a bitmap for item j. The
bitmap for the itemset {i, j} is simply the bitwise AND of
these two bitmaps. Sequences can also be represented using
bitmaps. If the last itemset of the sequence is in transac-
tion j and all the other itemsets of the sequence appear in
transactions before j, then the bit corresponds to j will be
set to one; otherwise, it will be set to zero. We define B(s)
as the bitmap for sequence s.

Efficient counting of support is one of the main advantages
of the vertical bitmap representation of the data. To achieve
this, we partition the customer sequences into different sets
based on their lengths when we read in the dataset. If the
size of a sequence is between 2k + 1 and 2k+1, we consider
it as a 2k+1-bit sequence. The minimum value of k is 1 (i.e.

CID TID {a} {b} {c} {d}

1 1 1 1 0 1
1 3 0 1 1 1
1 6 0 1 1 1
- - 0 0 0 0
2 2 0 1 0 0
2 4 1 1 1 0
- - 0 0 0 0
- - 0 0 0 0
3 5 1 1 0 0
3 7 0 1 1 1
- - 0 0 0 0
- - 0 0 0 0

Figure 3: Bitmap Representation of the dataset in
Figure 1

any sequence of size smaller than or equal to 4 is considered
as a 4-bit sequence). We ignore any sequence of size larger
than 64 because in most practical databases this situation
will not arise. Each set of 2k-bit sequences will correspond
to a different bitmap, and in that bitmap each section will
be 2k-bits long. Support counting for each customer then
becomes a simple check as to whether the corresponding
bitmap partition contains all zeros or not.

Let us consider the dataset that is shown in Table 1. The
bitmap representation of this dataset is shown in Figure 3.
Each vertical bitmap is partitioned into three sections, and
each section corresponds to a customer’s sequence. Since all
of the customers’ sequences have less than four transactions,
all of them are represented as 4-bit sequences. Transaction
6 contains items b,c, and d, so the bit that corresponds to
that transaction in each of the bitmaps b,c, and d is set to
one. Since transaction 6 does not contain the item a, the
bit corresponding to that transaction in bitmap a is set to
zero.

3.2 Candidate Generation
In this section, we will describe how we perform candi-

date generations using the bitmap representation described
above. We first consider S-step processing, followed by I-step
processing.

3.2.1 S­step Process
Suppose we are given bitmaps B(sa) and B(i) for sequence

sa and item i respectively, and that we want to perform a S-
step on sa using i. This S-step will append the itemset {i} to
sa. The bitmap for the new sequence, B(sg), should have the
property that if a bit has value one, then the corresponding
transaction j must contain i, and all of the other itemsets
in sg must be contained in transactions before j.

Let us consider a section (a customer’s sequence) of the
bitmaps; we will refer it as a bitmap in this discussion. Sup-
pose the index of the first bit with value one in B(sa) is k.
Note that for bit k, the corresponding transaction j contains
the last itemset of sa, and all the other itemsets of sa must
be contained in the transactions before j. One observation is
that since {i} is appended after the last itemset in sa, it must
be present in a transaction strictly after j in sg. Therefore,
bit k in B(sg) must have value zero. Another observation is
that if item i is contained in any transaction after j, then

({a}) ({a})s {b} ({a}, {b})
1 0 1 0
0 1 1 1
0 1 1 1
0 1 0 0
0 S-step 0 1 result 0
1 −→ 1 & 1 −→ 0
0 process 1 0 0
0 1 0 0
1 0 1 0
0 1 1 1
0 1 0 0
0 1 0 0

Figure 4: S-step processing on sequence bitmap
({a}) shown in Figure 3

the corresponding bit in B(sg) should be one. Therefore,
all of the bits indexed after bit k in B(sg) should have the
same value as the corresponding bit in B(i). Our method
to perform S-step is based on these two observations.

We first generate a bitmap from B(sa) such that all bits
less than or equal to k are set to zero, and all bits after k are
set to one. We call this bitmap a transformed bitmap. We
then AND the transformed bitmap with the item bitmap.
The resultant bitmap has the properties described above and
it is exactly the bitmap for the generated sequence. In our
implementation, the transformation is done using a lookup
table.

Figure 4 shows an example of the S-step process. Let us
consider the bitmap B(({a})), and suppose we want to gen-
erate B(({a}, {b})). Since ({a}, {b}) is a sequence-extended
sequence of ({a}), we have to perform a S-step process on
B(({a})). Consider the section of the bitmap for the first
customer. The first bit with value one is the first bit in the
section. Hence, in the transformed bitmap B(({a})s), the
first bit is set to zero and all the other bits for in that section
are set to one. The resultant bitmap obtained by ANDing
the transformed bitmap and B({b}) is exactly B(({a}, {b})).
In the final bitmap, the second bit and the third bit for the
first customer have value one. This means that the last item-
set (i.e. {b}) of the sequence appears in both transaction 2
and transaction 3, and itemset {a} appears in transaction
1.

3.2.2 I­step Process
Suppose we are given B(sa) and B(i), and that we want

to perform an I-step on sa using i. This I-step will generate
a new sequence sg by adding item i to the last itemset of
sa. The bitmap for sg should have the property that if a bit
has value one, then the corresponding transaction j must
contain the last itemset in sg, and all of the other itemsets
in sg must be in transactions before j.

Now, consider the resultant bitmap B(sr) obtained by
ANDing B(sa) and B(i). A bit k in B(sr) has value one
if and only if bit k in B(sa) is one and bit k in B(i) is
also one. For bit k of B(sr) to be one, the transaction j
that corresponds to bit k must, therefore, contain both the
last itemset in sa and the item i. In addition, all of the
other itemsets of sa must appear in transactions before j.
It follows that B(sr) satisfies each of the requirements that
B(sg) must satisfy; B(sr) is therefore exactly the bitmap

({a}, {b}) {d} ({a}, {b, d})
0 1 0
1 1 1
1 1 1
0 0 0
0 0 result 0
0 & 0 −→ 0
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0

Figure 5: I-step processing on sequence bitmap
({a}, {b}) shown in Figure 4

Symbol Meaning
D Number of customers in the dataset
C Average number of transactions per customer
T Average number of items per transaction
S Average length of maximal sequences
I Average length of transactions within

the maximal sequences

Table 3: Parameters used in dataset generation

for the generated sequence.
Figure 5 shows an example of an I-step process. Let us

consider B(({a}, {b})) from the previous section, and sup-
pose we want to generate B(({a}, {b, d})). Since ({a}, {b, d})
is an itemset-extended sequence of ({a}, {b}), we have to
perform an I-step process on B(({a}, {b})). The bitmap
that results from the ANDing of B(({a}, {b})) and B({d}) is
exactly B(({a}, {b, d})). In the final bitmap, the second bit
and the third bit for the first customer have value one, which
means that the last itemset (i.e. {b, d}) of the sequence ap-
pears in both transaction 2 and transaction 3, and the other
itemsets in the sequence (i.e. {a}) appear in transaction 1.

4. EXPERIMENTAL EVALUATION
In this section, we report our experimental results on the

performance of SPAM in comparison with SPADE [12] and
PrefixSpan [9]. We obtained the source code of SPADE from
Mohammed Zaki, and an executable of PrefixSpan from Ji-
awei Han.

All the experiments were performed on a 1.7GHz Intel
Pentium 4 PC machine with 1 gigabyte main memory, run-
ning Microsoft Windows 2000. All three algorithms are writ-
ten in C++, and SPAM and SPADE were compiled using
g++ in cygwin with compiler option -O3. During all of the
tests, output of the frequent sequences was turned off so that
the true running times of the algorithms were recorded. Our
tests show that SPAM outperforms SPADE and PrefixSpan
by up to an order of magnitude.

4.1 Synthetic data generation
To test our algorithm we generated numerous synthetic

datasets using the IBM AssocGen program [2]. There are
several factors that we considered while comparing SPAM
against SPADE. These factors are listed in Table 3. All

of these factors can be specified as parameters when run-
ning AssocGen. We also compared the performance of the
algorithms as the minimum support was varied for several
datasets of different sizes.

4.2 Comparison With SPADE and PrefixSpan
We compared SPAM with SPADE and PrefixSpan via

two different methods. First, we compared the three al-
gorithms on several small, medium, and large datasets for
various minimum support values. This set of tests shows
that SPAM outperforms SPADE by about a factor of 2.5 on
small datasets and better than an order of magnitude for
reasonably large datasets. PrefixSpan outperforms SPAM
slightly on very small datasets, but on large datasets SPAM
outperforms PrefixSpan by over an order of magnitude. The
results of these tests are shown in Figures 6 to 11.

The primary reason that SPAM performs so well for large
datasets is due to the bitmap representation of the data
for efficient counting. The counting process is critical be-
cause it is performed many times at each recursive step,
and SPAM handles it in an extremely efficient manner. For
short datasets, the initial overhead needed to set up and use
the bitmap representation in some cases outweighs the ben-
efits of faster counting, and because of this PrefixSpan runs
slightly faster for small datasets. As candidate sequences
become longer, we recurse more levels down the tree and
counting becomes more and more important. Overall, our
runtime tests show that SPAM excels at finding the frequent
sequences for many different types of large datasets.

Our second method of testing compared the performance
of the algorithms as several parameters in the dataset gen-
eration were varied. We investigated the impact of different
parameters of the data generation on the running time of
each algorithm. The parameters that we varied were the
number of customers in the dataset, the average number of
transactions per customer, the average number of items per
transaction, the average size of itemsets in the maximal se-
quences, and the average length of the maximal sequences.
For each test, one parameter was varied and the others, in-
cluding minimum support, were kept fixed. The results of
these tests are shown in Figures 12 to 15.

Our experiments show that as the average number of items
per transaction and the average number of transactions per
customer increases, and as the average length of maximal se-
quences decreases, the performance of SPAM increases even
further relative to the performance of SPADE and PrefixS-
pan. This performance increase is due to similar factors as
in the case of increasing dataset size. While SPAM contin-
ues to outperform SPADE and PrefixSpan as the average
size of the itemsets in the maximal sequences and the num-
ber of customers in the dataset increaseds the discrepancy
between the running times did not increase as significantly
as with the other parameters. The reasonfor the low inrease
in performance is that an increase in these parameters does
not make efficient counting more important as much as does
the increase of the other parameters; however, SPAM is still
much faster than SPADE and PrefixSpan in all cases with
relatively large datasets.

4.3 Consideration of space requirements
Because SPAM uses a depth-first traversal of the search

space, it is quite space-inefficient in comparison to SPADE.
We can make an estimation of the blow-up in space require-

�

��

��

��

��

���� ���� ���	 ���
 ���� ���

�
��

�
���

�

�

��

��

��

��

��

��

���� ���� ���� ���� ���	

��

����

�

�

���

���

���

���

����

��� ���	 ��� ���	 ��	

��

����

�

Figure 6: Varying support for
small dataset #1

Figure 7: Varying support for
small dataset #2

Figure 8: Varying support for
medium-sized dataset #1

�

��

��

���

���

���

���� ���� ��	� ��	�

��

����

�

�

���

���

���

���

����

����

���� ���� ��� ����

	
��

	
�
�

	

�

����

����

�����

���� ��	� ��	� ����

��

����

�

Figure 9: Varying support for
medium-sized dataset #2

Figure 10: Varying support for
large dataset #1

Figure 11: Varying support for
large dataset #2

ments based on the parameters of an input dataset. Let D
be the number of customers in the database, C the average
number of transactions per customer, and N the total num-
ber of items across all of the transactions. Using the vertical
bitmap representation to store transactional data, for each
item we need one bit for transaction in the database. Since
there are D×C transactions, SPAM requires (D×C×N)/8
bytes to store all of the data. Our representation is ineffi-
cient since even when an item is not present in a transaction,
we are storing a zero to represent that fact.

The representation of the data that SPADE uses is more
efficient. For each transaction, each item in that transaction
must be recorded. Let us denote the average number of
items per transaction as T . In that case, we need to record
approximately D×C × T items. Assuming it costs about 2
bytes to store a given item, SPADE uses about D×C×T×2
bytes.

Thus, SPAM is less space-efficient then SPADE as long
as 16T < N . In our sample datasets there are thousands
of items and roughly 10 to 20 items per transaction. As a
result, SPADE is expected to roughly outperform SPAM in
terms of space requirements by factors ranging from 5 to
20, mirroring the performance increase of SPAM. Thus the
choice between SPADE and SPAM is clearly a space-time
tradeoff.

If space becomes a major issue, it is possible to compress
the bitmaps that SPAM uses. Essentially, we can remove
transactions from the bitmap for a sequence when those

transactions will never contribute to the support count of
the sequence. We are unable to include a full discussion of
bitmap compression due to space constraints.

5. RELATED WORK
Agrawal and Srikant introduced the sequential pattern

mining problem in [2]. Many methods, which are based the
Apriori property [1], have been proposed for mining sequen-
tial patterns [2, 11, 9, 6, 4, 7, 8]. Apriori principle states
that the fact that any superseqeuence of a non-frequent se-
quence must not be frequent. SPADE [12] and PrefixSpan
[9] are two of the fastest algorithms that mine sequential
patterns.

6. CONCLUSION
In this paper we presented an algorithm to quickly find all

frequent sequences in a list of transactions. The algorithm
utilizes a depth-first traversal of the search space combined
with a vertical bitmap representation to store each sequence.
Experimental results demonstrated that our algorithm out-
performs SPADE and PrefixSpan on large datasets by over
an order of magnitude. Our new algorithmic components in-
cluding bitmap representation, S-step/I-step traversal, and
S-step/I-step pruning all contribute to this excellent run-
time.

Acknowledgements. We thank Mohammeed Zaki for
providing us with the source code of Spade, and to Jiawei

�

��

���

���

���

���

�� �� �� ��

��	

��	��

��

�

���

����

����

����

����

�� �� ��

��	

��	��

��

�

���

���

���

���

����

����

�� �� �� �� �� ��

	
��

	
�
�

	

Figure 12: Varying number of
customers

Figure 13: Varying number of
transactions per customer

Figure 14: Varying number of
items per transaction

�

���

���

���

���

����

� � 	 ��

��

����

�

�

��

���

���

���

���

���

�� �� �� �� ��

��	

��	��

��

�

��

��

��

���

���

���� ���� ���� ��	�

��

����

�

Figure 15: Varying average
length of maximal sequences

Figure 16: Varying average
length of transactions within
maximal sequences

Figure 17: Varying support
with large number of customers
in dataset

Han for providing us with the executable of PrefixSpan.
This work was supported in part by NSF grants IIS-0084762
and IIS-0121175, by a gift from Intel Corporation, and by
the Cornell Intelligent Information Systems Institute.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast Algorithms for

Mining Association Rules in Large Databases. In
Proceedings of the Twentieth International Conference
on Very Large Databases, pages 487–499, Santiago,
Chile, 1994.

[2] R. Agrawal and R. Srikant. Mining Sequential
Patterns. In ICDE 1995, Taipei, Taiwan, March 1995.

[3] R. J. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD 1998, pages 85–93, 1998.

[4] C. Bettini, X. S. Wang, and S. Jajodia. Mining
temporal relationships with multiple granularities in
time sequences. Data Engineering Bulletin,
21(1):32–38, 1998.

[5] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In ICDE 2001, Heidelberg, Germany, 2001.

[6] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
Sequential pattern mining with regular expression
constraints. In VLDB 1999, pages 223–234, San
Francisco, Sept. 1999. Morgan Kaufmann.

[7] J. Han, G. Dong, and Y. Yin. Efficient mining of
partial periodic patterns in time series database. In
ICDE 1999, pages 106–115, Sydney, Australia, Mar.
1999.

[8] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences. In KDD
1995, pages 210–215, Montreal, Quebec, Canada,
1995.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan mining
sequential patterns efficiently by prefix projected
pattern growth. In ICDE 2001, pages 215–226,
Heidelberg, Germany, Apr. 2001.

[10] R. Srikant and R. Agrawal. Mining Sequential
Patterns: Generalizations and Performance
Improvements. In EDBT 1996, Avignon, France,
March 1996.

[11] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In P. M. G. Apers, M. Bouzeghoub,
and G. Gardarin, editors, EDBT 1996, pages 3–17,
25–29 Mar. 1996.

[12] M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1/2):31–60,
2001.

