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Abstract

The paper proposes a heuristic approach to modeling the cumulative distribution of citations of papers in scientific
journals by means of the Wakeby distribution. The Markov process of citation leading to the Wakeby distribution is
analyzed using the terminal time formalism. The Wakeby distribution is derived in the paper from the simple and
general inhomogeneous Choquet –Deny convolution equation for a non-probability measure. We give statistical
evidence that the Wakeby distribution is a reasonable approximation of the empirical citation distributions.
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Introduction
The number N(z) of scientific papers that has been cited
a total of z times is one of the most widely used and
strong scientometric indicators. Alternatively, one may
consider more sophisticated indicators (see, e.g., (Glänzel
and Moed 2013; Leydesdorff et al. 2011, 2013; Radicchi
and Castellano 2011;Waltman and van Eck 2013)), but we
limit ourselves here to the case in which the underlying
variables are defined as the non-negative real numbers z
and N(z). This approach has a formal defect that can be
easily recognized. As a matter of fact, z and N(z) assume
only non-negative integer values. Yet a substantial amount
of previous works on the statistical distribution of cita-
tions of scientific papers treated z and N(z) as continuous
variables in the long-time limit of the observation period,
and we pursue the same approach with this paper.
Many problems of Science are describable in terms of a

probability distribution. The distribution of citations over
papers is important in that it connects more theoretically
grounded studies with more practical problems of sci-
entometrics (DeBellis 2009; Moed 2005). Hence, there is
a great deal of literature on the distribution of citations
to papers in scientific journals. The programmatic article
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by Lotka 1926 in 1926 was the pioneer paper in scien-
tometric research and continues to be much in demand
(see, e.g., (Egghe and Rousseau 2012)). In 1957, Shockley
achieved encouraging results (Shockley 1957). Later, in
1965, de Solla Price demonstrated that the citation distri-
bution of scientific papers has strong skewness and heavy
tail 1965, and since that time, significant effort has been
invested in the study of the citation distribution. De Solla
Price explained this “skew distribution” in terms of the
cumulative advantage principle (de Solla Price 1976): the
probability that a paper will be cited grows with the num-
ber of citations it has already received. More precisely, in
terms of the probability density function f (·), the cumu-
lative advantage model predicts the following distribution
of citations of scientific papers

f (z) = B(z + m, l)
B(m, l − 1)

. (1)

Here z indicates the number of citations, B(·, ·) is the
beta function, and m, l are parameters. It is important to
note that the formula (1) is only valid for sufficiently long
times. The continuous approximation of (1) can be analyt-
ically estimated as a power-law function for some positive
number l

(z � zmin) : f (z) ∝ Cz−l, (2)

where zmin means a threshold value.
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One of the classic results of scientometrics is the deriva-
tion of a model in which the probability distribution (PD
for short) of z, in its asymptotic tail, is equivalent to
a power-law PD (2) (Haitun 1982; Yablonsky 1985). A
possible mechanism to explain the power-law distribu-
tion is a stochastic growth process in which the cita-
tion rate of a paper is defined by the total number of
received citations and the time after publication (Albert
and Barabási 2002; de Solla Price 1976; Dorogovtsev
et al. 2000; Golosovsky and Solomon 2013; Krapivsky
et al. 2000).
The other main result is the justification of the power-

law approximation of the statistical distribution of cita-
tions of scientific papers (Albarrán and Ruiz-Castillo
2011; Albarrán et al. 2011; Ausloos 2014; Brzezinski 2014;
Egghe 2007, Eom and Fortunato 2011; Peterson et al. 2010;
Radicchi and Castellano 2012; Redner 1998; Stringer et al
2010; Waltman et al. 2012; Zhao and Ye 2013). However,
the power-law distribution is possessed of a number of
characteristics limiting its application (Clauset et al. 2009;
Golosovsky and Solomon 2012; Newman 2005).
Power laws (see detail in (Clauset et al. 2009; Newman

2005; Virkar and Clauset 2005; 2014)) are widely used
to represent scientometric distributions. In reality, how-
ever, certain studies of citation distributions have used
various other functional forms to provide best approxima-
tions to as wide a variety of bibliometric data as possible
(see, e.g., (Burrell 2014; Davies 2002; Golosovsky and
Solomon 2012; Gupta et al. 2005; Laherrère and Sornette
1998; Radicchi et al. 2008; Redner 2005; Sangwal 2013;
van Raan 2001)). Nevertheless, all the same, power laws
had and still have a crucial part to play in scientometrics,
not only because they are established but also because
they are theoretically well-founded, for reasons arising
from the generalized central limit theorem (Uchaikin and
Zolotarev 2011), which has very considerable importance
in probability theory.
One of the better models for the citation distribu-

tion is the Tsallis distribution (Anastasiadis et al. 2010;
Bletsas and Sahalos 2009; Tsallis and de Albuquerque
2000; Wallace et al. 2009)

(q < 2)(λ > 0) : f (z) ∝ λ(2 − q)eq(−λz), (3)

where

eq(z) =

⎧⎪⎪⎨
⎪⎪⎩

exp(z) if q = 1,

(1 + ρz)
1
ρ if ((1 + ρz) > 0)

∧
(q �= 1)

0, otherwise
(4)

is the q-exponential. (Here we use the symbol ρ to denote
(1 − q)). The q-exponential can also be defined by the

following equation describing the (temporal) nonlinear
relaxation of a system from an unstable point:

de
dt

= −eq

with e given by eq(−t). The meaning of this statement is
quite understandable.
In turn, the Tsallis distribution (3) may be regarded as

a special case of the generalized Pareto distribution (GPD
for short) (Bermudez and Kotz 2010)

(z ≥ μ)(ξ �= 0) : f (z) = 1
σ

(
1 + ξ(z − μ)

σ

)(
− 1

ξ
−1

)
,

where μ = 0, ξ = q−1
2−q , σ = 0. We also can say that

the random variable (or, in abbreviated form, RV) Z has
a GPD if (essentially) the RV Z can be expressed as k +
φ(1−U)−δ , whereU is a standard uniform RV.We intend
to show here a specific but common heuristic model that
can be adopted to generalize the GPD.
The practice of citations evolves over time. We can

conceive of the process of citation as a way of track-
ing discrete social acts. Time lends citations direction
and meaning (see (Bouabid 2011; Burrell 2002, 2014;
Eom and Fortunato 2011; Glänzel 2007; Hsu and Huang
2011; Radicchi et al. 2012; Redner 2005; Simkin and
Roychowdhury 2012; Wang et al. 2013) for more details).
However, when we analyze bibliometric data sets, we may
interpret citations not as a series of discrete acts but rather
as a statistical regularity which can be expressed in the
language of timeindependent PDs. While the very mean-
ing of the RV Z is difficult to represent in terms of the
PD, it acquires a direct intuitive sense in terms of the
terminal time formalism, which is developed in a sys-
tematic way (a nice general reference book for Markov
processes is (Sharpe 1988)). The formal solution may
consist in making the terminal time, or the lifetime, the
main source of information of the RV Z. For a given
process of citation, the terminal time is random. To
define a realization (of the Markov process of citation)
we must describe the corresponding conditional proba-
bility W . There is a natural way to associate with the
terminal time problem the conditional probabilityW that
the Markov process of citation does not stop during
the fixed time interval, given that all phenomena, con-
nected with this process during the same time interval,
are known. It is proved (cf. (Sharpe 1988, [Chap. VII]))
that W is connected with (nonnegative and right-
continuous with respect to time) additive functionals of
the initial Markov process of citation. We recall that an
additive functional of a Markov process X is a map which
associates with each interval of time [s, t] a RV ast , where ast
depends only on the evolution of X during the time [s, t],
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and also the condition ast + atτ = asτ holds for arbitrary
t ∈[s, τ ].
The approach proposed in this paper consists in let-

ting the probabilityW play a crucial part by summarizing
enough information about social citation system. As a
rough guide, we suppose that the RV Z depends on time
through the probabilityW .
The issue addressed in this paper is the development of

a citation distribution that can be characterized in terms
of the conditional probabilityW (given the total informa-
tion concerning the performance of the process of citation
for time t) that the Markov process of citation is of a
duration longer than the time t. For the moment, we are
not concerned with the explicit time dependence of the
citations. In this paper, we assume that the RV Z is a
function

ϕ(w) := {z ∈ Z : ∃w ((w ∈ W ) ∧ (z = ϕ(w)))} , (5)

which we have yet to treat.We shall adopt an “asymptotic”
point of view. We shall only be interested in the relation
ϕ(·) : W → Z that holds betweenW and Z at large times.
The proposed approach is based on the concept of the

approximate invariance of the function (w ∈[ 0, 1] ) : w 
→
ϕ(w) by a translation of w, i.e., we claim that ϕ(w + ·) ≈
ϕ(w)ϕ(·). The considered heuristic model for the Markov
process of citation is formulated as the inhomoge-
neous Choquet –Deny convolution equation (we shall
use the abbreviated notation ICDCE) whose form is
apparently determined by the approximate translation
invariance. The solution of this equation gives the
Wakeby distribution (WD) for citations of scientific
papers. Until now, the WD has not been among the
distributions employed to model observed bibliometric
data.
The rest of this paper is organized as follows. The main

result regarding our proposed model and its analytical
solution is presented in the 2nd section. The empirical
verification is provided in the 3rd section. Finally, con-
cluding remarks are presented in the 4th section. The
Appendix 1 introduces certain necessary definitions and
reviews results that are needed in the rest of the paper.

Model of citation distribution
The model w 
→ ϕ(w) can work reasonably well in sci-
entometrics for social citation systems that are either
sufficiently “ordered” or sufficiently “disordered”. In the
limit of a large social citation system, we may at least
assume that social citation system can be decomposed
into a “structured” subsystem and a “stochastic” subsys-
tem. For sake of concreteness, let us depart from the
hypothesis that social citation system includes two types
of subsystemswhose nature is quite different. One of them

could be identified as a social network, the other as a
scientific market:

• The social network (sufficiently structured
subsystem) is a polycentric complex of interrelated
scholars.

• The scientific market (sufficiently stochastic
subsystem) contains autonomous scholars who enter
into the competition.

• The social network is characterized by structural
cohesion, while the scientific market is actually an
amorphous medium for sharing information
resources.

• The evolution of the scientific market is of a
stochastic nature.

• The social network corresponds to the notion of a
dynamic system.

• The statistical properties of the citation distribution
are partially determined by the nature of interactions
between scientific market and social network.

Employing the previous notation, the postulated heuris-
tic propositions, on the basis of which our model of the
citation distribution is constructed, are as follows:

(1) In the event horizon where the scientific market
“lives”, it can be assumed that the function ϕ(w) in
the expression (5) is invariant under translation of w

ϕ(w + ·) = ϕ(w)ϕ(·). (6)

(2) In the event horizon of the social network the
function ϕ(w) may be intuitively considered as the
positive contraction semigroup τ(w) on a real
one-dimensional Banach space generated by −β

(β ∈ R) : τ(w) = exp(−βw). (7)

(3) The social logic of the citation distribution is such
that there is a two-way influence between the
scientific market and the social network (Bourdieu
1975) . However, in the limit of long time, social
effects of the process of citation bring to screening
“long-range” interactions. As a result, the subsystems
in social citation system are almost independent and
we obtain approximate translation invariance

ϕ(w + ·) = ϕ(w)ϕ(·) + r(w), (8)

where r(w) indicates a remainder term.

In the framework of previously accepted propositions the
following statements are considered:

• The simplest and most intuitive general approach to
translate invariance is via convolution. Let Ta be the
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translation operator defined by Taϕ(w) = ϕ(w + a).
Translation invariance of the convolution (ϕ ∗ χ)

means that the convolution with a fixed function χ

commutes with Ta, i.e.,

Ta (ϕ ∗ χ) = (Taϕ) ∗ χ = ϕ ∗ (Taχ) .

It can involve explicitly the well-known
Choquet –Deny convolution equation (CDCE for
short, see (20)).

• By virtue of formula (7), whatever the precise form of
r(w) may be it will give to (8) a contribution of the
form

lim
w↑1 r(w) = O (exp(−βw)) .

This proposition corresponds to a functional equation
that can be rewritten as the ICDCE (see (21)).

The translation invariance is an important concept, so
it should be understood in a thorough manner. The prob-
ability W , of course, corresponds to terminal time, while
the RV Z occurs at random in time. Since the RV Z in
the scientific market should be independent of an arbi-
trary translation a, the constancy of termination rate of
the process of citation take place in the scientific mar-
ket. This is what we mean when we say that ϕ(w) has
the translation invariant property (6) in the scientific
market.
The motivation of the approximate translation invari-

ance is to take the relation between the scientific mar-
ket and the social network into consideration. In rough
approximation, the scientific market and the social net-
work can be considered as relatively independent. Conse-
quently, their contributions to ϕ(w) are additive. Summing
(6), and (7), we obtain (8), i.e., approximate translation
invariance. The Eq. 8 therefore expresses some kind of lin-
ear superposition of the effect of the scientific market and
the social network. This superposition is not valid in the
general case.
To find the citation distribution that we seek, we will

start off with certain well-known mathematical construc-
tions. Let (�,F , (Ft)t∈I ,P) be a filtered probability space
that satisfies the usual conditions (for details, see Chap. 1
of (Sharpe 1988)). In constructing a model of the cita-
tion distribution, we can imagine the social citation sys-
tem as a normal Markov process X = (Xt)t∈I in a
state space (S,S). Insofar as our interest in the social
citation system is confined to a few of its features, the
Markov process-based model may be relevant in explain-
ing the citation distribution. Further, we shall suppose
that the experimentally observed Markov process X̃ is

obtained from X by curtailment of its terminal time
up to ζ̃

(I � ζ̃ : � → R+)(t < ζ̃ ) : x̃(t, ω̃) = x(t,ω).

Equivalently, the process X̃ is given by a truncation of
the duration of the original process X such that the trajec-
tories of X are terminated in a random manner. One can
easily see that, for a proper choice of the filtered proba-
bility space

(
�̃, F̃ , (F̃t)t∈I , P̃

)
and the state space (S,S),

the process X̃ is a subprocess of the process X. The dura-
tion of the processes X and X̃ are denoted by ζ and ζ̃ ,
respectively, and

(∀(s, x)) : Ps,x
(
ζ̃ ≤ ζ

)
= 1.

The construction of such a subprocess is minutely
described in (Sharpe 1988 [p. 65–74]).
Under appropriate assumptions, we can represent the

Markov process X̃ using the concept of the multiplica-
tive functional of the Markov process X. This approach is
explained in detail in (Sharpe 1988, [p. 286–301]). Let us
now introduce the contracting, multiplicative functional
(s ≤ t ≤ ∞) : ms

t : I(ω) → (S,S) continuous from the
right on X. It is proved (see Theorem 4 in (Gikhman and
Skorokhod 2004, [p. 71–72])) that

(
�s

t = {ω : s, t ∈ I(ω)}) (
a.s. �s

t ,Ps,x
)
:

ms
t = P̃s,x

(
ζ̃ > t

∣∣∣ (F̃ s
)
s∈I

)
.

(9)

Let ast : I(ω) → (S,S) be an additive functional,
continuous from the right on X. The formulae ms

t =
exp(−ast), ast = − lnms

t establish a one-to-one correspon-
dence between ast and ms

t (Gikhman and Skorokhod 2004
[p. 64]). It follows in the usual way that,

(a.s. �t ,Pt) : P̃s,x
(
ζ̃ > t

∣∣∣ (F̃ s
)
s∈I

)
= exp

(−a0t
)
.

(10)

In the expression (10), of the quantity

P̃s,x
(
ζ̃ > t

∣∣∣ (F̃ s
)
s∈I

)

can be interpreted as the conditional probability W that
the trajectory x(τ ) does not terminate during the time
interval [ 0, t]. Moreover, to simplify the argument, we set

(
∀t ∈ I(ω)

)
: a0t = ϑt.

Then we immediately verify that,

P̃x
(

ζ̃ > t
∣∣∣ (Ft)t∈I

)
= exp(−ϑt), (11)
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where P̃x
(
ζ̃ > t

∣∣∣ (Ft)t∈I
)
holds for the conditional prob-

abilityW that the process of citation is of duration longer
than t:

W ≡ P̃x
(
ζ̃ > t

∣∣∣ (Ft)t∈I
)
.

We assume without essential loss of generality that under
a suitable normalization, the RV W has a standard expo-
nential distribution. With the inverse method, we have

W = − lnU. (12)

It follows from the above that the properties of the distri-
bution PZ(z) depend on w. To be thorough, we must note
that the distribution PZ(z) is defined on the probability
space (Z,B(Z),PZ). Obviously, the connections between
the Markov process X and the distribution PZ(z) may be
based on the concept of the conditional probability W . A
somewhat unrealistic, but simple, schematic idea of these
connections is given by the equality

((∀z ∈ R+) ({z : Z(z) ≤ z} ∈ B(Z)) : Z : Z → R+)
(ϕ(w) : R+ → R+) : z = ϕ(w),

(13)

where, as in Appendix 1, ϕ(w) is locally integrable (with
respect to the Lebesgue measure �). However, the func-
tion ϕ(w) is not yet completely defined. In fact, the general
problem of studying the form of ϕ(w) can be reduced
to the case in which this function satisfies certain extra
conditions. One can attempt to define ϕ(w) implicitly
by some functional equation rather than by direct defi-
nitions. In particular, the general form of ϕ(w) may be
derived uniquely from its invariance.
For the purpose of our study, based upon the denotation

introduced in Appendix 1, letμn be the n-fold convolution
of μ, and let ϕ(w) be a nontrivial positive solution of the
ICDCE (21). Observe first that from the paper of (Gu and
Lau 1984), we know that for a.a. (mod �) w ∈ R+, we
have the relation

ϕ(w) = lim
n→∞

∫
R+

ϕ(w + v) μn (dv)

+
∞∑
n=0

∫
R+

ϕ(w + v)r(w + v) μn (dv).

Suppose μ is a non-probability measure. If we take μ

without requiring
∫
R+ μ(dv) = 1 and, mutatis mutandis,

use the arguments employed by (Gu and Lau 1984), we
obtain the following expression for ϕ(w):

ϕ(w) ∝ κ1 exp(δw) + κ2 exp(−βw), (14)

where κ1 and κ2 are constants. It should bementioned that
the definition (13) allows us to write the function ϕ(w) in
an explicit form of the RV Z

Z ∝ κ1 exp(δw) + κ2 exp(−βw). (15)

This expression is the relation we were seeking between
the quantities we were interested in, Z andW . As could be
expected, the RV Z contains two parts: one corresponds to
the incident stream of citations, the other to the scattered
stream of citations.
To extract the implications of (15), it is convenient

to represent the RV W in terms of the uniform RV U.
Now, if we recall the Eq. 12, the expression (15) can be
straightforwardly rewritten as

Z ∝ κ1U−δ + κ2Uβ . (16)

The study of the relation (16) makes it possible to obtain
the PD of the RV Z. Motivated by the approximate trans-
lational invariance of z with respect to the probability w
that the process of citation does not terminate, we suggest
that thismodel is appropriate to provide a phenomenolog-
ically relevant picture of the citation distribution. Finally,
starting from the statistical considerations connected with
a common and convenient choice of distribution function
(Johnson et al 2010, [Chap. 12]), a natural modification of
the relation (16) can be written in the form

Z = υ(1 − U)−δ − θ(1 − U)β + k. (17)

The formula (17) defines the distribution, which is
called the WD (Johnson et al. 2010, [p. 44–46]). This
distribution was established by H.A. Thomas (Houghton
1978) (who lived on Wakeby pond on Cape Cod, Mas-
sachusetts) for hydrological data case studies (Griffiths
1989; Hosking andWallis 2005).We stress that the explicit
formula for the PDF of Z is not generally available.
For the sake of being definite, it would be better to

rewrite (17) using the following notation

υ = γ /δ, θ = α/β , k = ξ + θ − φ.

Suppose all parameters α, β , γ , δ, ξ are continuous.
Then, the WD becomes

Z = ξ + α

β

(
1 − (1 − U)β

)− γ

δ

(
1 − (1 − U)−δ

)
. (18)

It is readily seen that the WD has three disposable
shape parameters, one location parameter and one scale
parameter. Under the following conditions:

(α �= 0) ∨ (γ �= 0),
(β + δ > 0) ∨ (β = γ = δ = 0),

(α = 0) ⇒ (β = 0),
(γ = 0) ⇒ (δ = 0),
(γ ≥ 0) ∧ (α + β ≥ 0)
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the Eq. 18 has a unique solution on dom Z; here

dom Z =

⎧⎪⎨
⎪⎩
[ ξ ,∞) if (δ ≥ 0) ∧ (γ > 0),[

ξ , ξ + α

β
− γ

δ

]
if (δ > 0) ∨ (γ = 0).

The WD in (18), when α = 0 or γ = 0 reduces to the
GPD. The Eq. 18 is not very tractable for analysis but can
yield efficient algorithms for the numerical simulation of
the WD.
Nearly all the papers that deal with inference for the

WDare based on the theory of L-moments (Hosking 1990,
2006; Hosking and Wallis 2005). The free software sta-
tistical environment R contains functions to estimate the
parameters of the WD from the data (see, e.g., (Asquith
2011), and packages ‘lmom’, ‘lmomco’).

Illustration
To demonstrate the applicability of the proposed heuristic
model, we evaluate the goodness-of-fit of the WD to two
bibliometric datasets.

Data sets
This study is based on the citation distribution of papers
published by the American Physical Society (APS), the
American Mathematical Society (AMS), the European
Mathematical Society (EMS), and the Institute of Physics
(IOP) (see the list of journals in Appendix 2) in the years
1980—2008 and indexed in Thomson Reuters Journal
Citation Reports, Science Edition 2012. The data on cita-
tions was obtained from the Thomson Reuters Web of
Science Core Collection. The data on citations of papers
of APS, AMS and EMS were obtained in December 2013.
The data for IOP were received in April 2014. The num-
ber of citations z is counted as the total number of times a
paper appears as a reference of a more recently published
paper indexed in the Web of Science Core Collection.
Two sets of bibliometric data are tested in the study:

• The first set contains papers published by APS, AMS,
and EMS. There are 10,043,731 citations among
356,287 papers.

• The second set consists of 233,570 papers published
by IOP. This dataset includes 5,885,458 citations.

Empirical results
Best-fit PDs for both data sets were performed using the
Mathwave EasyFit 2014 data analysis software. The 63
PDs were automatically fitted to the empirical distribu-
tions of the data sets. The Kolmogorov– Smirnov test
and the Anderson –Darling test were performed to assess
goodness-of-fit, and the PDs were ranked according to the

goodness-of-fit. The values of the test statistics for the top
5 PDs are reported in Tables 1 and 2 (see also Figures 1, 2, 3
and 4).
Comparing the obtained values and goodness-of-fit

statistics given in the Tables, it will be seen that the
WD offers a greater level of accuracy than the other PDs
considered.

Discussion
We conclude that the WD is in some sense the best PD to
adequately fit the examined bibliometric data sets.
It should be clear that the proposed heuristic approach

is only a phenomenological model of the citation dis-
tribution. The Eq. 11 has not been derived yet but has
rather been injected into the model. The vector of param-
eters (α, β , γ , δ, ξ), which fixes the WD, is assumed to be
given. We can say that the formula (17) does not repro-
duce the exact citation distribution. We should rather
view the expression (17) as an approximate represen-
tation, in which the fine details of the citation distri-
bution have been rounded up for clarity. Nevertheless,
discrepancies with observation may be caused by errors
in data collection or by random influences, which will be
explained later. Also, there may be many still unknown
secondary effects that could change the shape of the
citation distribution. But it does not detract from the
consistency or the cognitive value of the mathematical
model. The proposed heuristic model of the citation dis-
tribution may be considered as a potentially useful amal-
gamation of mathematical abstraction and scientometric
intuition.

Appendixes
Appendix 1. Mathematical preliminaries to model
development
In the context of this paper we are interested in mathe-
matical formulations. Therefore, we briefly indicate here
how the function ϕ(·) can be treated mathematically.
Let μ and ν be regular Borel measures on a locally

compact Abelian groupGwith a countable basis. The con-
volution equation μ = μ ∗ ν on G was first thoroughly

Table 1 Goodness of fit— Summary for Dataset 1

Distribution Kolmogorov – Smirnov Anderson – Darling
(p = 0.00205,α = 0.1) (p = 1.9286,α = 0.1)

Statistic Rank Statistic Rank

WD 0.05036 1 785.96 1

GPD 0.05818 2 878.3 2

Gen. Extreme Value 0.0861 3 2359.3 3

Pareto 2 0.09083 4 47317.0 6

Phased Bi-Exponential 0.09143 5 53274.0 8
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Table 2 Goodness of fit— Summary for Dataset 2

Distribution Kolmogorov – Smirnov Anderson – Darling
(p = 0.00253,α = 0.1) (p = 1.9286,α = 0.1)

Statistic Rank Statistic Rank

WD 0.05845 1 655.6 1

GPD 0.07127 2 796.09 2

Gen. Extreme Value 0.09249 3 1817.5 3

Gen. Logistic 0.09848 4 2022.5 4

Phased Bi-Exponential 0.10584 5 37917.0 10

investigated by (Choquet and Deny 1960). The integral
representation of unbounded solutions was generalized by
(Deny 1959). For the sake of completeness, we introduce
the following notation:

• ψ : G → R+: the real-valued non-negative function;
• C(G,R+): the space of continuous functions from G

to R+;
• μ: the Radon measure on the Borel σ -field B(G) that

is generated by G;
• �: the Lebesgue measure;
• � : the space of all real-valued non-negative functions

ψ(·) : G → R+ such that

(∀x ∈ G) (ψ(·) ∈ C(G,R+)) : ψ(x+y) = ψ(x)ψ(y).
(19)

The space � is, by construction, a locally compact space
with the topology of uniform convergence on compact
sets. We define the subset �μ ⊂ � as follows

(∀x ∈ G) (ψ(·) ∈ C(G,R+)) :

�μ:=
{
ψ(·) : (ψ(·) ∈ �)

∧(∫
G

ψ(x) μ (dx) = 1
)}

.

From the definition, �μ is a Borel subset of � . In addi-
tion, let G itself be the smallest closed subgroup of G that
contains supp(μ).
The generalized version of the Deny’s theorem is the

following. When the real-valued non-negative continu-
ous function φ(·) : G → R+ satisfies the Choquet –Deny
convolution equation:

(∀x ∈ G) (φ(·) ∈ C(G,R+)) : φ(x) =
∫
G

φ(x + y) μ (dy),

(20)

then there exists a unique measure νφ on �μ such that

(∀x ∈ G) (φ(·) ∈ C(G,R+)) : φ(x) =
∫

�μ

ψ(x) νφ (dψ).

For an extensive discussion of the whole problem, the
reader is referred to (Lukec̆s et al. 2010, [Chap. 3]). The
CDCE (20) and its ramifications occupy a central place in
our study.
It should be noted that, according to (Deny 1959), if μ

is a probability measure, then every bounded solution of
(20) reduces to a constant.

Figure 1 Probability – Probability plot of Z for Dataset 1. Distribution: WD.
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Figure 2 Probability – Probability plot of Z for Dataset 1. Distribution: GPD.

In the case G = R+, μ is assumed to be non-arithmetic
such that μ(∅) < 1, and φ(·) is assumed to be non-
negative, real-valued and locally integrable with respect
to the � function (ignoring the trivial case of φ(·) = 0
a.e. (mod �)) such that it satisfies a.a. (mod �) to the
CDCE (20).

As a corollary of Deny’s theorem, Lau and Rao pro-
vided the following theorem, specifying the above result:
If a nontrivial solution for φ(·) exists, then it is of the
form

(a.e. (mod �) x ≥ xmin) : φ(x) = p(x) exp(cx),

Figure 3 Probability – Probability plot of Z for Dataset 2. Distribution: WD.
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Figure 4 Probability – Probability plot of Z for Dataset 2. Distribution: GPD.

where the relation

(∀u ∈ supp(μ)) : p(· + u) = p(·) > 0

is fulfilled with c such that

(c ∈ R) (a.e. (mod �) ∀x ∈ R+) :∫
R+

exp(cx) μ (dx) = 1.

The proof of this theorem can be found in (Lau and Rao
1982).
The inhomogeneous Choquet –Deny convolution

equation (ICDCE)

(a.e. (mod �) ∀x ∈ R+) :

φ(x) =
∫
R+

φ(x + y) μ (dy) + r(x),
(21)

where |r(x)| ≤ κ exp(−βx) is an “error term”, is a gener-
alization of the Eq. 20 given by Shimizu. The solutions of
the ICDCE on R+ were considered by (Shimizu 1980 )and
by (Gu and Lau 1984).

Appendix 2. List of journals
• American Physical Society

1. Physical Review A
2. Physical Review B
3. Physical Review B

4. Physical Review C
5. Physical Review D
6. Physical Review E
7. Physical Review Letters
8. Physical Review Special Topics Accelerators And

Beams
9. Physical Review Special Topics Physics Education

Research
10. Physical Review X
11. Reviews of Modern Physics

• American Mathematical Society

1. Bulletin of American Mathematical Society
2. Journal of the American Mathematical Society
3. Mathematics of Computation
4. Memoirs of the American Mathematical Society
5. Proceedings of the American Mathematical

Society
6. St. Petersburg Mathematical Journal
7. Transactions of the American Mathematical

Society

• European Mathematical Society

1. Commentarii Mathematici Helvetici
2. Groups Geometry and Dynamics
3. Interfaces and Free Boundaries
4. Journal of Noncommutative Geometry
5. Journal of the European Mathematical Society
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6. Portugaliae Mathematica
7. Rendiconti Lincei—Matematica e Applicazioni
8. Revista Matematica Iberoamericana
9. Zeitschrift für Analysis und Ihre Anwendungen

• Institute of Physics

1. Astronomical Journal
2. Astrophysical Journal
3. Astrophysical Journal Letters
4. Astrophysical Journal Supplement Series
5. Bioinspiration Biomimetics
6. Biomedical Materials
7. Chinese Physics B
8. Chinese Physics Letters
9. Classical and Quantum Gravity
10. Communications in Theoretical Physics
11. Environmental Research Letters
12. European Journal of Physics
13. Fluid Dynamics Research
14. Inverse Problems
15. Journal of Breath Research
16. Journal of Cosmology and Astroparticle Physics
17. Journal of Geophysics and Engineering
18. Journal of Instrumentation
19. Journal of Micromechanics and Microengineering
20. Journal of Neural Engineering
21. Journal of Physics AMathematical and Theoretical
22. Journal of Physics B Atomic Molecular and

Optical Physics
23. Journal of Physics: Condensed Matter
24. Journal of Physics D Applied Physics
25. Journal of Physics G Nuclear and Particle Physics
26. Journal of Radiological Protection
27. Journal of Statistical Mechanics Theory and

Experiment
28. Laser Physics
29. Laser Physics Letters
30. Measurement Science Technology
31. Metrologia
32. Modelling and Simulation in Materials Science

and Engineering
33. Nanotechnology
34. New Journal of Physics
35. Nonlinearity
36. Physica Scripta
37. Physical Biology
38. Physics in Medicine and Biology
39. Physics World
40. Physiological Measurement
41. Plasma Physics and Controlled Fusion
42. Plasma Science Technology
43. Plasma Sources Science Technology
44. Reports on Progress in Physics

45. Semiconductor Science and Technology
46. Smart Materials and Structures
47. Smart Materials Structures
48. Superconductor Science Technology

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have made the following declarations about their contributions:
YLK conceived and designed the study, and wrote the article; YVM carried out
review of literature, collected the data sets and analyzed the data. All authors
read and approved the final manuscript.

Acknowledgements
The financial support from the Government of the Russian Federation within
the framework of the Basic Research Program at the National Research
University Higher School of Economics and within the framework of
implementation of the 5-100 Programme Roadmap of the National Research
University Higher School of Economics is acknowledged.

Author details
1National Research University Higher School of Economics, 20 Myasnitskaya
Ulitsa, 101000 Moscow, Russian Federation. 2Institute of Sociology, Russian
Academy of Sciences, 24/35 b.5 Krzhizhanovskogo Ulitsa, 117218 Moscow,
Russian Federation.

Received: 12 November 2014 Accepted: 14 January 2015

References
Albarrán P, Ruiz-Castillo J (2011) References made and citations received by

scientific articles. J Am Soc Inform Sci Technol 62(1):40–49.
doi:10.1002/asi.21448

Albarrán P, Crespo JA, Ortuño I, Ruiz-Castillo J (2011) The skewness of science
in 219 sub-fields and a number of aggregates. Scientometrics
88(2):385–397. doi:10.1007/s11192-011-0407-9

Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev
Modern Phys 74:47–97. doi:10.1103/RevModPhys.74.47

Anastasiadis AD, de Albuquerque MP, de Albuquerque MP, Mussi DB (2010)
Tsallis q-exponential describes the distribution of scientific citations – a
new characterization of the impact. Scientometrics 83(1):205–218.
doi:10.1007/s11192-009-0023-0

Asquith W (2011) Distributional Analysis with L-moment Statistics Using the R
Environment for Statistical Computing. CreateSpace Independent
Publishing Platform, US

Ausloos M (2014) Zipf – Mandelbrot– Pareto model for co-authorship
popularity. Scientometrics:1–22. doi:10.1007/s11192-014-1302-y

Bermudez PZD, Kotz S (2010) Parameter estimation of the generalized Pareto
distribution – Part I. J Stat Plann Inference 140(6):1353–1373.
doi:10.1016/j.jspi.2008.11.019

Bletsas A, Sahalos JN (2009) Hirsch index rankings require scaling and higher
moment. J Am Soc Inform Sci Technol 60(12):2577–2586.
doi:10.1002/asi.21197

Bouabid H (2011) Revisiting citation aging: a model for citation distribution
and life-cycle prediction. Scientometrics 88(1):199–211.
doi:10.1007/s11192-011-0370-5

Bourdieu P (1975) The specificity of the scientific field and the social
conditions of the progress of reason. Soc Sci Inform 14(6):19–47.
doi:10.1177/053901847501400602

Brzezinski M (2014) Power laws in citation distributions: Evidence from Scopus.
CoRR abs/1402.3890.1402.3890

Burrell QL (2002) The nth-citation distribution and obsolescence.
Scientometrics 53:309–323. doi:10.1023/a:1014816911511

Burrell QL (2014) The individual author’s publication – citation process: theory
and practice. Scientometrics 98(1):725–742.
doi:10.1007/s11192-013-1018-4



Katchanov and Markova SpringerPlus  (2015) 4:94 Page 11 of 12

Choquet G, Deny J (1960) Sur l’équation de convolution μ = μ ∗ σ . Comptes
Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris
250:799–801

Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical
data. SIAM Rev 51(4):661–703. doi:10.1137/070710111

Davies JA (2002) The individual success of musicians, like that of physicists,
follows a stretched exponential distribution. Eur Phys J B— Condens
Matter Complex Syst 27(4):445–447. doi:10.1140/epjb/e2002-00176-y

Deny J (1959) Sur l’équation de convolution μ = μ ∗ σ . Séminaire
Brelot – Choquet – Deny. Théorie du potentiel 4:1–11

De Bellis N (2009) Bibliometrics and Citation Analysis: From the Science
Citation Index to Cybermetrics. Scarecrow Press, Lanham, Md; Toronto;
Plymouth, UK

de Solla Price DJ (1965) Networks of scientific papers. Science
149(3683):510–515. doi:10.1126/science.149.3683.510

de Solla Price DJ (1976) A general theory of bibliometric and other cumulative
advantage processes. J Am Soc Inform Sci 27(5):292–306.
doi:10.1002/asi.4630270505

Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing
networks with preferential linking. Phys Rev Lett 85:4633–4636.
doi:10.1103/PhysRevLett.85.4633

Egghe L (2007) Power Laws in the Information Production Process: Lotkaian
Informetrics. 2nd edn. Elsevier/Academic Press, Amsterdam; New York

Egghe L, Rousseau R (2012) Theory and practice of the shifted Lotka function.
Scientometrics 91(1):295–301. doi:10.1007/s11192-011-0539-y

Eom Y-H, Fortunato S (2011) Characterizing and modeling citation dynamics.
PLoS ONE 6(9):24926. doi:10.1371/journal.pone.0024926

Gikhman II, Skorokhod AV (2004) The Theory of Stochastic Processes: II.
Springer Berlin, Heidelberg; New York

Glänzel W (2007) Characteristic scores and scales: A bibliometric analysis of
subject characteristics based on long-term citation observation.
J Informetrics 1(1):92–102. doi:10.1016/j.joi.2006.10.001

Glänzel W, Moed HF (2013) Opinion paper: Thoughts and facts on bibliometric
indicators. Scientometrics 96(1):381–394. doi:10.1007/s11192-012-0898-z

Golosovsky M, Solomon S (2012) Runaway events dominate the heavy tail of
citation distributions. Eur Phys J Spec Topics 205(1):303–311.
doi:10.1140/epjst/e2012-01576-4

Golosovsky M, Solomon S (2013) The transition towards immortality:
Non-linear autocatalytic growth of citations to scientific papers. J Stat Phys
151(1-2):340–354. doi:10.1007/s10955-013-0714-z

Griffiths GA (1989) A theoretically based Wakeby distribution for annual flood
series. Hydrological Sci J 34(3):231–248. doi:10.1080/02626668909491332

Gu H-M, Lau K-S (1984) Integrated Cauchy functional equation with an error
term and the exponential law. Sankhyā, Ind J Stat Ser A (1961–2002)
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