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Abstract
We study the optimal control problem of a second order linear evolution equation
defined in two-component composites with ε-periodic disconnected inclusions of
size ε in presence of a jump of the solution on the interface that varies according to a
parameter γ . In particular here the case γ < 1 is analyzed. The optimal control theory,
introduced by Lions (Optimal Control of System Governed by Partial Differential
Equations, 1971), leads us to characterize the control as the solution of a set of
equations, called optimality conditions. The main result of this paper proves that the
optimal control of the ε-problem, which is the unique minimum point of a quadratic
cost functional Jε , converges to the optimal control of the homogenized problem
with respect to a suitable limit cost functional J∞. The main difficulties are to find the
appropriate limit functional for the control of the homogenized system and to
identify the limit of the controls.

MSC: Primary 49J20; 35B37; 35B27
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1 Introduction
In this paper we study the optimal control of a linear hyperbolic problem with oscillating
coefficients on a domain � of Rn made up of two components, a connected one �ε and
a second one �ε , which is the union of ε-periodic disconnected inclusions of size ε. On
the interface �ε = ∂�ε separating the two components, we prescribe the continuity of
the conormal derivatives and a jump of the solution proportional to the conormal deriva-
tives through a function of order εγ , meanwhile, a Dirichlet condition is imposed on the
exterior boundary ∂� (see Figure ). The order of magnitude of this parameter, with re-
spect to the period ε, determines the influence of the contact barrier in the propagation
properties of the medium. Indeed this problem models the wave propagation in a medium
made up of two components with very different coefficients of propagation, which gives
rise to a jump in the boundary condition on the interface. This interface condition is the
mathematical interpretation of imperfect interface characterized by the discontinuity of
the displacement (see [–] and references therein).

This work connects the corresponding homogenization and correctors results proved
respectively in [] and []. The first question of this paper deals with the existence of an
optimal control of the ε-problem with respect to a quadratic functional. If such a con-
trol exists, the second and more interesting question is: does the optimal control of the
ε-problem converge as ε →  to the optimal control of the homogenized problem with
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Figure 1 �ε .

respect to a suitable cost functional? The optimal control of one or more aspects of a
problem entails the minimization of a cost functional which describes physical quantities
involved in the specific problem. To give a positive answer to both questions, we refer to
the techniques used by Lions in []. These ones consist of the construction of the adjoint
problem and the research of a set of equations, called optimality conditions, characterizing
the optimal control and the related cost functional. As already shown by Hummel in [],
for the homogenization results in the elliptic case, one cannot expect to have boundedness
of the solutions when γ > . Hence it would be natural here to suppose γ ≤ . Neverthe-
less in this paper we analyze the case γ <  being the case γ =  more delicate. Indeed it
is already known from previous studies (see []) that the asymptotic behavior of the ε-
problem differs in terms of the homogenized problems in the two cases γ <  and γ = .
The second one is the most complicated one, since the limit problem is a coupled system
of a P.D.E. and a O.D.E. and gives rise to what is called a memory effect. When searching an
optimal control result for the case γ =  we cannot adapt the same arguments used for the
more general case γ < . In fact the homogenized problem is no more symmetric, hence
the adjoint of the homogenized problem does not coincide with the limit of the adjoint
problem at ε-level. We will use other techniques to study the case γ = .

The plan of the paper is as follows.
In Section  we recall some useful properties of a specific functional space, introduced

in [, ] by Donato and Monsurrò in the elliptic framework, suitable for the solutions of
this kind of interface problems. Successively, we recall some further properties, involving
evolution triples, needed in the time-dependent framework. They have been proved by
Donato et al. in [].

In Section , we state the main result, Theorem ., whose proof is performed into sev-
eral steps. At first we describe the homogenization result for the hyperbolic problem; we
refer the reader also to [] where all the proofs can be found. Then we study the control
problem. Our approach to the optimal control problem for a hyperbolic equation consists
in applying Pontryagin maximum principle to obtain the expression for the optimal con-
trol wε at level ε in terms of the adjoint state pε , solution of the dual problem. We identify
the problem satisfied by the limit (u, w) of the sequence of optimal pairs {(uε , wε)}ε , where
uε denotes the state of the system to be controlled, and also the problem satisfied by the
limit p of {pε}ε . We observe that p is the adjoint state corresponding to an optimal control
problem for the limit equation and, by the maximum principle, we infer that the pair (u, w)
is optimal. The indirect approach, using the adjoint problems and the maximum principle,
is necessary since the convergences occur only in L-weak topology and not, as usual in
homogenization theory, in L-strong topology. The crucial point is to obtain compactness
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properties for the sequence of the optimal controls wε . Finally, we prove that the limit of
the minimum points of the cost functional Jε at level ε is the minimum point of an appro-
priate limit cost functional J∞. Let us point out that the cost functional J∞ describe the
physical properties of the wave equation for a composite occupying the whole �, without
any interface. Moreover, we observe that, without any technical difficulties, we can obtain
the same optimal control result with a more general quadratic cost functional.

Optimal control problems and the exact controllability in domains with highly oscillat-
ing boundary are considered in [–]. Moreover, we refer to [] for control of hyper-
bolic problems with oscillating coefficients in a fixed domain and to [, ] for control of
hyperbolic problems in perforated domains.

In [] and [] the authors study, respectively, the approximate control and the correctors
for a class of parabolic equations with interfacial contact resistance. For the sake of com-
pleteness, we recall also [] where all the results for transmission problems in the elliptic
case are collected and [, ] where the authors treated the homogenization in other
types of perforated domains. For the study of similar problems, where the same jump
condition is taken into account, we quote here also [, , , –] and the references
therein.

2 Statement of the problem and main result
Let � be an open bounded subset of Rn (n ≥ ) and Y = ], l[×· · ·× ], ln[ the reference
cell.

We denote by Y and Y two nonempty open and disjoint subsets of Y such that

Y = Y ∪ Y,

with Y connected and � := ∂Y of class C. For any k ∈ Zn we define the translated sets
Y k

i and �k as follows:

Y k
i := kl + Yi, �k := kl + �,

where kl = (kl, . . . , knln) and i = , . Let {ε} be a sequence of positive real numbers con-
verging to zero and for any given ε let us set

Kε :=
{

k ∈ Zn | ε�k ∩ � 	= ∅}
.

Then we define the two components of � and the interface respectively as follows:

�iε := � ∩
{ ⋃

k∈Kε

εY k
i

}
, i = , , and �ε := ∂�ε .

We assume that

∂� ∩
( ⋃

k∈Zn

(ε�k)
)

:= ∅. (.)

We explicitly observe that by construction, the set � is decomposed into two components
� = �ε ∪�ε where �ε is a connected set while �ε is a disconnected union of ε-periodic
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disjoint translated sets of εY. Moreover, �ε is the interface separating the two components
with ∂� ∪ �ε = ∅ (see Figure ).

In the sequel we denote by
• ˜the zero extension to the whole of � of functions defined on �ε or �ε ;
• χE the characteristic function of any measurable set E ∈R

n;
• mω(v) = 

ω

∫
ω

v dx the average on Y of any function v ∈ L(ω).
Let us recall (see for instance []) that as ε → , for i = , ,

χ�iε ⇀ θi :=
|Yi|
|Y | weakly in L(�) (.)

θi being the proportion of the material occupying �iε .
For any ε > , let us introduce he functional space V ε as

V ε :=
{

v ∈ H(�ε) | v =  on ∂�
}

,

which is a Banach space if endowed with the norm

‖v‖V ε := ‖∇v‖L(�ε ).

Clearly, since we do not assume any regularity on ∂�, the condition on ∂� in the defini-
tion of V ε has to be understood in a density sense. To be more precise, V ε is the closure,
with respect to the H(�ε)-norm, of the set of the functions in C∞(�ε) with a compact
support contained in �. This can be done in view of (.).

For any ε > , we set

W ε :=
{

v = (v, v) ∈ L(, T ; V ε
) × L(, T ; H(�ε)

) |
v′ ∈ L(, T ; L(�ε)

) × L(, T ; L(�ε)
)}

, (.)

which is a Hilbert space if equipped with the norm

‖v‖W ε = ‖v‖L(,T ;V ε ) + ‖v‖L(,T ;H(�ε)) +
∥∥v′


∥∥

L(,T ;L(�ε)) +
∥∥v′


∥∥

L(,T ;L(�ε )).

Let A be a n×n Y -periodic matrix field with coefficients in L∞(Y ) such that for any λ ∈R
n

and a.e. in Y one has
⎧
⎪⎨

⎪⎩

(A(x)λ,λ) ≥ α|λ|,
|A(x)λ| ≤ β|λ|,
ai,j = aj,i for every  ≤ i, j ≤ n,

(.)

with  < α < β .
Moreover, we suppose that h is a Y -periodic function such that

h ∈ L∞(�) and ∃h ∈R such that  < h < h(y) a.e. in �. (.)

For any ε > , we set

hε(x) := h
(

x
ε

)
(.)
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and

Aε(x) := A(x/ε). (.)

The aim of this paper is to study the optimal control and its asymptotic behavior as ε → 
for a hyperbolic imperfect transmission problem defined in the domain � previously de-
scribed.

More precisely let zε = (zε , zε) be a control to be found in L(, T ; L(�ε)) × L(, T ;
L(�ε)). For any fixed T >  let us consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
ε – div(Aε∇uε) = fε + zε in �ε× ], T[,

u′′
ε – div(Aε∇uε) = fε + zε in �ε× ], T[,

Aε∇uε · nε = –Aε∇uε · nε on �ε× ], T[,
Aε∇uε · nε = –εγ hε(uε – uε) on �ε× ], T[,
uε =  on ∂�× ], T[,
uε() = U

ε in �ε , uε() = U
ε in �ε ,

u′
ε() = U

ε in �ε , u′
ε() = U

ε in �ε ,

(.)

where γ < , niε is the unitary outward normal to �iε , i = , , and

⎧
⎪⎨

⎪⎩

(i) fε = (fε , fε) ∈ L(, T ; L(�ε)) × L(, T ; L(�ε)),
(ii) U

ε = (U
ε , U

ε) ∈ V ε × H(�ε),
(iii) U

ε = (U
ε , U

ε) ∈ L(�ε) × L(�ε).
(.)

Let us introduce a class of function spaces expressly considered for the solution of this
particular kind of interface problems. They were defined for the first time in [, ] and
[] in the framework of the study of the analogous elliptic problem. Clearly, the space
of the solutions must take into account either the geometry of the domain in which the
material is confined or the boundary and interfacial conditions. For every γ ∈ R, we set
(see also [])

Hε
γ :=

{
v = (v, v) | v ∈ V ε and v ∈ H(�ε)

}
.

The space Hε
γ is a Banach space when equipped with the norm

‖v‖
Hε

γ
:= ‖∇v‖

L(�ε ) + ‖∇v‖
L(�ε) + εγ ‖v – v‖

L(�ε).

It is easy to check that, if  < ε <  and γ ≤ γ, then

‖v‖Hε
γ

≤ ‖v‖Hε
γ

.

Moreover, for every fixed ε the norms of Hε
γ and V ε × H(�ε) are equivalent; see []

for details.
We point out that Hε

γ is a separable and reflexive Banach space dense in L(�ε) ×
L(�ε). Moreover, Hε

γ ⊆ L(�ε) × L(�ε) with continuous imbedding. On the other
hand, one sees that L(�ε) × L(�ε) ⊆ (Hε

γ )′, with L(�ε) × L(�ε) separable Hilbert
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space. This means that the triple (Hε
γ , L(�ε) × L(�ε), (Hε

γ )′) is an evolution triple. We
refer the reader to [] for an in-depth analysis on this aspect. By using an approach to the
evolutionary problems based on evolution triples, as far as the weak formulation of prob-
lem (.) is concerned, we assume as precise formulation of formal problem the following
one (see []):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find uε = (uε , uε) in W ε such that
〈u′′

ε , v〉(V ε)′ ,V ε + 〈u′′
ε , v〉(H(�ε))′ ,H(�ε)

+
∫
�ε

Aε∇uε · ∇v dx +
∫
�ε

Aε∇uε · ∇v dx
+ εγ

∫
�ε hε(uε – uε)(v – v) dσx =

∫
�ε

(fε + zε)v dx
+

∫
�ε

(fε + zε)v dx ∀(v, v) ∈ V ε × H(�ε) in D′(, T),
uε() = U

ε in �ε , uε() = U
ε in �ε ,

u′
ε() = U

ε in �ε , u′
ε() = U

ε in �ε .

(.)

An abstract Galerkin method provides the existence and uniqueness result for the solution
of problem (.) for any ε >  and also some a priori estimates (see []). We point out that
the unique solution uε(zε) of problem (.) is said the ‘state’ of the system to be controlled
and (.) are called ‘state equations’.

To any control zε ∈ L(, T ; L(�ε)) × L(, T ; L(�ε)) we associate the cost functional
Jε : L(, T ; L(�ε) × L(�ε)) →R defined in the following way:

Jε(zε) :=



∫ T



∫

�ε

∣∣uε(zε)
∣∣ +




∫ T



∫

�ε

∣∣uε(zε)
∣∣

+



∫ T



∫

�ε

|zε| +



∫ T



∫

�ε

|zε|. (.)

This functional is continuous, strictly convex and coercive. Hence, by applying the direct
method in the calculus of variations, the following minimum problem:

min
{

Jε(z) : z ∈ L(, T ; L(�ε) × L(�ε)
)}

(.)

admits a unique solution wε which is called the optimal control of problem (.), (.) with
respect to the cost functional (.).

The aim of this paper is to study the asymptotic behavior, as ε →  of the sequence of
the optimal pairs (uε , wε) under the following assumptions on the data:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) Ũ
ε ⇀ U := (U

 , U
 ) weakly in L(�) × L(�),

with U
 ∈ H

(�),
(ii) Ũ

ε ⇀ U := (U
 , U

) weakly in L(�) × L(�),
(iii) ‖U

ε ‖Hε
γ

≤ C,

(.)

with C positive constant independent of ε and

f̃ε ⇀ f := (f, f) weakly in L(, T ; L(�)
) × L(, T ; L(�)

)
. (.)

Let A
γ be the matrix defined as follows:
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(i) for γ < –

A
γ λ =


|Y |

∫

Y

A∇Wγ dy (.)

with Wγ ∈ H(Y) a solution, for any λ ∈R
n, of

⎧
⎪⎨

⎪⎩

– div(A∇Wγ ) =  in Y,
Wγ – λ · y Y -periodic,


|Y|

∫
Y

(Wγ – λ · y) dy = ;
(.)

(ii) for γ = –

A
γ λ =


|Y |

∫

Y

A
(∇w + ∇w)dy (.)

with (w, w) ∈ H(Y) × H(Y) a solution, for any λ ∈R
n, of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– div(A∇w) =  in Y,
– div(A∇w) =  in Y,
(A∇w) · n = –(A∇w) · n on �,
–A∇w · n = h(w – w),
w – λ · y Y -periodic,


|Y|

∫
Y

(w – λ · y) dy = ;

(.)

(iii) for – < γ < 

A
γ λ =


|Y |

∫

Y

A∇w dy (.)

with w ∈ H(Y) a solution, for any λ ∈R
n, of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

– div(A∇w) =  in Y,
(A∇w) · n =  on �,
w – λ · y Y -periodic,


|Y|

∫
Y

(w – λ · y) dy = .

(.)

We establish the following result.

Theorem . Let γ <  and let Aε and hε satisfy (.)-(.). Suppose that (.), (.), and
(.) hold and let wε the optimal control of problem (.), (.), (.), and (.). Then
there exists a function w ∈ (L(, T ; L(�))) such that

w̃ε ⇀ w = (w, w) in
(
L(, T ; L(�)

)), (.)

where

w =
θ

θ
w (.)
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and w
θ

is the unique solution of the following problem:

min

{



∫ T



∫

�

∣∣u(z)
∣∣ +




∫ T



∫

�

|z| : z ∈ L(, T ; L(�)
)}

, (.)

u(z) being, for every z ∈ L(, T ; L(�)), the unique solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 – div(A

γ ∇u) = f + f + z in �× ], T[,
u =  on ∂�× ], T[,
u() = U

 + U
 in �,

u′
() = U

 + U
 in �,

(.)

where the homogenized matrix A
γ is defined in (.), (.) and (.).

Remark . For γ < – the matrix field A
γ is the classical one in a fixed domain. For γ =

–, the homogenized matrix A
γ is described in terms of the periodic solution of an elliptic

problem posed in the two reference sub-domains of the periodicity cell and prescribing
on the interface a conormal derivative proportional to the jump of the solution. Finally in
the case – < γ < , the matrix field A

γ is the same obtained by Cioranescu and Saint Jean
Paulin in [], for the homogenization of the elliptic problem in the perforated domain
�ε with a Neumann condition on the boundary of the holes.

Remark . The boundness (iii) in (.) is necessary in order to have a priori estimates
for the solution of problem (.) and (.), as shown in Section  below.

Remark . If fiε = f |�εi , with f ∈ L(�), for i = , , then (.) holds with fi = θif .

3 Proof of Theorem 2.1
This section is devoted to the proof of Theorem .. At first, we recall some convergence
results about the sequence of solutions of problem (.) and (.). Then we give a char-
acterization of the optimal control wε at ε-level in the form of the optimality system and
we deduce a uniform estimate for wε . Finally we identify the limit of wε as the solution of
the optimality system related to the homogenized problem with respect to a suitable limit
cost functional.

3.1 Asymptotic behavior of the ε-problem
Let A

γ the matrix field defined in the previous section. We will make use of some homog-
enization results proved in [] that we recall below, for the reader’s convenience.

For any fixed T >  and γ <  let us consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
ε – div(Aε∇uε) = gε in �ε× ], T[,

u′′
ε – div(Aε∇uε) = gε in �ε× ], T[,

Aε∇uε · nε = –Aε∇uε · nε on �ε× ], T[,
Aε∇uε · nε = –εγ hε(uε – uε) on �ε× ], T[,
uε =  on ∂�× ], T[,
uε() = U

ε in �ε , uε() = U
ε in �ε ,

u′
ε() = U

ε in �ε , u′
ε() = U

ε in �ε ,

(.)
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where niε is the unitary outward normal to �iε , i = , , and

⎧
⎪⎨

⎪⎩

(i) gε = (gε , gε) ∈ L(, T ; L(�ε)) × L(, T ; L(�ε)),
(ii) U

ε = (U
ε , U

ε) ∈ V ε × H(�ε),
(iii) U

ε = (U
ε , U

ε) ∈ L(�ε) × L(�ε).
(.)

Moreover, let us suppose that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) Ũ
ε ⇀ U := (U

 , U
 ) weakly in L(�) × L(�),

with U
 ∈ H

(�),
(ii) Ũ

ε ⇀ U := (U
 , U

) weakly in L(�) × L(�),
(iii) ‖U

ε ‖Hε
γ

≤ C,

(.)

with C positive constant independent of ε, and

g̃ε ⇀ g := (g, g) weakly in L(, T ; L(�)
) × L(, T ; L(�)

)
. (.)

Theorem . ([]) Let Aε and hε satisfy (.)-(.). Suppose that (.), (.), and (.)
hold and let uε be the solution of problem (.) and (.), with γ < . Then there exists an
extension operator Pε

 ∈L(L∞(, T ; Hk(�ε)); L∞(, T ; Hk(�))), for k = , , such that

⎧
⎪⎨

⎪⎩

(i) Pε
 uε ⇀ u weakly* in L∞(, T ; H

(�)),
(ii) ũε ⇀ θu weakly* in L∞(, T ; L(�)),
(iii) ũε ⇀ θu weakly* in L∞(, T ; L(�)),

(.)

⎧
⎪⎨

⎪⎩

(i) Pε
 u′

ε ⇀ u′
 weakly* in L∞(, T ; L(�)),

(ii) ũ′
ε ⇀ θu′

 weakly* in L∞(, T ; L(�)),
(ii) ũ′

ε ⇀ θu′
 weakly* in L∞(, T ; L(�)),

(.)

and

Aε∇̃uε + Aε∇̃uε ⇀ A
γ ∇u weakly* in L∞(

, T ;
[
L(�)

]n), (.)

where θ and θ are given by (.) and u is the unique solution in L(, T ; H
(�)), with u′



in L(, T ; L(�)), of the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 – div(A

γ ∇u) = g + g in �× ], T[,
u =  on ∂�× ], T[,
u() = U

 + U
 in �,

u′
() = U

 + U
 in �.

(.)

Moreover, if – < γ < ,

{
(i) Aε∇̃uε ⇀ A

γ ∇u weakly* in L∞(, T ; [L(�)]n),
(ii) Aε∇̃uε ⇀  weakly* in L∞(, T ; [L(�)]n).

(.)

Let us recall the existence and uniqueness result, of the solution of problem (.) and
(.), with γ <  (see for instance [], Theorem .A and [], Chapter , Theorem .,
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Remark .). We point out that Hε
γ ⊆ L(�ε) × L(�ε) with continuous imbedding so

that the triple (Hε
γ , L(�ε) × L(�ε), Hε

γ
′) is an evolution triple (see Theorem . in []

for an in-depth analysis on this aspect).

Theorem . Let T ∈ ], +∞[. Let Wε be defined as in (.), hε and Aε as in (.)-(.).
For every ε, under assumptions (.), (.), and (.), problem (.) admits a unique weak
solution uε ∈ Wε . Moreover, there exists a constant C, independent of ε, such that

‖uε‖L(,THε
γ (�ε )) +

∥∥u′
ε

∥∥
L(,TL(�ε)×L(�ε ))

≤ C
(∥∥U

ε

∥∥
Hε

γ
+

∥∥U
ε

∥∥
L(�ε)×L(�ε ) + ‖gε‖L(,T ;L(�ε)×L(�ε ))

)
. (.)

Let us point out that, for any fixed ε, the solution of problem (.) and (.) has some
further properties (see [], Chapter , Theorem .). In fact, under the same hypotheses
of Theorem . the unique solution uε of problem (.) and (.), with γ <  satisfies

uε ∈ C
(
[, T]; Hε

γ

)
, u′

ε ∈ C
(
[, T]; L(�ε) × L(�ε)

)
(.)

and

‖uε‖L∞(,THε
γ (�ε)) +

∥∥u′
ε

∥∥
L∞(,TL(�ε )×L(�ε))

≤ C
(∥∥U

ε

∥∥
Hε

γ
+

∥∥U
ε

∥∥
L(�ε)×L(�ε ) + ‖gε‖L(,T ;L(�ε)×L(�ε ))

)
, (.)

where C is the same constant as in (.).

3.2 The optimality system
The following results give a characterization of the optimal controls for both problem at
level ε and homogenized problem (.) (see [], Chapter ).

Theorem . For every ε, under assumptions (.)-(.) and (.), the optimal pair
(uε , wε), solution of problem (.), (.), (.), and (.) is characterized by the follow-
ing optimality system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
ε – div(Aε∇uε) = fε + wε in �ε× ], T[,

u′′
ε – div(Aε∇uε) = fε + wε in �ε× ], T[,

Aε∇uε · nε = –Aε∇uε · nε on �ε× ], T[,
Aε∇uε · nε = –εγ hε(uε – uε) on �ε× ], T[,
uε =  on ∂�× ], T[,
uε() = U

ε in �ε , uε() = U
ε in �ε ,

u′
ε() = U

ε in �ε , u′
ε() = U

ε in �ε ,

(.)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′′
ε – div(Aε∇pε) = uε in �ε× ], T[,

p′′
ε – div(Aε∇pε) = uε in �ε× ], T[,

Aε∇pε · nε = –Aε∇pε · nε on �ε× ], T[,
Aε∇pε · nε = –εγ hε(pε – pε) on �ε× ], T[,
pε =  on ∂�× ], T[,
pε(T) =  in �ε , pε(T) =  in �ε ,
p′

ε(T) =  in �ε , p′
ε(T) =  in �ε ,

(.)
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pε = –wε a.e. in ], T[×�ε . (.)

As previously, we prefer to use the following weak formulation of problems (.) and
(.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find uε = (uε , uε) in W ε such that
〈u′′

ε , v〉(V ε)′ ,V ε + 〈u′′
ε , v〉(H(�ε))′ ,H(�ε)

+
∫
�ε

Aε∇uε · ∇v dx +
∫
�ε

Aε∇uε · ∇v dx
+ εγ

∫
�ε hε(uε – uε)(v – v) dσx =

∫
�ε

(fε + wε)vdx
+

∫
�ε

(fε + wε)v dx for every (v, v) ∈ V ε × H(�ε) in D′(, T),
uε() = U

ε in �ε , uε() = U
ε in �ε ,

u′
ε() = U

ε in �ε , u′
ε() = U

ε in �ε ,

(.)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find pε = (pε , pε) in W ε such that
〈p′′

ε , v〉(V ε )′ ,V ε + 〈p′′
ε , v〉(H(�ε))′ ,H(�ε)

+
∫
�ε

Aε∇pε · ∇v dx +
∫
�ε

Aε∇pε · ∇v dx
+ εγ

∫
�ε hε(pε – pε)(v – v) dσx =

∫
�ε

uεv dx dt
+

∫
�ε

uεv dx dt for every (v, v) ∈ V ε × H(�ε) in D′(, T),
pε(T) =  in �ε , pε(T) =  in �ε ,
p′

ε(T) =  in �ε , p′
ε(T) =  in �ε .

(.)

Let us consider the cost functional J∞ : L(, T ; L(�)) → R defined in the following way:

J∞(z) :=



∫ T



∫

�

∣∣u(z)
∣∣ +




∫ T



∫

�

|z|, (.)

where for every control z ∈ L(, T ; L(�)), u(z) is the unique solution of problem (.).
This functional is continuous, strictly convex, and coercive. Hence, by applying the direct
method in the calculus of variations, the minimum problem (.) admits a unique solu-
tion w̄ which is the optimal control of problem (.) with respect to the cost functional
(.).

Theorem . The optimal pair (u, w̄), solution of problem (.) and (.) is character-
ized by the following optimality system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 – div(A

γ ∇u) = f + f + w̄ in �× ], T[,
u =  on ∂�× ], T[,
u() = U

 + U
 in �,

u′
() = U

 + U
 in �,

(.)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p′′
 – div(A

γ ∇p) = u in �× ], T[,
u =  on ∂�× ], T[,
p(T) =  in �,
p′

(T) =  in �,

(.)

p = –w̄. (.)
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3.3 A priori estimates
In this subsection, we deduce some a priori norm-estimates either for the sequence of the
optimal controls wε or for the corresponding solution uε = uε(wε) (resp. pε = pε(uε)) of
problem (.) (resp. (.)).

Proposition . Let (uε , wε) ∈ (L(, T ; L(�ε) × L(�ε))) be the optimal pair, solution
of the optimality system (.), (.) and (.). Under assumptions (.)-(.), (.) and
(.), there exists a constant c, independent of ε, such that

‖wε‖L(,T ;L(�ε )×L(�ε)) ≤ c, (.)

‖uε‖L(,T ;L(�ε )×L(�ε)) ≤ c, (.)

for every ε.

Proof Let us fix ε. Let uε = uε(wε) be the unique solution of problem (.) and pε = pε(uε)
be the unique solution of the adjoint problem (.). Choosing pε as test function in (.)
and uε as a test function in (.), we have

∫ T



〈
u′′

ε(t, ·), pε(t, ·)〉(H(�ε ))′,H(�ε ) dt +
∫ T



〈
u′′

ε(t, ·), pε(t, ·)〉(H(�ε))′,H(�ε) dt

+
∫ T



∫

�ε

A∇xuε∇xpε + uεpε dx dt +
∫ T



∫

�ε

A∇xuε∇xpε + uεpε dx dt

=
∫ T



∫

�ε

fεpε + wεpε dx dt +
∫ T



∫

�ε

fεpε + wεpε dx dt (.)

and

∫ T



〈
p′′

ε(t, ·), uε(t, ·)〉(H(�ε ))′,H(�ε ) dt +
∫ T



〈
p′′

ε(t, ·), uε(t, ·)〉(H(�ε))′,H(�ε) dt

+
∫ T



∫

�ε

A∇xpε∇xuε + pεuε dx dt +
∫ T



∫

�ε

A∇xpε∇xuε + pεuε dx dt

=
∫ T



∫

�ε

(uε) dx dt +
∫ T



∫

�ε

(uε) dx dt. (.)

Integrating by parts, we get

∫ T



〈
u′′

ε(t, ·), pε(t, ·)〉(H(�ε ))′ ,H(�ε ) dt +
∫ T



〈
u′′

ε(t, ·), pε(t, ·)〉(H(�ε ))′ ,H(�ε) dt

=
〈
u′

ε(T), pε(T)
〉
(H(�ε ))′ ,H(�ε ) –

〈
u′

ε(), pε()
〉
(H(�ε))′ ,H(�ε )

–
∫ T



(
u′

ε(t, ·), p′
ε(t, ·))L(�ε ) dt +

〈
u′

ε(T), pε(T)
〉
(H(�ε))′ ,H(�ε)

–
〈
u′

ε(), pε()
〉
(H(�ε))′ ,H(�ε) –

∫ T



(
u′

ε(t, ·), p′
ε(t, ·))L(�ε) dt (.)
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and
∫ T



〈
p′′

ε(t, ·), uε(t, ·)〉(H(�ε ))′ ,H(�ε ) dt +
∫ T



〈
p′′

ε(t, ·), uε(t, ·)〉(H(�ε ))′ ,H(�ε) dt

=
〈
p′

ε(T), uε(T)
〉
(H(�ε ))′ ,H(�ε ) –

〈
p′

ε(), uε()
〉
(H(�ε))′ ,H(�ε )

–
∫ T



(
p′

ε(t, ·), u′
ε(t, ·))L(�ε ) dt +

〈
p′

ε(T), uε(T)
〉
(H(�ε))′ ,H(�ε)

–
〈
p′

ε(), uε()
〉
(H(�ε))′ ,H(�ε) –

∫ T



(
p′

ε(t, ·), u′
ε(t, ·))L(�ε) dt. (.)

Subtracting (.) from (.), using (.) and (.), the symmetry of the matrix A, the
initial conditions in (.), and the final conditions in (.), we obtain

〈
p′

ε(), U
ε

〉
(H(�ε ))′ ,H(�ε ) –

〈
U

ε , pε()
〉
(H(�ε ))′ ,H(�ε )

+
〈
p′

ε(), U
ε

〉
(H(�ε))′ ,H(�ε) –

〈
U

ε , pε()
〉
(H(�ε ))′ ,H(�ε )

=
∫ T



∫

�ε

fεpε + wεpε – u
ε dx dt +

∫ T



∫

�ε

fεpε + wεpε – u
ε dx dt.

By virtue of (.), as a result we find
∫ T



∫

�ε

u
ε + w

ε dx dt +
∫ T



∫

�ε

u
ε + w

ε dx dt

= –
∫ T



∫

�ε

fεwε dx dt –
∫ T



∫

�ε

fεwε dx dt

+
∫

�ε

U
εpε() – U

εp′
ε() dx +

∫

�ε

U
εpε() – U

εp′
ε() dx, (.)

from which, by the Cauchy-Schwarz inequality, it follows that

‖uε‖
L(,T ;L(�ε )×L(�ε)) + ‖wε‖

L(,T ;L(�ε )×L(�ε))

≤ ‖wε‖L(,T ;L(�ε)×L(�ε ))‖fε‖L(,T ;L(�ε )×L(�ε))

+
∥∥U

ε

∥∥
L(�ε )×L(�ε)

∥∥p′
ε(, ·)∥∥L(�ε )×L(�ε)

+
∥∥U

ε

∥∥
L(�ε)×L(�ε )

∥∥pε(, ·)∥∥L(�ε )×L(�ε). (.)

On the other hand, to estimate ‖pε(, ·)‖L(�ε )×L(�ε) and ‖p′
ε(, ·)‖L(�ε)×L(�ε ) let us

apply Theorem . with pε instead of uε . Then by translation we get
∥∥pε(, ·)∥∥H(�ε) +

∥∥p′
ε(, ·)∥∥L(�ε ) ≤ C‖uε‖L(,T ;L(�ε)×L(�ε )), (.)

where C is a constant independent of ε. Finally, combining (.) with (.) and using
(.), as a result we find that

‖uε‖
L(,T ;L(�ε )×L(�ε )) + ‖wε‖

L(,T ;L(�ε )×L(�ε ))

≤ c‖wε‖L(,T ;L(�ε )×L(�ε)) + c‖uε‖L(,T ;L(�ε )×L(�ε)), (.)

with constants independent of ε. So estimates (.) and (.) are proved. �
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As a consequence of (.), up to a subsequence still denoted by ε, we have the following
convergences:

w̃ε ⇀ w in L(, T ; L(�)
)
,

w̃ε ⇀ w in L(, T ; L(�)
)
.

(.)

3.4 Conclusions
Let us recall that for the adjoint state at ε-level pε = (pε , pε), the following convergences
hold:

p̃ε ⇀ θp weakly* in L∞(
, T ; L(�)

)
,

p̃ε ⇀ θp weakly* in L∞(
, T ; L(�)

)
.

Hence by (.) and (.) we get

θp = –w,

θp = –w,

where θ and θ are given in (.). As a consequence

w =
θ

θ
w, (.)

which is (.).
Hence we are able to pass to the limit, as ε goes to , in the optimality system (.)-(.)

by applying Theorem . to both problems (.) and (.) with, respectively, gε = fε + wε

and gε = uε . Then by (.), (.), and (.) as θ + θ = , we see that the pair (u, w
θ

) is
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
 – div(A

γ ∇u) = f + f + 
θ

w in �× ], T[,
u =  on ∂�× ], T[,
u() = U

 + U
 in �,

u′
() = U

 + U
 in �,

(.)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p′′
 – div(A

γ ∇p) = θu + θu = u in �× ], T[,
u =  on ∂�× ], T[,
p(T) =  in �,
p′

(T) =  in �,

(.)

p = –

θ

w. (.)

Finally, by Theorem . and uniqueness we get w
θ

= w̄ and the convergences (.)-(.)
and (.) hold for the whole sequence. Hence Theorem . is now completely proved.
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