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Abstract
The purpose of this paper is to introduce and consider a new hybrid shrinking
projection method for finding a common element of the set EP of solutions of a
generalized equilibrium problem, the common fixed point set F of finite uniformly
closed families of countable Bregman quasi-Lipschitz mappings in reflexive Banach
spaces. It is proved that under appropriate conditions, the sequence generated by
the hybrid shrinking projection method converges strongly to some point in EP ∩ F.
Relative examples are given. Strong convergence theorems are proved. The
application for Bregman asymptotically quasi-nonexpansive mappings is also given.
The main innovative points in this paper are as follows: (1) the notion of the uniformly
closed family of countable Bregman quasi-Lipschitz mappings is presented and the
useful conclusions are given; (2) the relative examples of the uniformly closed family
of countable Bregman quasi-Lipschitz mappings are given in classical Banach spaces
l2 and L2; (3) the application for Bregman asymptotically quasi-nonexpansive
mappings is also given; (4) because the main theorems do not need the boundedness
of the domain of mappings, so a corresponding technique for the proof is given. This
new results improve and extend the previously known ones in the literature.
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1 Introduction
Let C be a nonempty subset of a real Banach space and T be a mapping from C into itself.
We denote by F(T) the set of fixed points of T . Recall that T is said to be asymptotically
nonexpansive [] if there exists a sequence {kn} ⊂ [, +∞) with limn→∞ kn =  such that

∥
∥Tnx – Tny

∥
∥ ≤ kn‖x – y‖, ∀x, y ∈ C, n ≥ .

In the framework of Hilbert spaces, Takahashi et al. [] have introduced a new hybrid
iterative scheme called a shrinking projection method for nonexpansive mappings. It is
an advantage of projection methods that the strong convergence of iterative sequences is
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guaranteed without any compact assumption. Moreover, Schu [] has introduced a modi-
fied Mann iteration to approximate fixed points of asymptotically nonexpansive mappings
in uniformly convex Banach spaces. Motivated by [, ], Inchan [] has introduced a new
hybrid iterative scheme by using the shrinking projection method with the modified Mann
iteration for asymptotically nonexpansive mappings. The mapping T is said to be asymp-
totically nonexpansive in the intermediate sense (cf. []) if

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx – Tny

∥
∥ – ‖x – y‖) ≤ . (.)

If F(T) is nonempty and (.) holds for all x ∈ C and y ∈ F(T), then T is said to be asymptot-
ically quasi-nonexpansive in the intermediate sense. It is worth mentioning that the class
of asymptotically nonexpansive mappings in the intermediate sense contains properly the
class of asymptotically nonexpansive mappings since the mappings in the intermediate
sense are not Lipschitz continuous in general.

Recently, many authors have studied further new hybrid iterative schemes in the frame-
work of real Banach spaces; for instance, see [–]. Qin and Wang [] have introduced a
new class of mappings which are asymptotically quasi-nonexpansive with respect to the
Lyapunov functional (cf. []) in the intermediate sense. By using the shrinking projection
method, Hao [] has proved a strong convergence theorem for an asymptotically quasi-
nonexpansive mapping with respect to the Lyapunov functional in the intermediate sense.

In , Bregman [] discovered an elegant and effective technique for using of the so-
called Bregman distance function (see Section ) in the process of designing and analyzing
feasibility and optimization algorithms. This opened a growing area of research in which
Bregman’s technique is applied in various ways in order to design and analyze not only
iterative algorithms for solving feasibility and optimization problems, but also algorithms
for solving variational inequalities, for approximating equilibria, and for computing fixed
points of nonlinear mappings.

Many authors have studied iterative methods for approximating fixed points of map-
pings of nonexpansive type with respect to the Bregman distance; see [–]. In [], the
authors has introduced a new class of nonlinear mappings which is an extension of asymp-
totically quasi-nonexpansive mappings with respect to the Bregman distance in the inter-
mediate sense and has proved the strong convergence theorems for asymptotically quasi-
nonexpansive mappings with respect to Bregman distances in the intermediate sense by
using the shrinking projection method.

The purpose of this paper is to introduce and consider a new hybrid shrinking projec-
tion method for finding a common element of the set EP of solutions of a generalized
equilibrium problem, the common fixed point set F of finite uniformly closed families of
countable Bregman quasi-Lipschitz mappings in reflexive Banach spaces. It is proved that
under appropriate conditions, the sequence generated by the hybrid shrinking projection
method converges strongly to some point in EP ∩ F . Relative examples are given. Strong
convergence theorems are proved. The application for Bregman asymptotically quasi-
nonexpansive mappings is also given. The main innovative points in this paper are as fol-
lows: () the notion of the uniformly closed family of countable Bregman quasi-Lipschitz
mappings is presented and the useful conclusions are given; () the relative examples of
the uniformly closed family of countable Bregman quasi-Lipschitz mappings are given in
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classical Banach spaces l and L; () the application for Bregman asymptotically quasi-
nonexpansive mappings is also given; () because the main theorems do not need the
boundedness of the domain of mappings, so a corresponding technique for the proof is
given. This new results improve and extend the previously known ones in the literature.

2 Preliminaries
Throughout this paper, we assume that E is a real reflexive Banach space with the dual
space of E∗ and 〈·, ·〉 the pairing between E and E∗.

Let f : E → (–∞, +∞] be a function. The effective domain of f is defined by

dom f :=
{

x ∈ E : f (x) < +∞}

.

When dom f �= ∅, we say that f is proper. We denote by int dom f the interior of the effective
domain of f . We denote by ran f the range of f .

The function f is said to be strongly coercive if

lim‖x‖→∞
f (x)
‖x‖ = +∞.

Given a proper and convex function f : E → (–∞, +∞], the subdifferential of f is a map-
ping ∂f : E → E∗ defined by

∂f (x) =
{

x∗ ∈ E∗ : f (y) ≥ f (x) +
〈

x∗, y – x
〉

,∀y ∈ E
}

for all x ∈ E.
The Fenchel conjugate function of f is the convex function f ∗ : E → (–∞, +∞) defined

by

f ∗(x∗) = sup
{〈

x∗, x
〉

– f (x), x ∈ E
}

.

We know that x∗ ∈ ∂f (x) if and only if

f (x) + f ∗(x∗) =
〈

x∗, x
〉

for all x ∈ E (see []).

Proposition . ([]) Let f : E → (–∞, +∞] be a proper, convex, and lower semicontin-
uous function. Then the following conditions are equivalent:

(i) ran ∂f = E∗ and ∂f ∗ = (∂f )– is bounded on bounded subsets of E∗;
(ii) f is strongly coercive.

Let f : E → (–∞, +∞] be a convex function and x ∈ int dom f . For any y ∈ E, we define
the right-hand derivative of f at x in the direction y by

f ◦(x, y) = lim
t↓

f (x + ty) – f (x)
t

. (.)

The function f is said to be Gâteaux differentiable at x if the limit (.) exists for any y. In
this case, the gradient of f at x is the function ∇f (x) : E → E∗ defined by 〈∇f (x), y〉 = f ◦(x, y)
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for all y ∈ E. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable
at each x ∈ int dom f . If the limit (.) is attained uniformly in ‖y‖ = , then the function
f is said to be Fréchet differentiable at x. The function f is said to be uniformly Fréchet
differentiable on a subset C of E if the limit (.) is attained uniformly for x ∈ C and ‖y‖ = .
We know that if f is uniformly Fréchet differentiable on bounded subsets of E, then f is
uniformly continuous on bounded subsets of E (cf. []). We will need the following results.

Proposition . ([]) If a function f : E → R is convex, uniformly Fréchet differentiable,
and bounded on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets
of E from the strong topology of E to the strong topology of E∗.

Proposition . ([]) Let f : E → R be a convex function which is bounded on bounded
subsets of E. Then the following assertions are equivalent:

(i) f is strongly coercive and uniformly convex on bounded subsets of E;
(ii) f ∗ is Fréchet differentiable and ∇f ∗ is uniformly norm-to-norm continuous on

bounded subsets of dom f ∗ = E∗.

A function f : E → (–∞, +∞] is said to be admissible if it is proper, convex, and lower
semicontinuous on E and Gâteaux differentiable on int dom f . Under these conditions we
know that f is continuous in int dom f , ∂f is single-valued and ∂f = ∇f ; see [, ]. An ad-
missible function f : E → (–∞, +∞] is called Legendre (cf. []) if it satisfies the following
two conditions:

(L) the interior of the domain of f , int dom f , is nonempty, f is Gâteaux differentiable,
and dom∇f = int dom f ;

(L) the interior of the domain of f ∗, int dom f ∗ is nonempty, f ∗ is Gâteaux
differentiable, and dom∇f ∗ = int dom f ∗.

Let f be a Legendre function on E. Since E is reflexive, we always have ∇f = (∇f ∗)–.
This fact, when combined with conditions (L) and (L), implies the following equalities:

ran∇f = dom f ∗ = int dom f ∗ and ran∇f ∗ = dom f = int dom f .

Conditions (L) and (L) imply that the functions f and f ∗ are strictly convex on the inte-
rior of their respective domains. In [], author gave an example of the Legendre function.

Let f : E → (–∞, +∞] be a convex function on E which is Gâteaux differentiable on
int dom f . The bifunction Df : dom f × int dom f → [, +∞) given by

Df (x, y) = f (x) – f (y) –
〈

x – y,∇f (y)
〉

is called the Bregman distance with respect to f (cf. []). In general, the Bregman dis-
tance is not a metric since it is not symmetric and does not satisfy the triangle inequality.
However, it has the following important property, which is called the three point identity
(cf. []): for any x ∈ dom f and y, z ∈ int dom f ,

Df (x, y) + Df (y, z) – Df (x, z) =
〈

x – y,∇f (z) – ∇f (y)
〉

. (.)

With a Legendre function f : E → (–∞, +∞], we associate the bifunction Wf : dom f ∗ ×
dom f → [, +∞) defined by

W f (w, x) = f (x) – 〈w, x〉 + f ∗(w).
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Proposition . ([]) Let f : E → (–∞, +∞] be a Legendre function such that ∇f ∗ is
bounded on bounded subsets of int dom f ∗. Let x ∈ int dom f . If the sequence {Df (x, xn)} is
bounded, then the sequence {xn} is also bounded.

Proposition . ([]) Let f : E → (–∞, +∞] be a Legendre function. Then the following
statements hold:

(i) the function W f (·, x) is convex for all x ∈ dom f ;
(ii) W f (∇f (x), y) = Df (y, x) for all x ∈ int dom f and y ∈ dom f .

Let f : E → (–∞, +∞] be a convex function on E which is Gâteaux differentiable on
int dom f . The function f is said to be totally convex at a point x ∈ int dom f if its modulus
of total convexity at x, vf (x, ·) : [, +∞) → [, +∞], defined by

vf (x, t) = inf
{

Df (y, x) : y ∈ dom f ,‖y – x‖ = t
}

,

is positive whenever t > . The function f is said to be totally convex when it is totally
convex at every point of int dom f . The function f is said to be totally convex on bounded
sets if, for any nonempty bounded set B ⊂ E, the modulus of total convexity of f on B,
vf (B, t) is positive for any t > , where vf (B, ·) : [, +∞) → [, +∞] is defined by

vf (B, t) = inf
{

vf (x, t) : x ∈ B ∩ int dom f
}

.

We remark in passing that f is totally convex on bounded sets if and only if f is uniformly
convex on bounded sets; see [, ].

Proposition . ([]) Let f : E → (–∞, +∞] be a convex function whose domain contains
at least two points. If f is lower semi-continuous, then f is totally convex on bounded sets
if and only if f is uniformly convex on bounded sets.

Proposition . ([]) Let f : E → R be a totally convex function. If x ∈ E and the sequence
{Df (xn, x)} is bounded, then the sequence {xn} is also bounded.

Let f : E → [, +∞) be a convex function on E which is Gâteaux differentiable on
int dom f . The function f is said to be sequentially consistent (cf. []) if for any two
sequences {xn} and {yn} in int dom f and dom f , respectively, such that the first one is
bounded,

lim
n→∞ Df (yn, xn) =  ⇒ lim

n→∞‖yn – xn‖ = .

Proposition . ([]) A function f : E → [, +∞) is totally convex on bounded subsets of
E if and only if it is sequentially consistent.

Let C be a nonempty, closed, and convex subset of E. Let f : E → (–∞, +∞] be a con-
vex function on E which is Gâteaux differentiable on int dom f . The Bregman projection
projf

C(x) with respect to f (cf. []) of x ∈ int dom f onto C is the minimizer over C of the
functional Df (·, x) :→ [, +∞], that is,

projf
C(x) = argmin

{

Df (y, x) : y ∈ C
}

.
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Let E be a Banach space with dual E∗. We denote by J the normalized duality mapping
from E to E∗ defined by

Jx =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is smooth,
then J is single-valued.

Proposition . ([]) Let f : E → R be an admissible, strongly coercive, and strictly con-
vex function. Let C be a nonempty, closed, and convex subset of dom f . Then projf

C(x) exists
uniquely for all x ∈ int dom f .

Let f (x) = 
‖x‖.

(i) If E is a Hilbert space, then the Bregman projection is reduced to the metric
projection onto C.

(ii) If E is a smooth Banach space, then the Bregman projection is reduced to the
generalized projection �C(x) which is defined by

�C(x) = argmin
{

φ(y, x) : y ∈ C
}

,

where φ is the Lyapunov functional (cf. []) defined by

φ(y, x) = ‖y‖ – 〈y, Jx〉 + ‖x‖

for all y, x ∈ E.

Proposition . ([]) Let f : E → (–∞, +∞] be a totally convex function. Let C be a
nonempty, closed, and convex subset of int dom f and x ∈ int dom f . If x∗ ∈ C, then the fol-
lowing statements are equivalent:

(i) The vector x∗ is the Bregman projection of x onto C.
(ii) The vector x∗ is the unique solution z of the variational inequality

〈

z – y,∇f (x) – ∇f (z)
〉 ≥ , ∀y ∈ C.

(iii) The vector x∗ is the unique solution z of the inequality

Df (y, z) + Df (z, x) ≤ Df (y, x), ∀y ∈ C.

In this paper, we present the following definition.

Definition . Let C be a nonempty, closed, and convex subset of E and f : E →
(–∞, +∞] be an admissible function. Let T be a mapping from C into itself with a
nonempty fixed point set F(T). The mapping T is said to be Bregman quasi-Lipschitz
if there exists a constant L ≥  such that

Df (p, Tx) ≤ LDf (p, x), ∀p ∈ F(T),∀x ∈ C.
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The mapping T is said to be Bregman quasi-nonexpansive if

Df (p, Tx) ≤ Df (p, x), ∀p ∈ F(T),∀x ∈ C.

Bregman quasi-Lipschitz mappings are a more generalized class than the class of
Bregman quasi-mappings. On the other hand, this class also contains the relatively quasi-
Lipschitz mappings and quasi-Lipschitz mappings. Therefore, Bregman quasi-Lipschitz
mappings are very important in the nonlinear analysis and fixed point theory and appli-
cations.

Definition . Let C be a nonempty, closed, and convex subset of E. Let {Tn} be se-
quence of mappings from C into itself with a nonempty common fixed point set F =
⋂∞

n= F(Tn). {Tn} is said to be uniformly closed if for any convergent sequence {zn} ⊂ C
such that ‖Tnzn – zn‖ →  as n → ∞, the limit of {zn} belongs to F .

In Section , we will give two examples of a uniformly closed family of countable Breg-
man quasi-Lipschitz mappings.

Let E be a real Banach space with the dual E∗ and C be a nonempty closed convex subset
of E. Let A : C → E∗ be a nonlinear mapping and F : C × C → R be a bifunction. Then
consider the following generalized equilibrium problem of finding u ∈ C such that:

F(u, y) + 〈Au, y – u〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by EP, i.e.,

EP =
{

u ∈ C : F(u, y) + 〈Au, y – u〉 ≥ ,∀y ∈ C
}

.

Whenever E = H a Hilbert space, problem (.) was introduced and studied by Takahashi
and Takahashi [].

Whenever A ≡ , problem (.) is equivalent to finding u ∈ C such that

F(u, y) ≥ , ∀y ∈ C, (.)

which is called the equilibrium problem. The set of its solutions is denoted by EP(F).
Whenever F ≡ , problem (.) is equivalent to finding u ∈ C such that

〈Au, y – u〉 ≥ , ∀y ∈ C,

which is called the variational inequality of Browder type. The set of its solutions is de-
noted by VI(C, A).

Problem (.) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, the Nash equilibrium problem in
noncooperative games and others; see, e.g., [, ].

In order to solve the equilibrium problem, let us assume that F : C × C → (–∞, +∞)
satisfies the following conditions []:

(A) F(x, x) =  for all x ∈ C,
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤ , for all x, y ∈ C,
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(A) for all x, y, z ∈ C, lim supt↓ F(tz + ( – t)x, y) ≤ F(x, y),
(A) for all x ∈ C, F(x, ·) is convex and lower semi-continuous.
For r > , we define a mapping Kr : E → C as follows:

Tr(x) =
{

z ∈ C : F(z, y) +

r
〈

y – z,∇f (z) – ∇f (x)
〉 ≥ ,∀y ∈ C

}

(.)

for all x ∈ E. The following two lemmas were proved in [].

Lemma . Let E be a reflexive Banach space and let f : E → R be a Legendre function.
Let C be a nonempty, closed, and convex subset of E and let F : C × C → R be a bifunc-
tion satisfying (A)-(A). For r > , let Tr : E → C be the mapping defined by (.). Then
dom Tr = E.

Lemma . Let E be a reflexive Banach space and let f : E → R be a convex, continuous,
and strongly coercive function which is bounded on bounded subsets and uniformly convex
on bounded subsets of E. Let C be a nonempty, closed, and convex subset of E and let F :
C × C → R be a bifunction satisfying (A)-(A). For r > , let Tr : E → C be the mapping
defined by (.). Then the following statements hold:

(i) Tr is single-valued.
(ii) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈

Trx – Try,∇f (Trx) – ∇f (Try)
〉 ≤ 〈

Trx – Try,∇f (x) – ∇f (y)
〉

.

(iii) F(Tr) = F̂(Tr) = EP(F).
(iv) EP(F) is closed and convex.
(v) Df (p, Trx) + Df (Trx, x) ≤ Df (p, x), ∀p ∈ EP(F), ∀x ∈ E.

Lemma . Let E be a reflexive Banach space and let f : E → R be a convex, continuous,
and strongly coercive function which is bounded on bounded subsets and uniformly convex
on bounded subsets of E. Let C be a nonempty, closed, and convex subset of E and let F :
C × C → R be a bifunction satisfying (A)-(A). Let A : C → E∗ be a monotone mapping,
i.e.,

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C.

For r > , let Kr : E → C be the mapping defined by

Kr(x) =
{

z ∈ C : F(z, y) + 〈Az, y – z〉 +

r
〈

y – z,∇f (z) – ∇f (x)
〉 ≥ ,∀y ∈ C

}

.

Then the following statements hold:
(i) Kr is single-valued.

(ii) Kr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈

Krx – Kry,∇f (Krx) – ∇f (Kry)
〉 ≤ 〈

Krx – Kry,∇f (x) – ∇f (y)
〉

.

(iii) F(Kr) = F̂(Kr) = EP.
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(iv) EP is closed and convex.
(v) Df (p, Krx) + Df (Krx, x) ≤ Df (p, x), ∀p ∈ EP(F), ∀x ∈ E.

Proof Let

G(x, y) = F(x, y) + 〈Ax, y – x〉, ∀x, y ∈ C.

It is easy to show that, G(x, y) satisfies conditions (A)-(A). Replacing F(x, y) by G(x, y) in
Lemma ., we can get the conclusions. �

3 Main results
Theorem . Let f : E → (–∞, +∞] be a Legendre function which is totally convex on
bounded subsets of E. Suppose that ∇f ∗ is bounded on bounded subsets of int dom f ∗.
Let C be a nonempty, closed, and convex subset of int dom f . Let {Tn} : C → C be a uni-
formly closed family of countable Bregman quasi-Lipschitz mappings with the condition
limn→∞ Ln = , where

Df (p, Tnx) ≤ LnDf (p, x), ∀p ∈ F ,∀x ∈ C. (.)

Let F be a common fixed point set of {Tn}. Then F is closed and convex.

Proof Firstly, we prove that F is closed. Let {pn} ⊂ F , pn → p as n → ∞, then ‖Tnpn –pn‖ =
 →  as n → ∞. Since {Tn} is uniformly closed, we know that p ∈ F . Hence F is closed.

Next we prove that F is convex. Let p, p ∈ F , p = tp + ( – t)p, where t ∈ (, ). We
prove that p ∈ F . By the three point identity (.), we know that

Df (x, y) = Df (x, z) + Df (z, y) +
〈

x – z,∇f (z) – ∇f (y)
〉

.

This implies

Df (pi, Tnp) = Df (pi, p) + Df (p, Tnp) +
〈

pi – p,∇f (p) – ∇f (Tnp)
〉

(.)

for i = , . Combining (.) and (.) yields

Df (p, Tnp) ≤ (Ln – )Df (pi, p) –
〈

pi – p,∇f (p) – ∇f (Tnp)
〉

(.)

for i = , . Multiplying t and ( – t) on both sides of (.) with i =  and i = , respectively,
yields

lim
n→∞ Df (p, Tnp) ≤ lim

n→∞
(

ξn –
〈

tp + ( – t)p – p,∇f (p) – ∇f (Tnp)
〉)

= ,

where

ξn = (Ln – )
[

tDf (p, p) + ( – t)Df (p, p)
]

.

This implies that {Df (p, Tnp)} is bounded. By Propositions . and ., we see that the
sequence {Tnpn} is bounded and ‖p – Tnp‖ →  as n → ∞. Since p → p, and {Tn} is
uniformly closed, then p ∈ F . Therefore F is convex. This completes the proof. �
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Next we will prove the main strong convergence theorem for the finite families of count-
able Bregman quasi-Lipschitz mappings by using a new hybrid projection scheme. In this
scheme, we will use some detailed technology.

Theorem . Let f : E → (–∞, +∞] be a Legendre function which is bounded, strongly
coercive, uniformly Fréchet differentiable and totally convex on bounded subsets on E. Let
C be a nonempty, closed, and convex subset of int dom f . Let {T (i)

n }∞n= : C → C be N uni-
formly closed families of countable Bregman quasi-Lipschitz mappings with the condition
limn→∞ L(i)

n =  for i = , , , . . . , N . Let F =
⋂∞

n=
⋂N

i= F(T (i)
n ) and F ∩ EP be nonempty. Let

{xn} be a sequence of C generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ int dom f , arbitrarily,

yi,n = ∇f ∗(αn∇f (xn) + ( – αn)∇f (T (i)
n xn)), i = , , , . . . , N ,

F(ui,n, y) + 〈Aui,n, y – ui,n〉 + 
rn

〈∇f (ui,n) – ∇f (yi,n), y – ui,n〉 ≥ , ∀y ∈ C,

Ci,n+ = {z ∈ Cn : Df (z, ui,n) ≤ Df (z, yi,n) ≤ Df (z, xn) + ξn}, n ≥ ,

Ci, = C, Cn+ =
⋂N

i= Ci,n+,

xn = Pf
Cn x,

where

ξn = (Ln – ) sup
p∈F∩EP∩B(Pf

F∩EPx,)

Df (p, x),

B(x, ) =
{

y ∈ E : Df (y, x) ≤ 
}

,

Ln = max
{

L()
n , L()

n , L()
n , . . . , L(N)

n
}

and {αn} is a sequence satisfying lim supn→∞ αn < . Then {xn} converges to q = Pf
F∩EPx.

Proof We divide the proof into six steps.
Step . We show that Cn is closed and convex for all n ≥ . It is obvious that Ci, = C is

closed and convex. Suppose that Ci,k is closed and convex for some k ≥ . We see for each
i = , , , . . . , N that

Ci,k+ =
{

z ∈ C : Df (z, ui,k) ≤ Df (z, yi,k) ≤ Df (z, xk) + ξk
} ∩ Ci,k

and

Df (z, ui,k) ≤ Df (z, yi,k) ≤ Df (z, xk) + ξk

is equivalent to
⎧

⎨

⎩

〈∇f (xk) – ∇f (yi,k), z〉 ≤ 〈f ∗(∇f (xk)) – f ∗(∇f (yi,k))〉 + ξk ,

〈∇f (yi,k) – ∇f (ui,k), z〉 ≤ 〈f ∗(∇f (yi,k)) – f ∗(∇f (ui,k))〉.
(.)

Therefore

Ci,k+ =
{

z ∈ C : z satisfies (.)
} ∩ Ci,k .
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It is easy to see that if z, z satisfy (.), the element z = tz + ( – t)z satisfies also (.)
for all t ∈ (, ), so that the set

{

z ∈ C : z satisfies (.)
}

is convex and closed, and hence Ci,k+ is closed and convex for all n ≥ . Therefore Cn+ =
⋂N

i= Ci,n+ is closed and convex.
Step . We show that F ∩ EP ∩ B(Pf

F∩EPx, ) ⊂ Cn for all n ≥ . It is obvious that F ∩
EP ∩ B(Pf

F∩EPx, ) ⊂ Ci, = C for all  ≤ i ≤ N . Suppose that F ∩ EP ∩ B(Pf
F∩EPx, ) ⊂ Cn

for some n ≥ . Let p ∈ F ∩ EP ∩ B(Pf
F∩EPx, ). By Proposition ., we have

Df (p, yi,n) = Df
(

p,∇f ∗(αn∇f (xn) + ( – αn)∇f
(

T (i)
n xn

)))

= W f (p,∇f ∗(αn∇f (xn) + ( – αn)∇f
(

T (i)
n xn

)))

≤ αnW f (p,∇f (xn)
)

+ ( – αn)W f (p,∇f
(

T (i)
n xn

))

= αnDf (p, xn) + ( – αn)Df
(

p, T (i)
n xn

)

≤ αnDf (p, xn) + ( – αn)Df (p, xn) + ξn

≤ Df (p, xn) + ξn. (.)

On the other hand, by Lemma ., we have p = Kr(p) and

Df (p, Kryi,n) + Df (Knyi,n, yi,n) ≤ Df (p, yi,n),

that is,

Df (p, ui,n) + Df (Knyi,n, yi,n) ≤ Df (p, yi,n). (.)

Combining (.) and (.) we know that p ∈ Ci,n+ for all  ≤ i ≤ N , which implies that
F ∩ EP ∩ B(Pf

F∩EPx, ) ⊂ Ci,n+. Therefore F ∩ EP ∩ B(Pf
F∩EPx, ) ⊂ Cn+. By induction we

know that F ∩ EP ∩ B(Pf
F∩EPx, ) ⊂ Cn for all n ≥ .

Step . We show that {xn} converges to a point p ∈ C.
Since xn = Pf

Cn x and Cn+ ⊂ Cn, then we get

Df (xn, x) ≤ Df (xn+, x) for all n ≥ . (.)

Therefore {Df (xn, x)} is nondecreasing. On the other hand, by Proposition ., we have

Df (xn, x) = Df
(

Pf
Cn x, x

) ≤ Df (p, x) – Df (p, xn) ≤ Df (p, x)

for all p ∈ F ⊂ Cn and for all n ≥ . Therefore, Df (xn, x) is also bounded. This together
with (.) implies that the limit of {Df (xn, x)} exists. Put

lim
n→∞ Df (xn, x) = d. (.)

From Proposition ., we have, for any positive integer m, that

Df (xn+m, xn) = Df
(

xn+m, Pf
Cn x

) ≤ Df (xn+m, x) – Df
(

Pf
Cn x, x

)

= Df (xn+m, x) – Df (xn, x)
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for all n ≥ . This together with (.) implies that

lim
n→∞ Df (xn+m, xn) = 

holds uniformly for all m. Therefore, we get that

lim
n→∞‖xn+m – xn‖ = 

holds uniformly for all m. Then {xn} is a Cauchy sequence, therefore there exists a point
p ∈ C such that xn → p.

Step . We show that the limit of {xn} belongs to F .
Since xn+ ∈ Cn+, we have for all  ≤ i ≤ N that

Df (xn+, ui,n) ≤ Df (xn+, yi,n) ≤ Df (xn+, xn) + ξn → 

as n → ∞. By Proposition ., we obtain that

lim
n→∞‖xn+ – yi,n‖ = , lim

n→∞‖xn+ – ui,n‖ = . (.)

From

yi,n = ∇f ∗(αn∇f (xn) + ( – αn)∇f
(

T (i)
n xn

))

,

we get

∇f (yi,n) = αn∇f (xn) + ( – αn)∇f
(

T (i)
n xn

)

,

which implies that

∇f (yi,n) – ∇f (xn) = ( – αn)
(∇f

(

T (i)
n xn

)

– ∇f (xn)
)

.

By Proposition ., we have

lim
n→∞

∥
∥∇f (yi,n) – ∇f (xn)

∥
∥ = ,

so that

lim
n→∞

∥
∥∇f

(

T (i)
n xn

)

– ∇f (xn)
∥
∥ = .

By Propositions . and ., ∇f ∗ is uniformly continuous on bounded subsets of E and
thus

lim
n→∞

∥
∥T (i)

n xn – xn
∥
∥ = .

Since {T (i)
n } is an asymptotically countable family of Bregman weak relatively nonex-

pansive mappings and xn → p, so that p ∈ ⋂∞
n= F(T (i)

n ) for each  ≤ i ≤ N . Therefore
p ∈ F =

⋂∞
n=

⋂N
i= F(T (i)

n ).
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Step . We show that the limit of {xn} belongs to EP.
We have proved that xn → p as n → ∞. Now let us show that p ∈ EP. Since ∇f

is uniformly norm-to-norm continuous on bounded subsets of E, from (.) we have
limn→∞ ‖∇f (ui,n) – ∇f (yi,n)‖ = . From lim infn→∞ rn >  it follows that

lim
n→∞

‖∇f (ui,n) – ∇f (yi,n)‖
rn

= .

By the definition of un := Krn yn, we have

G(ui,n, y) +

rn

〈

y – ui,n,∇f (ui,n) – ∇f (yi,n)
〉 ≥ , ∀y ∈ C,

where

G(ui,n, y) = F(ui,n, y) + 〈Aui,n, y – ui,n〉.

We have from (A) that


rn

〈

y – ui,n,∇f (ui,n) – ∇f (yi,n)
〉 ≥ –G(ui,n, y) ≥ G(y, ui,n), ∀y ∈ C.

Since y �→ f (x, y) + 〈Ax, y – x〉 is convex and lower semi-continuous, letting n → ∞ in the
last inequality, from (A) we have

G(y, p) ≤ , ∀y ∈ C.

For t, with  < t < , and y ∈ C, let yt = ty + ( – t)p. Since y ∈ C and p ∈ C, then yt ∈ C and
hence G(yt , p) ≤ . So, from (A) we have

 = G(yt , yt) ≤ tG(yt , y) + ( – t)G(yt , p) ≤ tG(yt , y).

Dividing by t, we have

G(yt , y) ≥ , ∀y ∈ C.

Letting t → , from (A) we can get

G(p, y) ≥ , ∀y ∈ C.

So, p ∈ EP.
Step . Finally, we prove that p = Pf

F∩EPx, from Proposition ., we have

Df
(

p, Pf
F∩EPx

)

+ Df
(

Pf
F∩EPx, x

) ≤ Df (p, x). (.)

On the other hand, since xn = Pf
Cn x and F · EP ⊂ Cn for all n, also from Proposition .,

we have

Df
(

Pf
F∩EPx, xn+

)

+ Df (xn+, x) ≤ Df
(

Pf
F∩EPx, x

)

. (.)
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By the definition of Df (x, y), we know that

lim
n→∞ Df (xn+, x) = Df (p, x). (.)

Combining (.), (.), and (.), we know that Df (p, x) = Df (Pf
F∩EPx, x). Therefore,

it follows from the uniqueness of Pf
F∩EPx that p = Pf

F∩EPx. This completes the proof. �

Definition . Let C be a nonempty, closed, and convex subset of E. Let T be a mapping
from C into itself with a nonempty fixed point set F(T). The mapping T is said to be
Lyapunov quasi-Lipschitz if there exists a constant L ≥  such that

φ(p, Tx) ≤ Lφ(p, x), ∀p ∈ F(T),∀x ∈ C.

The mapping T is said to be Lyapunov quasi-nonexpansive if

φ(p, Tx) ≤ φ(p, x), ∀p ∈ F(T),∀x ∈ C.

If we choose f (x) = 
‖x‖ for all x ∈ E, then Theorem . reduces to the following corol-

lary.

Corollary . Let E be a smooth Banach space and C be a closed convex subset of E. Let
{T (i)

n }∞n= : C → C be N uniformly closed families of countable Lyapunov quasi-Lipschitz
mappings with the condition limn→∞ L(i)

n =  for i = , , , . . . , N . Let F =
⋂∞

n=
⋂N

i= F(T (i)
n )

and F ∩ EP be nonempty. Let {xn} be a sequence of C generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ int dom f , arbitrarily,

yi,n = J–(αnJxn + ( – αn)JT (i)
n xn), i = , , , . . . , N ,

F(ui,n, y) + 〈Aui,n, y – ui,n〉 + 
rn

〈J(ui,n) – J(yi,n), y – ui,n〉 ≥ , ∀y ∈ C,

Ci,n+ = {z ∈ Cn : φ(z, ui,n) ≤ φ(z, yi,n) ≤ φ(z, xn) + ξn}, n ≥ ,

Ci, = C, Cn+ =
⋂N

i= Ci,n+,

xn = Pf
Cn x,

where

ξn = (Ln – ) sup
p∈F∩EP∩B(Pf

F∩EPx,)

φ(p, x),

B(x, ) =
{

y ∈ E : φ(y, x) ≤ 
}

,

Ln = max
{

L()
n , L()

n , L()
n , . . . , L(N)

n
}

and {αn} is a sequence satisfying lim supn→∞ αn < . Then {xn} converges to q = Pf
F∩EPx.

4 Example
Let E be a smooth Banach space and C be a nonempty closed convex and balanced subset
of E. Let {xn} be a sequence in C such that ‖xn‖ = r > , {xn} converges weakly to x �= 
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and ‖xn – xm‖ ≥ r >  for all n �= m. Define a countable family of mappings {Tn} : C → C
as follows:

Tn(x) =

⎧

⎨

⎩

n+
n xn if x = xn (∃n ≥ ),

–x if x �= xn (∀n ≥ ).

Conclusion . {Tn} has a unique common fixed point , that is, F =
⋂∞

n= F(Tn) = {} for
all n ≥ .

Proof The conclusion is obvious. �

Conclusion . {Tn} is a uniformly closed family of countable Bregman quasi-Lipschitz
mappings with the condition limn→∞ Ln = limn→∞ n+

n = .

Proof Take f (x) = ‖x‖

 , then

Df (x, y) = φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖

for all x, y ∈ C and

Df (, Tnx) = ‖Tnx‖ =

⎧

⎨

⎩

n+
n ‖xn‖ if x = xn,

‖x‖ if x �= xn.

Therefore

Df (, Tnx) ≤ n + 
n

‖x‖ =
n + 

n
Df (, x)

for all x ∈ C. On the other hand, for any strong convergent sequence {zn} ⊂ E such that
zn → z and ‖zn – Tnzn‖ →  as n → ∞, it is easy to see that there exists a sufficiently
large nature number N such that zn �= xm for any n, m > N . Then Tzn = –zn for n > N , it
follows from ‖zn – Tnzn‖ →  that zn →  and hence zn → z = . That is, z ∈ F . �

Example . Let E = l, where

l =

{

ξ = (ξ, ξ, ξ, . . . , ξn, . . .) :
∞

∑

n=

|xn| < ∞
}

,

‖ξ‖ =

( ∞
∑

n=

|ξn|
) 



, ∀ξ ∈ l,

〈ξ ,η〉 =
∞

∑

n=

ξnηn, ∀ξ = (ξ, ξ, ξ, . . . , ξn, . . .),η = (η,η,η, . . . ,ηn, . . .) ∈ l.

Let {xn} ⊂ E be a sequence defined by

x = (, , , , . . .),

x = (, , , , . . .),
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x = (, , , , , . . .),

x = (, , , , , , . . .),

. . . ,

xn = (ξn,, ξn,, ξn,, . . . , ξn,k , . . .),

. . . ,

where

ξn,k =

⎧

⎨

⎩

 if k = , n + ,

 if k �= , k �= n + 

for all n ≥ . It is well known that ‖xn‖ =
√

, ∀n ≥  and {xn} converges weakly to x.
Define a countable family of mappings Tn : E → E as follows:

Tn(x) =

⎧

⎨

⎩

n+
n xn if x = xn,

–x if x �= xn

for all n ≥ . By using Conclusions . and ., {Tn} is a uniformly closed family of count-
able Bregman quasi-Lipschitz mappings with the condition limn→∞ Ln = limn→∞ n+

n = .

Example . Let E = Lp[, ] ( < p < +∞) and

xn =  –


n , n = , , , . . . .

Define a sequence of functions in Lp[, ] by the following expression:

fn(x) =

⎧

⎪⎪⎨

⎪⎪⎩


xn+–xn

if xn ≤ x < xn++xn
 ,

–
xn+–xn

if xn++xn
 ≤ x < xn+,

 otherwise

for all n ≥ . Firstly, we can see, for any x ∈ [, ], that
∫ x


fn(t) dt →  =

∫ x


f(t) dt, (.)

where f(x) ≡ . It is well known that the above relation (.) is equivalent to {fn(x)} con-
verges weakly to f(x) in a uniformly smooth Banach space Lp[, ] ( < p < +∞). On the
other hand, for any n �= m, we have

‖fn – fm‖ =
(∫ 



∣
∣fn(x) – fm(x)

∣
∣
p dx

) 
p

=
(∫ xn+

xn

∣
∣fn(x) – fm(x)

∣
∣
p dx +

∫ xm+

xm

∣
∣fn(x) – fm(x)

∣
∣
p dx

) 
p

=
(∫ xn+

xn

∣
∣fn(x)

∣
∣
p dx +

∫ xm+

xm

∣
∣fm(x)

∣
∣
p dx

) 
p
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=
((


xn+ – xn

)p

(xn+ – xn) +
(


xm+ – xm

)p

(xm+ – xm)
) 

p

=
(

p

(xn+ – xn)p– +
p

(xm+ – xm)p–

) 
p

≥ (

p + p) 
p > .

Let

un(x) = fn(x) + , ∀n ≥ .

It is obvious that un converges weakly to u(x) ≡  and

‖un – um‖ = ‖fn – fm‖ ≥ (

p + p) 
p > , ∀n ≥ . (.)

Define a mapping T : E → E as follows:

Tn(x) =

⎧

⎨

⎩

n+
n un if x = un (∃n ≥ ),

–x if x �= un (∀n ≥ ).

Since (.) holds, by using Conclusions . and ., we know that {Tn} is a uniformly closed
family of countable Bregman quasi-Lipschitz mappings with the condition limn→∞ Ln =
limn→∞ n+

n = .

5 Application
The mapping T is said to be Bregman asymptotically quasi-nonexpansive (cf. []) if
F(T) �= ∅ and there exists a sequence {kn} ⊂ [, +∞) with limn→∞ kn =  such that

Df
(

p, Tnx
) ≤ knDf (p, x), ∀p ∈ F(T),∀x ∈ C.

Every Bregman quasi-nonexpansive mapping is Bregman asymptotically quasi-nonexpan-
sive with kn ≡ . Let Sn = Tn for all n ≥ , the above inequality becomes

Df (p, Snx) ≤ knDf (p, x), ∀p ∈ F(T),∀x ∈ C.

It is obvious that
⋂∞

n= F(Sn) =
⋂∞

n= F(Tn) = F(T).

Lemma . Assume that T is uniformly Lipschitz, that is, there exists a constant L ≥ 
such that

∥
∥Tnx – Tny

∥
∥ ≤ L‖x – y‖, ∀x, y ∈ C

for all n ≥ . Then {Sn} = {Tn} is uniformly closed.

Proof Assume ‖zn – Snzn‖ → , zn → p as n → ∞, we have ‖zn – Tnzn‖ → , therefore

∥
∥p – Tnp

∥
∥ ≤ ∥

∥p – Tnzn
∥
∥ +

∥
∥Tnzn – Tnp

∥
∥ ≤ ∥

∥p – Tnzn
∥
∥ + L‖zn – p‖ → 
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as n → ∞. On the one hand, Tnp → p, on the other hand, Tn+p → Tp, these imply that
p = Tp. Hence p ∈ ⋂∞

n= F(Sn). This completes the proof. �

Next we give an application of Theorem . to find the fixed point of Bregman asymp-
totically quasi-nonexpansive mappings.

Theorem . Let f : E → (–∞, +∞] be a Legendre function which is bounded, strongly
coercive, uniformly Fréchet differentiable, and totally convex on bounded subsets on E. Let
C be a nonempty, closed, and convex subset of int dom f . Let {Ti}N

i= : C → C be an N uni-
formly Lipschitz Bregman asymptotically quasi-nonexpansive mapping with a nonempty
common fixed point set F =

⋂N
i= F(Ti) and F ∩ EP be nonempty. Let {xn} be a sequence of

C generated by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ int dom f , arbitrarily,

yi,n = ∇f ∗(αn∇f (xn) + ( – αn)∇f (Tn
i xn)), i = , , , . . . , N ,

F(ui,n, y) + 〈Aui,n, y – ui,n〉 + 
rn

〈∇f (ui,n) – ∇f (yi,n), y – ui,n〉 ≥ , ∀y ∈ C,

Ci,n+ = {z ∈ Cn : Df (z, ui,n) ≤ Df (z, yi,n) ≤ Df (z, xn) + ξn}, n ≥ ,

Ci, = C, Cn+ =
⋂N

i= Ci,n+,

xn = Pf
Cn x,

where

ξn = (kn – ) sup
p∈F∩EP∩B(Pf

F∩EPx,)

Df (p, x),

B(x, ) =
{

y ∈ E : Df (y, x) ≤ 
}

and {αn} is a sequence satisfying lim supn→∞ αn < . Then {xn} converges to q = Pf
F∩EPx.

Proof Let Sn = Tn for all n ≥ , by using Lemma . and Theorem . we can obtain the
conclusion. �
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