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ZfG/:adduate ZCThO(;‘ | The incomplete gamma function expansion for the perturbed Epstein zeta function is
O vanced lecnnology, . . . .

Kinki University, lizuka, !mown as.Evvald expansion. In thI.S paper we state a special case ofthe main formula
Fukuoka 820-8555, Japan in Kanemitsu and Tsukada (Contributions to the theory of zeta-functions: the modular
Fulllist of author information relation supremacy. World Scientific, Singapore, 2014) whose specifications will give

is available at the end of the

article Ewald expansions in the H-function hierarchy. An Ewald expansion for us are given

by H%S < I—/H or its variants. We shall treat the case of zeta functions which satisfy
functional equation with a single gamma factor which includes both the Riemann as
well as the Hecke type of functional equations and unify them in Theorem 2. This result
reveals the H-function hierarchy: the confluent hypergeometric function series entail-
ing the Ewald expansions. Further we show that some special cases of this theorem
entails various well known results, e.g., Bochner-Chandrasekharan theorem, Atkinson—
Berndt theorem etc.
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Background

The incomplete gamma series has a long and rich history dating back to Riemann. We
begin by stating a special case of the main formula in Kanemitsu and Tsukada (2014)
and state the most general modular relation which is due the third author. This is quite
technical but to make the paper self-contained we have decided to include this. Then we
move into stating some results involving the familiar G-function, gamma functions, con-
fluent hypergeometric functions. In the last section which is the main section so to say,
we consider the modular relation in different set up and show that these specializations
entail some well known Ewald expansions. The Ewald expansions we consider are only
those expansions which are described under the correspondence H lzg <~ H 1121

The modular relation
Let {gn()}(1 < h < H)and {¢;(s)}(1 < i < I)be given by

o0 a(h) oo ﬂ(l)
ons) = l&)s and ¥i(s) = Y~
k=1 "k k=1 Mk
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with finite abscissa of absolute convergence oy, and oy, respectively. Here {i,ﬁh)},‘iozl,
{,u,’)},i’o | be increasing sequences of positive terms and {oc(h)}k » {ﬂ(l)} i, be complex
sequences. The (processing) gamma factor is

H;nl F(b' +Bjw) H,n 1 F(“}’ — Ajw)

rwlA) =
f:n—b—l (al + 4; W) H/ =m+1 F(b/ —B]'W)

(4, B; > 0).

with respect to the set of coefficients

A= {(ﬂ]:A )}n 1’ {a - aj, Aj )} =n+l |
(b BYYys (L= by BNy

The (Fox) H-function is then defined by (0 < n < p,0 < m < g, Aj, Bj > O):

H’""( ‘A) 71”/F(S|A)z ds.

The path L is subjected to the poles separation conditions similar to the one given below.
Let x (s) be a meromorphic function which satisfies:

x(s)
M<h> B p ) TIND [ (0 _ o)
Zhl W (d i )H() (V7Cj S) n(s)
() ’
HP_N(h)Jrl <C/(h)+C(h) ) H}Q M) 41 (dj(h)fD;h)s)
Re(s) > max (o
() > max (o) |
_ (D
o P ) )
i=1 6] i i i i A
i HQ_MU)+1 (f“ F()(r S)) HP<N<,>HF(€;)—E;)(’”—S>)
Re(s) < min (r —
(5) < min ( %)
(Ci(h),D;h), Ej(i), Fj(i) > O). For brevity we write (1) as:
H MW x N
Zh:l Pl % gt )
XO=1 " o @
> Vilr —s)

i=1 Q) x PG
where the notations are obvious. The further assumptions/choices are:

(1) Only finitely many poles si (1 < k < L) of x (s) are not poles of

N* M
P % Q) and o0 x P’

(2) The growth condition (for reals u1, up with u1 < u < uy):

lim T'(u+iv—s|A) x(u-+iv) =0.

[v|—>o00
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Let

n p
A:HF(aj+Ajs—Ajw) and B = H F(aj—Ajs+Ajw).
j=1 j=n+1

Also,

q
r (b/ — Bjs + B,-w) and D = H r (b,- + Bjs — ij).
1 j=m+1

C =

—

]

(3) Li(s) is a path so that the poles of
Ax N® 1
BxP® *Dx ol
lie on the right of L; (s), and those of
Cx MM 1
Dx W ~ BxPh
lie on the left of L1 (s).

(4) Ly(s)is chosen so that the poles of

M() i i i
< T (ﬁ(') L Fj(’)w) .

(@ j i ] @i
HQ (ﬁu) n F]@r _ Fj("w) B x Hf ])W)H ( @ E(or + E(z) )

=MD 1

lie on the left of Ly (s), and those of

A x H]N(; F( @ 4 E(” E@W) )

X
B x HP@ ( @) Emr n E(’) ) HQ<> F(f}»(l) 4 ijr _ ijw)

j=N®O+1 =M +1

lie on the right of La(s).
Under these conditions the ‘key-function’ X(z,s| A) is defined as

1
X(z,s|A) = 7/ Fw—s|A)xw)z " 9ds.
278 J1,(5)

Then the following modular relation (Tsukada 2007) holds:
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Theorem 1

X(z,s|A)

oo Ol (h) (h)
k m+M JM+N (h)
Zh 1D e Hy i giqw |

(h) (h) (h)\\p®
(@ Ao A6 + G5 N

h h h n
(4 —a, AY 10— ¢ + s, ¢,

n h h (h
(B, BYYL 1 +D( s, DM

q (h) (OIENNY)
Q= b, By (L =i + D575, DY

if L1 (s)can be taken to the rlght of max (awl)
1<h<H
; _ @ @, Oy
- oy I (A= B (A =7 + F =9, E)LL
i=1 £~k=1 (z)r s q+Q(l)p+p(t) Z

q (0 (@) (1),,Q®
{5, B)Y oy 1o {0 +E(r —8), )}] 041

o R
(@ Ay (e + EP(r — ), EP Y,

14 @) U] (£)yy PO
(=@ A= +EP =), EMN
+ Zi:l Res(F(W —s| AWz, w= sk>

if Ly (s) can be taken to the left of 1mﬁn1 (r - ‘7%)' 4)
<i<

is equivalent to the functional equation (1) or (2).

Formulas and some interesting G-function relations
In this section we recall some results involving the G-functions, gamma functions, con-
fluent hypergeometric functions etc. We also derive/re-establish some interesting rela-

tions involving these functions.

+ The confluent hypergeometric functions of the first kind is

O(a,c;z) = 1F1<Z;z>.

« The H — G formula:

HWl,n . (ﬂlr %)r ) (dn, %)’ (ﬂn+1, %)r ) (“pr %)
(bb %)y ceey (bm; %)7 (bm+1; %)! e (bq’ %)

pq
_ mmu [ C| ALy« > qn Ap+15---,0p
=CGyy (z bl,...,bm,bm+1,...,bq) (C€>0 S

The case when C = 1is the Meijer G-function.
+ The reduction-augmentation formula (Kanemitsu and Tsukada 2014, Chap. 2):

(C!C); -
”(ZA@< = w))
- (C»C)
~(d 20 (6 7))

= H(z| A). ©)

+ Reciprocity formula: The reciprocity formula for the gamma function and Euler’s
identity lead to
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- (6 0)
H<Z he (—; (c,@))
— %{ecnil_](eﬁcmd A) _ efcrtiH(eCm‘Z| A)}

(7

Let us write (7) as:
mn {(ﬂjt Aj)}];'q:1¢ {(ajx Aj)}f:n+1) (Cr C)
Hy g1 | 2 m q
prhq {(bj;Bj)}j:p{(bj,Bj)}]‘:m_;,_l:(Cr C)
1 i —_Cri {(axA)}n— ’ {(ﬂrA)}p—
— ] pcmi pymn Crmi 777 j=1 7747 j=n+1
Zﬂi{e pq (e z {(b],B])}IW;I,{(b],B])};I:m+1

—eni @, AV (@, ADY
_ i prmn Crmi 7747 j=1 7747 j=n+1
e )2 <e z {(bj,Bj)}j:l,{(b,',B,')}lq:m_Irl )}

Then it entails G-function formula:

®)

Gm,n z ﬂl:~~-1an7an+11~~~,apyc
p+1lg+1 bl,...,bm,bm+1,...,bq,6

1 , .
— - eCT[lGZ’Ié}’I e 7'[lz
2mi ’
—cmi i | A1, qn, a4 e a
— e cmigmn| i, 1 » Uy Ap+-15 »Up 9)
b1, by bst, .. by

pq
The beta transform (or the beta integral) is a special case of

Aly .oy Oy Apils -5 0p
b, by bt .2 by

'a—s)T'(b+s):
Gi‘} (z Z) =Tl—-a+bzz’z+1* 1!
Using (10) we can relate the G-functions and the confluent hypergeometric series of

the first kind [also compare (Erdélyi et al. 1953, (4), p. 256) or (Prudnikov et al. 1986,
8.4.45.1, p. 715)]:

(10)

l1—a I'(b) a r'(b)
Ghl = ——F =2z | = —= ®(a,b;, —
12 (Z 0»1—b> M@ ' 1<b Z) @ P57 (an
In view of (17) the relation (11) reduces to
1,1 1
G (Z a 0) =T(a)—I'(a,z) (12)
and
Gy (Z de> =e“U(a—cb—c+1lz) (13)

where Ul(a, ¢; z) is the confluent hypergeometric function of the second kind. One also

has,

Fa,z) =e U1 —a,1—a;z) (14)

Page 5 of 16



Chakraborty et al. SpringerPlus (2016) 5:99 Page 6 of 16

(Erdélyi et al. 1953, (21), p. 266). If we take a = 1,¢ = 0 and change a for b then (13)

reduces to
2,0 1
G (z‘ a,o) =TI'(a,2). (15)
Also,
G*! (z “ >
P2\"bie (16)

:F(l—a+b)F(1—a+c)zbu(b—a+1,b—c+1,z).

Thus the relation (21) in (Erdélyi et al. 1953, p. 266) becomes,
T(a) —T(a,z) =a '2®(a,a + 1; 2). (17)

Now once again using (14) with b = a relation (16) gives,
SHE

Ewald expansion for zeta-functions with a single gamma factor
We consider the general modular relation associated to Dirichlet series that satisfy the

fb) —T(—a+b)T(a-bz) . (18)

functional equation with a single gamma factor. This includes both the type of zeta-func-
tions which satisfy the functional equation of the Riemann and that of Hecke type.
Let us consider two Dirichlet series

06 = 25 U = PR
k=1 "k =1 Mk

with finite abscissas of absolute convergence o, and oy, respectively. We assume that
they satisfy the functional equation with a single gamma factor:

_ ] T(Coep(s), Re(s) > o,
x($) = { C(C@r—s)Y(r—s), Re(s) < r(p— oy (19)

or in other way,

I'ls (_0§ o) :><p(5), Re(s) > oy
x() = o
'(r—s (0: C): _>1//(1 —5), Re(s) <r—oy
Special cases of (19):

(1) A special case of (19) is the Dirichlet series satisfying the Riemann type functional
equation with C = %, ie.

1 1
F<2S>¢(S) = F<2(r—S))1/f(r—S) (20)
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with a simple pole at s = r > 0 with residue p. The typical example is of course the
Riemann zeta-function ¢ (s) = ¢ (s, 1), where,

o0

1
(s, w) = — =, Re(s)>1
g (k + w)

is the Hurwitz zeta-function. We refer the reader to Example 15 for its functional
equation.

(2) Another special case is the Dirichlet series satisfying the Hecke type of functional
equation with C = 1, i.e.

L)) =T (r—s)Y(r—s) (21)

with a simple pole at s = r with residue p. Typical examples are the Dedekind zeta-

function of an imaginary quadratic field or the zeta-function associated to modular
forms.

Then by Theorem 1 one has the following modular relation:

k=1

— > :Bk Wi —: B )

= kz:; M,l(_SH(Z ((C(r—s),c); _) ® A >
L

+ ) Res(T(w—s| A) x(w) 2", w = 50).
k=1

Traditionally:

ad (0%
k 1 rm+1,n
?Hp,q+1 Z)k
k=1 "k

(Cs, C), {(bj, BHYZ1, {(1 = by, B},

(@ =@ APV (@) AN,y
j=m+1

_ i Br_ ppnim [ Bk (O ) PR (7)) o)
S ks Tt | 2 | (COr = 9), O) (@) ADYy AL — @ AN,
L
+ Z Res(F(W —s|A) W, w= sk)
k=1

In this form and with » = 1, the modular relation is given by the following simultaneous
exchange of parameters:

s ©1—s

7 < +

{@A}_, < {Z(bj’Bj)}jtl
{@apy . < {&B)}L,.,
(A < A%)

The following theorem which is a special case of (22) will be helpful in deducing Ewald
expansions.

Page 7 of 16
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Theorem 2 (Tsukada 2007) The zeta-functions which satisfy the functional equation
(19), have a general Ewald expansion Hﬁg < H1121 which is equivalent to (19):

o~ Uk 20 (a,A)
> Hia (Zik (Cs,C), (b, B))
k=1 "k
_i B o (1 (1—b,B)
- uhs L2 (C(r—1s),0),1 —a,A)
k=1 "k
L
I'(b — Bs + Bw) —w
+]§RES<FMW X(W)Z , W :Sk) (23)

and its special case is:

fz e CRUP

Z,Bk 1l (Mk) 1-b

k1'uk z Cr—s),l—a

N (I‘(b—Cs+Cw) )25 >

£\ Ta—Csram 5 X (24)

with A = B = C [cf. (5)].

Mh

+

Il
—

Confluent hypergeometric series

In this subsection we will deal with confluent hypergeometric series and in the next

result we show it imply incomplete gamma series, i.e. Ewald expansions. The notations
are all as before.

Theorem 3  The confluent hypergeometric expansion

1 ~
=z z_:ak e~ @V¢ u(a —b,Cs—b+1, (Z)»k)l/c)

1 r=s T(b+ C(r — 5)) b+Cor—s) [\
_C(Z ) l"(a—f-C(V—S))Zﬁ ! 1<a+C(r—s)’_()

z
I'b— Cs+ Cw) sew
Z Res(CS-l-C) w)z YW = Sk>

(25)
gives the incomplete gamma series

o

m

Mg

);-Kn

(CS, @)Y C)

>~
Il

1

o] 1/C
PP (r(C(r—s»— (C(r—s) (“k> ))
k=1 Mk z

L
+ Z Res (
k=1 B

1
o, Xw) 7w = Sk)- (26)
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Proof The first assertion (25) follows from (24) in view of (13) and (11). The second
assertion, i.e., (26) is a special case of (25) witha = 1,b = O in view of (15) and (12). O

The Riemann and the Hecke type of functional equations would take the following
shape in the light of the previous theorem.
Corollary 4 (i) The Riemann type functional equation (19) with C = %entails

.« s = Bi r—s r—s p2
; 2 (2 ) 1; T 2 2 22
L 1
S—WwW _
+;Res<_s+wx(w)z ,w—sk). 27)
—
(ii) The Hecke type functional equation (19) entails
o Bk Mk
Z 7 I'(s,z0) = Z por (F(r —s)—T (r —s, z))
k=1 "k k=1 "k
L 1
+ kz_; Res(_s T xW) 2" w= Sk>' 28)

Formula (28) is stated as [Kanemitsu et al. 2002, Theorem 1, (1.6)], which is a basis for
the Riemann-Siegel integral formula developed in (Kanemitsu et al. 2002, §4).

Bochner-Chandrasekharan formula as H25 < H;)

There are variety of specifications of (22) one of which is (24). We state one more speci-
fication which leads to the formula of Bochner and Chandrasekharan, which is of inde-
pendent interest.

Theorem 5

1S o , \1/B
E Z ,‘i‘f(z;hk)h/Be_(ZAk)
=1 "k

1l e b+Br—s,8) . ()"
—E(z ) gﬁmqq( (Cr 1) <’y <z>

L
I'(b—Bs+B
+ Z Res((s—i_w) xW) 22, w= Sk>.
k=1

'(Cw) (29)

Proof We substitute a = Csand A = C in (22) and then apply the reduction-augmenta-
tion formula (6). That would give the proof. We obtain as an intermediate the following:

o 1,0 —
ATHO,l <Zik (b, B) )
k=1 "k
=§: P g Hk (1—b,B)
k=1 I’L]';_s 12 z (C(I" - S)’ C)) (1 - CS, C)
L
I'b—Bs+B B
> Res<(r(csw)w) Xz w = Sk) (30)
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Berndt (1969, Theorem 10.1) generalized the classical result of Szeg6 (1926) pertaining
to Laguerre polynomials.
We derive it as Corollary [7, (iii)] of Theorem 5.

Definition 6 The Laguerre polynomial is defined by

for0 <m e Z.
Corollary 7 (i) WithC = % the Riemann type equation (19) gives

00 r—s 00 — 2
Ok 2,2 F(T) s—r = My

2N 2k k=2 nl 7 -
gzske re) © Zﬂk“(é z2>

L (31)
(3+%)
+ZRes( 2W 27 y(w)z* W,w:sk)
Pt r(3)
(ii) With C = 1 the Hecke type functional equation (19) is
(o} o0
7/( —Z)k — F(r S) S—r F - _ﬁ
Z/ﬁe I > Bcibr .o
k=1 k=1
L
'(—s+w) s—w
+;Res <F(W)X(W)Z ,W = Sk (32)
(ili) Again (19) with C = 1 and 27 Ay in place of Ay entails
Zak(znik)n e*ZNZAk —nlg T Z:Bk Lf][rfl) (W(>
k=1 k=1 z
W)
+ZRS( T o) x(w)z , W = Sk (33)

Proof (i) Indeed, we have
00 00 _ 2
Ok (i) _ ~1\"* Gl Mk
2 — k) =2 7} 2 Y RS
l; i‘lg( e (Z ) Z /3]( 1¥1 ( (j: 1) 2

_,+ﬂ
+ZR€S< f 2)X(W)Z”V,W=Sk> (34)

(ii) This is a special case of (29) with B = C =1, » = 0 and then one needs to appeal
to (3).

(iii) This is the special case of Theorem 5 with B= C =1, b = 0. We choose s = —n
and appeal to the well-known relation

Li(z) = (_n) V(—ma+1;z) = (@ : )"QD( nmo+1;2)

_ (35)
=1F1<oc+1;z>'
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The proof will be completed now on noting the relation between the Pochhammer
symbol o, = (o + 1) - - - (@ + n — 1) and the gamma function

(=1)"
M—n—q)= ———
(@ + 1),
for integer n > 0. O

The special case of (32) with s = 0 is a formula due to Bochner (1958) [which was first
proved in Bochner and Chandrasekharan (1956)] and was revisited by Berndt (1970).

Remark 8 It may be appropriate to make some comments on the characterization of
the Riemann zeta- and allied functions from the functional equation of the Riemann type
in reminiscence of H. Hamburger who made the first characterization of the Riemann
zeta-function. The authors of Bochner and Chandrasekharan (1956), Chandrasekharan
and Mandelbrojt (1959) and Chandrasekharan and Mandelbrojt (1957) are concerned
with bounding the number of linearly independent solutions to the functional Eq. (19),
thus leading to the uniqueness of the solution. In all these investigations a special case of
(31) plays an essential role, which in turn was suggested by Siegel’s simplest proof Siegel
(1922) of Hamburger’s theorem. Here one sees the importance of exhausting those rela-

tions that are equivalent to the functional equation.

Atkinson-Berndt Abel mean

Example 9 (Atkinson—Berndt Abel mean) Berndt (1970) proved the following exten-
sion of Atkison’s (1950) result.

Let x has at most simple poles (for simplicity) at s; with residue px (1 < k < L) respec-
tively. Let us also assume that the weighted Lambert series (for every § > 0(Re§ > 0))

o0

@(s,8) = Z (875 o8

m
k=0 "k

converges for o > oy, where oy < 0y, Then for ¢ > ogand for s # s,

L pkD(si —9)
m {¢(s,a> -3 kkaHk} = 0(s). (36)

li
8—0 o o

Here the limit § — 0 means § — 40 inside Re § > 0, which therefore suggests the name
‘Abel mean! He deduced (36) by computing
1
gin}) C(s)@(s,8) — / #71P(x + 8) dx (37)
- 0
in two different ways.

We shall use Theorem 5 to show that (next corollary) the Atkinson-Berndt Abel mean
is nothing but another way to prove the functional equation.
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Corollary 10  The Atkinson—Berndt Abel mean (36) for o < min{r,r — oy} leads to the
counterpart of the functional equation (21):

okl (s —8) o5 L(r—s)
l ,0 — = 5Tk = —
im {w(s ) — ; T } T V-9 (38)

Proof Indeed, for o > o, (and r/2), we may take the limit in two different ways. Now

using Theorem 5 we get,

_ = T —9) r—s. I
#(5,8) = 8" Zb/da( . ,—8>

Z I(sp — S) 555k
I (s) ’ (39

=1

Now we apply (Erdélyi et al. 1953, (3), p. 276)

. — T'() a4 -1 _
(a,60) = 5 () {1+o(|x| )} Rex — —00
to (39) to deduce (38) for 0 < min{r,r — oy }. O

The H?) < H¥)formula
We state the symmetric version of Theorem 2 (complementing it) since it still contains

the incomplete gamma expansions.

Theorem 11 Zeta-functions that satisfy the functional equation (19) have a symmetric
expansion H1122 <~ H1122 which is equivalent to (19) and is

(Cs, C), (b,B)

1—aA
/lsH1221<’1/< ( ) )
k=1

i/’; (Mk
1k

+ Z Res(F(b —Bs+Bw)['(a+As — Aw) x (W) 2", w = sk).
k=1

(40)

(1-0b,B)
(C(}’ - S), C)’ (ﬂ,A)

Its special case takes the shape,

C Z Gf% (Wk) ‘ C?,b)

1
G21 M\ © 1-b
1,2 z C(r—s),l1—a

es F(b Cs—whI'a+ C(s —w)) x(w)z°~ W,w—sk). (41)

|M8

IltﬁlN
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An application of (41) entails confluent hypergeometric expansion.

Proposition 12

1 o0
cl@+bra+ Cs)zsl;ak u<a 4+ Cs,1—b+Cs, (zzk)%)

= 1F(a+b)r(b+C(r—s))<1> .

c V4
[e9] ik %
ZﬁkU<b—|—C(r—s),l—a—i—C(r—s), (z) )

k=1
L
+y Res(r(b —Cls—w)T(@+ Cls —w)xw) 2", w = sk). 42)
k=1

This entails the symmetric incomplete gamma series:

o0
P =b+Co)z Y e 1 (b= Cs, 220"/

k=1
r—s 00 L \VC 1/C
=I'b+Cr—ys)) (1) Zﬂke(ﬁ) r (1 —b—C(r—s), ('“k> )
z k=1 z
L
+C) Res(I'(b—C(s —w)I'A = b+ Cls —w)x(w) 2* ", w = s;) (43)
k=1

Proof (42) follows from (41) in view of (13) and (11).

(43) is a specification of (42) with a = 1 — b in view of (14). O
We will now work out few examples:

Example 13 In the familiar set up of ¢ (s) the relation (42) can be rewritten as the sum
over the full lattice Z as:

T(a+3) Zu(u+%,1—b+%,zznk2)

keZ
:ir(“lz_s)é”(“l?’l—ﬁlz‘s»f). (44)
c
Here the residual function is
P@) =271 (b+ 1320 (a— 13%)
—2T(a+3)0(b—3). (45)

Thus one re-discovers (Erdélyi et al. 1953, 1,(2) p. 255),

1 o0
Ua,b;z) = @/ eZt% 11 4+ 1)?=*"1dt, Rea > 0.
0
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Whence,
L[ b—a—1
U(a, b, 0) = —/ N1+ b g
'(a) Jo

This is another form of the integral expression for the beta-function
B(a,b—a—1) = %. Thus we have
ra-os)

Hence (42) after dividing by I' ( + b) and moving one term in (45) to the left entails:

o0
2M(a+3) YU(a+51-b+ 35,227k
k=1

+T(a+ %)u(mr S1-b+ %,0)
2 © k2
Zir*<b+ﬂ) Ulb+15,1- 1=
2 =)D 5 at 3
k=1
1
+—T(b+ 5 )u(b+ 1551 —a+ 132,0).
z
Example 14 As in Example 13 one can easily show that in the case of the Riemann
zeta-function, (43) may be written as

r1-o+3%) Z F(b — %,zznkz) Pl
keZ

:%F(b—i—%) Zr<1—b—12ﬂ,’§>e’l§2,

keZ

Example 15 (Ueno—Nishizawa formula Lavrik 1968; Ueno and Nishizawa 1995)
Theorem 11 entails the incomplete gamma expansion due to Ueno and Nishizawa
(1995).

e e]

2/AT()2 Y

P (2224 +1)°

o B (i w
=Ty 15 (6_2”’+Z’ r<1 — 5,2k i>
k=1 P z

+ elfg”i_;g(ir<l—s,—w l))
z

+iRes(F(‘%’+§)F(S—W)X(W)ZS_W,W=SI<)' (46)
k=1

In case of ¢ (s, w) the relation (46) amounts to

Page 14 of 16
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S ef2nkwi
€(51W) ZZ —HF(I—S, —27T/(Wl)
k=1 (27rk e_%)
eZﬂkwi
+ (1= s, 2kwi)
(an eTZ)
1 1 1 1
+ ; O<w= < 1.

2ws —’_ws—1 s—1

27z

Nowweseta=0,A=1b= % + %andB: %inTheorem 11 and use,

1,1

2,1 _ 1-2s 71,1 (1,1)
s ( (2), (s+48) ) =72 (22 (25, 1)
— Jr 2B gt (22 L —
b (1422)

1 2s
25) =2/ T (2s)

Again using (8), (5), (10) alongwith (48) we get,

=

) +
25,1, (s+3.3) )
z
(25,1, 0,1, (s +3,3)

1( by i |o@s1)
_ =) J+3)mi g2 i ’
= i{e 27 H, (e " 2(25,1), (0, 1))
s+ hymig21f T (2s,1)
e, (6”(2s,1>,<o,1)

1 Ly —z; | 2s —(s+1)mi z; | 28
_ —+ 2,1 + 2,1
—i{e“ 2 G1,2<€ 1z 2s,0> —e ¢ 2)mG1,2(62LZl25,0>}

=T(1-2s) (e_s”i“i r (23, zi) + A (25, —zi)).

_ 2,1
=27 H2,3

N
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(47)

(48)

Remark 16 (Hurwitz’s formula) We note that using the Fourier expansion for the Dirac
delta function as in (Kanemitsu and Tsukada 2007, p. 75), the Ueno—Nishizawa for-

mula (47) (Ueno and Nishizawa 1995) leads us to the familiar Hurwitz formula

I'd—s)/ 1=

tom = o (07 s e T ),

where [;(w) is the Lerch zeta-function.
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Conclusions

We have shown that the modular relation which is an equivalent expression of the func-
tional equation of the zeta-function in terms of the H- and G-functions entails almost all
existing Ewald expansion as a hypergeometric function hierarchy. Especially, we deduce

all incomplete gamma series from the general modular relation.
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