
JDBC Demonstration Courseware
Using Servlets and Java Server Pages

Suzanne W. Dietrich, Susan D. Urban and Ion Kyriakides
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406

{dietrich i s.urban}@asu.edu

Abstract

This paper describes the design and functionality of
courseware developed to demonstrate the JDBC API. The
coursewarc is used in an advanced undergraduate database
course that emphasizes the use of Web access to database
systems. The JDBC courseware is wTitten using Java
Servlets and Java Server Pages, allowing the user to view
the metadata associated with a database, to view and
browse the information in a database according to the
database metadata, and to query and/or manipulate data
using SQL statements. The advantage of the courseware is
that it demonstrates the main functionality of the JDBC
API in an application-independent manner. The courseware
can access any ODBC-compliant database, emphasizing the
generality of the JDBC API and helping students
understand how JDBC can be used to query the metadata of
the database as well as the database contents.

1 Introduction

The interaction of databases and the Web is becoming an
important component of database education. At Arizona
State University, we are covering this interaction in a new
advanced database concepts course for undergraduates
[10]. Assuming a course on relational database concepts as
a prerequisite, our advanced undergraduate database course
addresses the use of Java Database Connectivity (JDBC)
[4, 6] and the Extensible Markup Language (XML) [I I] in
the context of relational, object-oriented, and object-
relational database technology. As part of the course,
students implement a semester-long group project that uses
JDBC to access a relational database with Web
programming technology such as Java Servlets [7] and/or
Java Server Pages (JSP) [8].

Permission to make digital or hard copies of all or par t of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or cornmezcial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE"02, Fcbruaxy 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-58113 -473-8/02/0002... $5.00.

One of the challenges of using new technology in the
classroom is that the technology is always changing. Based
on our past work with the use of technology in a database
curriculum [9], our educational approach is to teach only
the basic concepts of the technology in class, providing
demonstration software that uses the latest version of the
technology. Through.the use of cooperative group exercises
and programming assignments, students study the
demonstration software and actively acquire knowledge of
the latest technology using a hands-on approach.

Our work in [2] describes the way in which we have used
demonstration software in the advanced undergraduate
database course to actively teach the use o f X M L for the
import and export o f data f rom an object-oriented database
system. This paper describes the design and functionality o f
courseware developed to demonstrate the JDBC
Application Programming Interface (API). JDBC is a
mechanism that allows Java to communicate with databases
using a standard API to access databases regardless o f the
driver and the database product. JDBC consists o f a set o f
classes and interfaces written in Java, thus making its use
platform independent. The JDBC API is primarily used to
connect to databases and manipulate data through the use
o f method calls and SQL statements.

The JDBC example application presented in this paper is
written using Java Servlets and JSP technologies. The
example makes use o f the JDBC API to connect to any
database that is registered as an Open Database
Connectivity (ODBC) data source [5]. The application can
be run using a Web browser such as Netscape 4.0 or
Intemet Explorer 5.0 or higher. The functionality o f the
database allows the user to view the metadata associated
with the database schema, to view and browse the
information in the database according to the database
metadata, and to query and/or manipulate the data using
SQL statements. The JDBC example therefore
demonstrates the main functionality of the JDBC API in an
application-independent manner. The fact that the JDBC
example software can be run on any ODBC-compliant
database emphasizes to students the generality of the JDBC
API, helping students understand how JDBC can be used to

266

quei 3, the metadata of the database as well as the database
contents. We encourage students to run the example on
different databases and to study the code of the example to
learn how to use the JDBC API.

The remainder of this paper describes the JDBC
demonstration courseware and the manner in which it is
implemented using Java Servlets and JSP. Section 2
provides an overview of the software architectural design.
Section 3 provides a brief overview of JDBC. The user
interface is covered briefly in Section 4. Section 5 provides
an overview of the JDBC interface for database metadata.
Section 6 covers the database manipulation commands.
Section 7 concludes the paper by summarizing the
contributions o f the JDBC demonstration courseware.

2 Design

Figure 1 illustrates a high-level design of the JDBC
demonstration courseware. The application is implemented
using a three-tier architectural model. The top tier is the
browser where the client can send Requests and receive
Responses from the server using JSP pages. A Java Servlet
and a Java Bean act as the middle tier, communicating with
the underlying data source. The third tier uses the JDBC
API through a JDBC-ODBC driver.

Servlets are small pieces of code, written in Java, that add
functionality to a web server using the Request/Response
model. The client sends a Request and the Server replies
with a Response. JSP technology uses HTML-Iike tags
written in Java to encapsulate the presentation of the web
page. JSP pages are usually used in combination with Java
Beans, which are Java objects with get and set methods.
The Java Server Pages are compiled into Servlets during
run time.

The application design was also influenced by the Model-
View-Controller (M'VC) [3] design pattern. In the M'VC,
three types of components are used to decouple the
functionality of an application: the Model, the View, and
the Controller. The Model exposes the business logic,
which is the JavaBean class in this application that stores
and manipulates the data. The View renders the model,
which corresponds to the JSP pages, where the presentation
of the data stored in the model is rendered using HTML.
The Controller defines the behavior of the application,
which is represented by the Java Servlet, performing
different actions depending on the client Request.

This architectural design allows the application access to
any registered, ODBC-compliant data source. Ideally, the
student has the ability to run the application on a class
server. The course ware documentation also provides
directions on how the student can register the data source
and install the application on the local host (see
http://www.eas.asu.edu/,-cse494db).

JDBC Oemonstraliom Architecture

BROWSER
SERVLET

I J o e c I

._~BC,-OOBC bridge

 ,soo.cJ
Figure I JDBC Courseware Architecture

3 JDBC Overview

The JDBC API, as given in the java.sql package [6],
consists o f a collection of interfaces and classes, allowing
Java programs to interact with a database. The interfaces
that are illustrated in the courseware include: Connection,
DatabaseMetaData, Statement, ResultSet, and
ResultSetMetaData. A Connection represents the
interconnection between the Java client program and the
database. The DatabaseMetaData provides information
about the data contained in the database, such as table
names and the names and types o f attributes. The Statement
interface provides methods for executing queries, and is
created in the context o f a Connection. The result o f a
Statement or metadata retrieval is returned as a ResultSet,
with methods for iterating through the set o f results. The
ResultSetMetaData provides information about the
ResultSet such as attribute names and types.

The students are provided with an overview o f these basic
JDBC concepts in class. The JDBC courseware is then
demonstrated to the students, illustrating the use of the
courseware on several different databases. The students are
then given a cooperative assignment to study the code to
fmd out how the JDBC API is being used.

The remainder o f the paper describes examples o f how the
c o u r s e w a r e demonstrates the various interfaces of the
JDBC API. Due to the generaliW of the courseware, it does
not demonstrate the PreparedStatement interface for
executing parameterized, pre-compiled queries or the
CallableStatement interface for executing stored
procedures.

4 User Interface

The generic nature o f the application required an
appropriate user interface in the browser. The initial page
prompts the user to enter a registered ODBC data source
name. After the connection to the database has been
established, two browser windows are opened: a Database
MetaData window and a Database Manipulation window.

267

These windows are shown in the appendix using the
Employee Training database [1].

The Database MetaData window allows the user to browse
the database metadata in the top frame, and to examine the
database instance in the bottom frame. The top frame
displays the table names and their attributes from the
currently opened database. When a table name is selected
in the top frame, the bot tom frame displays the selected
table's instance, showing the attribute names and types in
the header row followed by the tuples in the table.

The Database Manipulation window allows the user to
query the database and to manipulate the data stored in the
database including insertions, updates, and deletions. The
submit button executes the SQL statement entered in the
text window, displaying the result o f the statement
execution in the bottom frame. The Clear button clears the
text window. The Open MetaData button opens the
Database MetaData window if the one opened by default
was inadvertently closed. The Close Database button closes
the current database, returning the application to its main
page.

The following sections describe the JDBC operations used
to establish the database metadata and manipulation
windows.

5 D a t a b a s e M e t a d a t a

The Database MetaData window uses the JDBC API
metadata functions to display the metadata that corresponds
to the database on which the connection is established.
Figure 2 shows code fragments illustrating some o f the
methods in the DatabaseMetaData and ResultSet interfaces.
The getMetaData 0 method on the Connection object (con)
retm-ns an object o f type DatabaseMetaData. The
getTables0 method returns the tables associated with the
database metadata into the rsTables ResultSet object. The
code then iterates through the result set and selects user-
defined tables and their associated names (and types),
storing the metadata information into a JavaBean for later
display by the JSP page that generates the top frame o f the
Database MetaData window.

As a result o f running the example on different databases
and studying the code associated with the MetaData
window, students actively learn about the concept o f
metadata. Using the JDBC metadata API helps students to
understand that metadata is an important part o f the
database that can be queried and used in a manner similar
to the way that they query the data in the database.

6 D a t a b a s e M a n i p u l a t i o n

The Database Manipulation window uses the JDBC API to
manipulate the database, allowing the user to query, insert,
update and delete data in the table by issuing ad hoe SQL

DatabaseMetaData dbmd;

ResultSet rsTables = null;

ResultSet rsColumns = null;

dbmd = con.getMetaData0;

rsTables = dbmd.getTables(null, null, null, null);

while (rsTables.next0)

(
tableName = rsTables.getString("TABLE_NAME");

ttype=rsTables.getString("TABLETYPE");

/* checks if it's a user-defined table*/

if (ttype.equals("TABLE"))

{/* store the table names for later display */

/* Get the column names in the ResultSet */

rsColumns=dbmd.getColumns(null,null,tableName,null);

while (rsColumns.next0)

{/* store the attribute names for later display

in the top frame of the metadata window °/ ...

}
,.-}

}
/* transfer control to the appropriate JSP page */

Figure 2 Code Fragment Illustrating MetaData

statements. Figure 3 shows a code fragment for part o f the
database manipulation. A statement is created in the
context o f the database connection and the string query is
initialized with the contents o f the text box in the database
manipulation window.

Figure 3 illustrates the case where the string in the text box
begins with the SELECT identifier. The application calls
the executeQuery method on the Statement object to return
the result o f the query in a ResultSet object. The metadata
interface for a ResultSet object is used to store the column
names and types in the JavaBean associated with the query.
Then the code iterates through the result set instance,
populating the JavaBean. Control is then passed to the
appropriate Java Server Page to display the information
stored in the Query Bean in the bot tom frame o f the
Database Manipulation window.

I f the text entered in the text box begins with the INSERT,
UPDATE, or DELETE identifier, then the application calls
the executeUpdate method on the Statement object. The
bottom frame displays the result of the execution. Any

268

Statement strut = con.createStatementO;

ResultSet rs = null;

String query = req.getParameter("query");

rs = stmt.executeQuery(query);

ResultSetMetaData rsmd = rs.getMetaDataO;

int numCols = rsmd.getColurnnCount O;

qBean.setNumColumns(numCols);

for (int i = 1; i <= numCols; i++)

{/* Store the column names and their types in the

QuerySean using rsmd.getColumnLabel(i) and

rsmd.getColumnTypeName(i)*/ ... }

while(rs.nextO)

{/* Iterate through the ResultSet and store the actual

data in the QueryBean using rs.getString(i) */
}

/* transfer control to the appropriate JSP page V

Figure 3 Code Fragment Illustrating Queries

other type of statement will not be processed and the
application will respond with an error message.

As with the metadata API, when students study the code
associated with the Database Manipulation vdndow, they
begin to understand how the JDBC API supports the
capability for application programs to commurLicate queries
to a database and manipulate the results that are returned
from such queries. Students also learn to appreciate the
ability to query the metadata of the database since they earl
use the MetaData window to review the database schema as
they formulate queries to be submitted to the database.

7 S u m m a r y

This paper has presented an overview of courseware that
demonstrates the JDBC API using Java Servlets and Java
Server Pages. The students are provided with a concrete
example that illustrates the use of the JDBC API in action,
including the important use of metadata for both the
database and the resuR set. Besides demonstrating this
technology, the courseware also provides the students with
a tool to issue ad hoe SQL statements to any registered
ODBC data source. The courseware is available for
educational use as part of the dissemination of the
curriculum materials developed for a grant sponsored by
the National Science Foundation to develop a second
database course for undergraduates (see
http://www.eas, asu.edu/-cs e494db).

A c k n o w l e d g e m e n t s
This work was partially supported by the National Science
Foundation's DUE CCLI-EMD program (DUE-9980417).
We thank Mathangi Ranganathan for her work on an earlier
version of this courseware.

R e f e r e n c e s

[1] Dietrich, S. W., Understanding RelationalDatabase
Query Languages, Prentice Hall, 2001.

[2] Dietrich, S. W., Suceava, D., Cherukuri, C. and Urban,
S. D. "A Reusable Graphical User Interface for
Manipulating Object-Oriented Databases using Java
and XML", Proceedings of A CM SIGCSE 2001,
Charlotte, North Carolina, February 21-26, 2001, 362-
366.

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, V.,
Design Patterns Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.

[4] Hamilton, G., Cattell, R., and Fisher, M. JDBC TM

Database Access with Java TM A Tutorial and
Annotated Reference, Addison Wesley, 1997.

[5] Microsoft Corporation, Open Database Connectivity,
http://www.microsoft.com/data/odbc/default.htrn

[6] Sun Microsystems, Inc., JDBC TM Data Access API,
http ://j ava. sun. com/produc ts/j dbc/(for java.sql
package summary see
http ://j ava.sun, com/j2se/1.4/do cs/api/j ava/sql/package-
summary.html)

[7] Sun Microsystems, Inc., Java T M Servlet API
Specification, Version 2.2,
http://java.sun.eom/produets/servlet/2.2/

[8] Sun Microsystems, Inc., Java Server Pages T M

Specification 1.2, http://java.sun.com3products/jsp/

[9] Urban, S. D. and Dietrich, S. W., Integrating the
Practical Use of a Database Product into a Theoretical
Curriculum, Proceedings of the 28th ACM SIGCSE
Technical Symposium on Computer Science Education,
San Jose, California, February 27 - March 1, 1997, pp.
121-125

[10] Urban, S. D. and Dietrich, S. W., "Advanced Database
Concepts for Undergraduates: Experience with
Teaching a Second Come", Proceedings of ACM
SIGCSE 2001, Charlotte, North Carolina, February 21-
26, 2001, 357-361.

[11] World Wide Web Consortium (W3C)'s XM.L web
page, 2001. http://www.w3.org/XML/

269

Appendix

empTra in ing Database M e t a D a t a

e m p l o y e e : a i D e L a s t a~ i r s t aTit le e S a l a r y

t a k e s : e I D tiED t D a t e

t a c h n o l o m r A r a a : .TI3 aTi t l e a U R L a L a a d r l 3

trainin~Coursa : c I D c T i d a c H o u r s ara-rr~

Results

a I D e L a s t
[V A R C H . A R I [V ~ C H A R I
456 Last456

789 Last789

J 111 Last111

222 Last222

eFirs t
I Y A R C ~ !
PEst456

First789

eTi t la
! Y A R C H ~ L]

Sofhw~xe Engine er

Database Administrator

eSalary
[I I ~ T E G E R]

4 5 4 5 6

78789

First111 Database Administrator 75111

First222 Software Engineer [51722

"~ ~,I

2:: :1
333 Last333 Fks~333 Sr Sofh~,are Engineer 60333 -~ ~I

~_~ IT~: ~.~..~ ~_ !_~_ ,~_ ~,~ ~_ .~.~_ ~_ ~ I~]

from employee

where ~Tirle = 'Da~etb~e ~dminIs~ra~or'

order by eSalmry deso 1
sel,,ct "from en,~&~ee where e~d,e" = 'DoZabo_~ Adminisoutnr' order b~ eS,~.TJ~, &rsc i~i

I V . ~ . C n . A R ! I! V A R C) U m V,*, .RCHAU 1 / I V A n C H . ~ . I ~ E G E R
JB88 Last888 First888 Databsse Adm~stratot 88888

J789 Last789 First789 JDambase Administrator 78789
J~7 Last777 F~st777 Database Adm~straLor J77777 ~I

• . ' . " . " " - ~ ' ~ " - : ' : . "~. ' = : . . - ~ . ' " . ' - " ; • - - ~ r ' ~ • ' T ' - ~ ' i j , ~ I : i . • . ,
~ i l ~ . m ~ • . .. , : : : , : ...->. • • .>" .-="> ,=.::~: ..= " • . . : - • -i " ~ ' ~ a n , e : . - • --= : - - ~ ; : - = ; : - ~ : : ~-"::-. v ~ ~ :...: > : , : : ! . . , : . ~ : : ~ . = : . . . ~ . . = : = _ : _ : ~ : : L : ~ i ~ . . ; : ~ . . : ~/_ :~ ,_~=. . : : :_ : _ : : _ : : . , :

270

