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Abstract
The purpose of this paper is to present a new class of probabilistic normed spaces and
to study fixed point problems in this class of probabilistic normed spaces. This paper
includes the following two contents: (1) The definition of a new class of probabilistic
normed spaces, the so-called S-probabilistic normed spaces, is given. In order to
study the fixed point problems, some relevant properties of S-probabilistic normed
spaces are discussed and some basic useful results are obtained; (2) The notion of
probabilistic weak convergence is firstly presented in this paper. Therefore the
probabilistic weak and strong convergence theorems of fixed points for nonexpansive
mappings, asymptotically nonexpansive mappings and strongly pseudocontractive
mappings are also proved by using the new methods and techniques.
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1 Introduction and preliminaries
Probabilistic metric spaces were introduced in  by Menger []. In such spaces, the no-
tion of distance between two points x and y is replaced by a distribution function Fx,y(t).
Thus one thinks of the distance between points as being probabilistic with Fx,y(t) repre-
senting the probability that the distance between x and y is less than t. Sehgal, in his PhD
thesis [], extended the notion of a contraction mapping to the setting of Menger proba-
bilistic metric spaces. For example, a mapping T is a probabilistic contraction if T is such
that for some constant  < k < , the probability that the distance between image points
Tx and Ty is less than kt is at least as large as the probability that the distance between x
and y is less than t. Probabilistic normed spaces were introduced by Šerstnev in a series
of papers [–]. Then a new definition was proposed by Alsina, Schweizer and Sklar [].
This new definition revived the study of probabilistic normed spaces. The properties of
these spaces were studied by several authors; here we shall mention [–], but see also
the survey papers [, ].

Next we shall recall some well-known concepts and definitions which will be used later
in this paper. For more details, we refer the reader to [].
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Definition . A triangular norm (shorter �-norm) is a binary operation � on [, ]
which satisfies the following conditions:

(a) � is associative and commutative;
(b) � is continuous;
(c) �(a, ) = a for all a ∈ [, ];
(d) �(a, b) ≤ �(c, d) whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [, ].
The following are the three basic �-norms:

�(a, b) = max(a + b – , );

�(a, b) = a · b;

�(a, b) = min(a, b).

It is easy to check that the above three �-norms have the following relations:

�(a, b) ≤ �(a, b) ≤ �(a, b)

for any a, b ∈ [, ].

Definition . A function F(t) : (–∞, +∞) → [, ] is called a distribution function if it
is nondecreasing, left-continuous and limt→–∞ F(t) = . In addition, if F() = , then F is
called a distance distribution function.

Definition . A distance distribution function F satisfying limt→+∞ F(t) =  is called a
Menger distance distribution function. The set of all Menger distance distribution func-
tions is denoted by D+. A special Menger distance distribution function is given by

H(t) =

⎧
⎨

⎩

, t ≤ ,

, t > .

Definition . A probabilistic metric space is a pair (E, F), where E is a nonempty set, F is
a mapping from E × E into D+ such that if Fx,y denotes the value of F at the pair (x, y), the
following conditions hold:

(PM-) Fx,y(t) = H(t) if and only if x = y;
(PM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(PM-) Fx,z(t) = , Fz,y(s) =  implies Fx,y(t + s) =  for all x, y, z ∈ E and –∞ < t, s < +∞.

Definition . A Menger probabilistic metric space is a triple (E, F ,�), where E is a
nonempty set, � is a continuous t-norm and F is a mapping from E × E into D+ such
that, if Fx,y denotes the value of F at the pair (x, y), the following conditions hold:

(MPM-) Fx,y(t) = H(t) if and only if x = y;
(MPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(MPM-) Fx,y(t + s) ≥ �(Fx,z(t), Fz,y(s)) for all x, y, z ∈ E and t > , s > .

In  [], Su and Zhang gave a new definition of probabilistic metric space, the
so-called S-probabilistic metric space. In this definition, the triangle inequality has been
changed to a new form.
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Definition . ([]) An S-probabilistic metric space is a pair (E, F), where E is a
nonempty set, F is a mapping from E × E into D+ such that, if Fx,y denotes the value
of F at the pair (x, y), the following conditions hold:

(SPM-) Fx,y(t) = H(t) if and only if x = y;
(SPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(SPM-) Fx,y(t) ≥ Fx,z(t) ∗ Fz,y(t), ∀x, y, z ∈ E, where Fx,z(t) ∗ Fz,y(t) is the convolution

between Fx,z(t) and Fz,y(t) defined by

Fx,z(t) ∗ Fz,y(t) =
∫ +∞


Fx,z(t – u) dFz,y(u).

Example . ([]) Let E be a nonempty set, S be a measurable space which consists of
some metrics on E, (�, P) be a complete probabilistic measure space and f : � → S be a
measurable mapping. It is easy to think that S is a random metric on E, of course, (E, S) is
a random metric space. The following expression of distribution functions Fx,y(t), Fx,z(t)
and Fz,y(t) is reasonable:

Fx,y(t) = P
{

f –{d ∈ S; d(x, y) < t
}}

,

and

Fx,z(t) = P
{

f –{d ∈ S; d(x, z) < t
}}

,

and

Fz,y(t) = P
{

f –{d ∈ S; d(z, y) < t
}}

for all x, y, z ∈ E. Since

P
{

f –{d ∈ S; d(x, y) < t
}} ≥ P

{
f –{d ∈ S; d(x, z) + d(z, y) < t

}}

and it follows from probabilistic theory that

P
{

f –{d ∈ S; d(x, z) + d(z, y) < t
}}

= Fx,z(t) ∗ Fz,y(t).

Therefore

Fx,y(t) ≥ Fx,z(t) ∗ Fz,y(t), ∀x, y, z ∈ E.

In addition, the conditions (SPM-), (SPM-) are obvious.

Definition . ([]) A probabilistic normed space is a pair (E, F), where E is a linear space,
F is a mapping from E into D+ such that, if Fx denotes the value of F at the pair x, the
following conditions hold:

(PN-) Fx(t) = H(t) if and only if x = θ ;
(PN-) Fλx(t) = Fx( t

|λ| ) for all x ∈ E and t ∈ (–∞, +∞), λ 
= ;
(PN-) Fx(t) = , Fy(s) =  implies Fx+y(t + s) =  for all x, y ∈ E.
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Definition . ([]) A Menger probabilistic normed space is a triple (E, F ,�), where E is
a linear space, � is a continuous t-norm and F is a mapping from E into D+ such that, if
Fx denotes the value of F at the point x, the following conditions hold:

(MPN-) Fx(t) = H(t) if and only if x = θ ;
(MPN-) Fλx(t) = Fx( t

|λ| ) for all x ∈ E and t ∈ (–∞, +∞), λ 
= ;
(MPN-) Fx+y(t + s) ≥ �(Fx(t), Fy(s)) for all x, y ∈ E and t > , s > .

Inspired by reference [], in this paper, we shall give a new definition of probabilistic
normed space, the so-called S-probabilistic normed space. In this definition, the triangle
inequality has been changed to a new form. We shall also give an example of S-probabilistic
normed space.

Definition . An S-probabilistic normed space is a pair (E, F), where E is a linear space
and F is a mapping from E into D+ such that, if Fx denotes the value of F at the point x,
the following conditions hold:

(SPN-) Fx(t) = H(t) if and only if x = θ ;
(SPN-) Fλx(t) = Fx( t

|λ| ) for all x ∈ E and t ∈ (–∞, +∞), λ 
= ;
(SPM-) Fx+y(t) ≥ Fx(t) ∗ Fy(t), ∀x, y ∈ E, where Fx(t) ∗ Fy(t) is the convolution between

Fx(t) and Fy(t) defined by

Fx(t) ∗ Fy(t) =
∫ +∞


Fx(t – u) dFy(u).

Example . Let E be a linear space, S be a measurable space which consists of some
norms on E, (�, P) be a complete probabilistic measure space and f : � → S be a mea-
surable mapping. It is easy to think that S is a random metric on E, of course, (E, S) is a
random normed space. The following expression of distribution functions Fx(t) and Fy(t)
is reasonable:

Fx(t) = P
{

f –{‖ · ‖ ∈ S;‖x‖ < t
}}

,

and

Fy(t) = P
{

f –{‖ · ‖ ∈ S;‖y‖ < t
}}

for all x, y ∈ E. Since

P
{

f –{‖ · ‖ ∈ S;‖x + y‖ < t
}} ≥ P

{
f –{‖ · ‖ ∈ S;‖x‖ + ‖y‖ < t

}}
,

and it follows from probabilistic theory that

P
{

f –{‖ · ‖ ∈ S;‖x‖ + ‖y‖ < t
}}

= Fx(t) ∗ Fy(t).

Therefore

Fx+y(t) ≥ Fx(t) ∗ Fy(t), ∀x, y ∈ E.

In addition, the conditions (SPN-), (SPN-) are obvious.
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Definition . ([]) Let (E, F) be a probabilistic normed space.
() A sequence {xn} in E is said to converge to x ∈ E if for any given ε >  and λ > ,

there must exist a positive integer N = N(ε,λ) such that Fxn–x(ε) >  – λ whenever
n > N .

() A sequence {xn} in E is called a Cauchy sequence if for any ε >  and λ > , there
must exist a positive integer N = N(ε,λ) such that Fxn–xm (ε) >  – λ, whenever
n, m > N .

() (E, F ,�) is said to be complete if each Cauchy sequence in E converges to some
point in E.

The purpose of this paper is to present a new class of probabilistic normed spaces and
to study fixed point problems in this class of probabilistic normed spaces. This paper in-
cludes the following two contents: () The definition of a new class of probabilistic normed
spaces, the so-called S-probabilistic normed spaces, is given. In order to study the fixed
point problems, some relevant properties of S-probabilistic normed spaces are discussed
and some basic useful results are obtained; () The notion of probabilistic weak conver-
gence is firstly presented in this paper. Therefore the probabilistic weak and strong con-
vergence theorems of fixed points for nonexpansive mappings, asymptotically nonexpan-
sive mappings and strongly pseudocontractive mappings are also proved by using the new
methods and techniques.

2 Basic properties of S-probabilistic normed spaces
Let (E, F) be an S-probabilistic normed space. For any x ∈ E, we define

‖x‖F =
∫ +∞


t dFx(t).

Since t is a continuous function and Fx(t) is a bounded variation function, so the above
integral is well defined. In fact, the above integral is just the mathematical expectation of
Fx(t). Throughout this paper we assume that

‖x‖F =
∫ +∞


t dFx(t) < +∞, ∀x ∈ E,

for all probabilistic normed spaces (E, F) presented in this paper.
Next we give the following basic notations of average convergence. Let (E, F) be an S-

probabilistic normed space:
() A sequence {xn} in E is said to converge averagely to x ∈ E if

lim
n→∞

∫ +∞


t dFxn–x(t) = .

() A sequence {xn} in E is called an average Cauchy sequence if

lim
n,m→∞

∫ +∞


t dFxn–xm (t) = .

() (E, F) is said to be average complete if each average Cauchy sequence in E converges
averagely to some point in E.
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We denote by xn → x that {xn} converges to x. It is easy to see that xn → x if and only
if limn→∞ Fxn–x(t) = H(t) for any given t ≥ . We denote by xn ⇒ x that {xn} converges
averagely to x.

Theorem . Let (E, F) be an S-probabilistic normed space. For any x ∈ E, we define

‖x‖F =
∫ +∞


t dFx(t), ∀x ∈ E.

Then ‖ · ‖N is a norm on E.

Proof Since Fx(t) = H(t) (∀t ≥ ), if and only if x = θ , and

∫ +∞


t dH(t) = ,

we know the condition ‖x‖F =  ⇔ x = y holds. For any real number λ, if λ 
= , we have

‖λx‖F =
∫ +∞


t dFλx(t)

=
∫ +∞


t dFx

(
t

|λ|
)

= |λ|
∫ +∞



t
|λ| dFx

(
t

|λ|
)

= |λ|‖x‖F ,

if λ = , the equality ‖λx‖F = |λ|‖x‖F is obvious. Next we will prove the triangle inequality.
For any x, y ∈ E, from (SFN-) we have

Fx+y(t) ≥
∫ t


Fx(t – u) dFy(u).

By using the property of convolution (integer property), we know

∫ +∞


t dFx+y(t) ≤

∫ +∞


t dFx(t) +

∫ +∞


t dFy(t),

which implies

‖x + y‖F ≤ ‖x‖F + ‖y‖F .

This completes the proof. �

Definition . A b-normed space is a pair (E,‖ · ‖), where E is a linear space, ‖ · ‖ : E →
R+ = [, +∞) is a real function and b ≥  is a constant, the following conditions hold:

(BN-) ‖x‖ =  ⇔ x = θ ;
(BN-) ‖λx‖ = |λ|‖x‖ for all x ∈ E, λ ∈ (–∞, +∞);
(BN-) ‖x + y‖ ≤ b‖x‖ + b‖y‖ for all x, y ∈ E.
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Theorem . Let (E, B,�) be a Menger probabilistic normed space. For any x ∈ E, we
define

‖x‖B =
∫ +∞


t dFx(t).

Then ‖ · ‖B is a b-norm with b =  on E.

Proof The conditions (BN-) and (BN-) are obvious. We only need to prove the general
triangle inequality (BN-)

‖x + y‖B ≤ ‖x‖B + ‖y‖B, ∀x, y ∈ E.

In fact,

‖x + y‖B =
∫ +∞


t dFx+y(t)

=
∫ +∞


t d max

{

Fx

(
t


)

+ Fy

(
t


)

– , 
)

=
∫ +∞


t d

(

Fx

(
t


)

+ Fy

(
t


))

=
∫ +∞


t dFx

(
t


)

+
∫ +∞


t dFy

(
t


)

= 
∫ +∞



t


dFx

(
t


)

+ 
∫ +∞



t


dFy

(
t


)

= ‖x‖B + ‖y‖B.

This completes the proof. �

Definition . Let (E, F) be an S-probabilistic normed space. Let f be a real linear func-
tional defined on E, if xn → x implies f (xn) → f (x), f is said to be a continuous linear
functional. Let E∗ denote the set of all linear continuous functionals defined on E. E∗ is
called the first-type conjugate space of E. If xn ⇒ x implies f (xn) → f (x), f is said to be an
average continuous linear functional. Let E∗ denote the set of all linear average continu-
ous functionals defined on E. E∗ is called the second-type conjugate space of E.

Theorem . E∗ ⊂ E∗ .

Proof We need only to prove that xn ⇒ x implies xn → x as n → ∞. If not,

‖xn – x‖B =
∫ +∞


t dFxn–x(t) → 

as n → ∞, but

lim
n→∞ Fxn–x(t) = H(t)
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is not right. Then there exist numbers t > ,  < λ <  and a subsequence {nk} of {n} such
that Fxnk –x(t) ≤ λ for all k ≥ . In this case, we have

‖xnk – x‖B =
∫ +∞


t dFxnk –x(t)

=
∫ t


t dFxnk –x(t) +

∫ +∞

t

t dFxnk –x(t)

≥
∫ +∞

t

t dFxnk –x(t) ≥ t
(
 – Fxnk –x(t)

)

≥ t( – λ) > .

This is a contradiction. This completes the proof. �

Definition . Let (E, F) be an S-probabilistic normed space. A sequence {xn} ⊂ E is said
to probabilistically converge weakly to an element x if limn→∞ f (xn) = f (x) for any f ∈ E∗ .

3 Weak and strong convergence theorems for some nonlinear mappings in
S-probabilistic spaces

Theorem . Let (E, F) be an S-probabilistic normed (Banach) space. Then (E,‖ · ‖F ) is
an inner product (Hilbert) space if and only if

∫ +∞


t d

(
Fx(t) + Fy(t) – Fx+y – Fx–y(t)

)
=  (.)

for all x, y ∈ E.

Proof Condition (.) can be rewritten to


∫ +∞


t dFx(t) + 

∫ +∞


t dFx(t) =

∫ +∞


t dFx+y(t) +

∫ +∞


t dFx–y(t). (.)

By using the probabilistic theory, we know that (.) is equivalent to


(∫ +∞


t dFx(t)

)

+ 
(∫ +∞


t dFx(t)

)

=
(∫ +∞


t dFx+y(t)

)

+
(∫ +∞


t dFx–y(t)

)

.

Therefore condition (.) is equivalent to

‖x‖
F + ‖y‖

F = ‖x + y‖
F + ‖x – y‖

F . (.)

It is well known that (.) is called the parallelogram condition for the inner product space,
so that the conclusion of Theorem . is right. The proof is complete. �

Theorem . Let (E, F) be an S-probabilistic normed (Banach) space which satisfies con-
dition (.). Then

〈x, y〉 =



∫ +∞


t d

(
Fx+y(t) – Fx–y(t)

)
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for all x, y ∈ E is an inner product and

‖x‖F =
√〈x, x〉

for all x ∈ E.

Proof By using Theorem ., we know if condition (.) holds, then (E,‖ · ‖F ) satisfies the
parallelogram condition (.). In this case, we know that

〈x, y〉 =



(‖x + y‖
F – ‖x – y‖

F
)

(.)

for all x, y ∈ E is an inner product. On the other hand, (.) can be rewritten to

〈x, y〉 =



((∫ +∞


t dFx+y(t)

)

–
(∫ +∞


t dFx–y(t)

))

for all x, y ∈ E. By using the probabilistic theory, we know that

(∫ +∞


t dFx+y(t)

)

–
(∫ +∞


t dFx–y(t)

)

=
∫ +∞


t dFx+y(t) –

∫ +∞


t dFx–y(t).

This implies that

(∫ +∞


t dFx+y(t)

)

–
(∫ +∞


t dFx–y(t)

)

=
∫ +∞


t d

(
Fx+y(t) – Fx–y(t)

)
.

Therefore

〈x, y〉 =



∫ +∞


t d

(
Fx+y(t) – Fx–y(t)

)

for all x, y ∈ E is an inner product. From (.), the second conclusion is obvious. The proof
is complete. �

Definition . Let (E, F) be a probabilistic normed space. A mapping T : E → E is said to
be Lipschitz if there exists a constant L ≥  such that

FTx–Ty(t) ≥ Fx–y

(
t
L

)

, ∀t ∈ (–∞, +∞)

for all x, y ∈ E, if L = , the mapping T is said to be nonexpansive.

Theorem . Let (E, F) be a probabilistic Banach space with condition (.), T : E → E
be a nonexpansive mapping with nonempty fixed point set F(T). For any guess x ∈ E, the
Mann iterative sequence {xn} is defined by

xn+ = ( – αn)xn + αnTxn,
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where {αn} is a real number sequence which was assumed to satisfy the condition

∞∑

n=

αn( – αn) = ∞.

Then {xn} probabilistically converges weakly to a fixed point of T .

Proof From Definition ., we have

‖Tx – Ty‖F =
∫ +∞

–∞
t dFTx–Ty(t)

≤
∫ +∞

–∞
t dFx–y(t) = ‖x – y‖F , ∀x, y ∈ E,

so that T is also a nonexpansive mapping in the framework of Banach space (E,‖ · ‖F ).
Therefore, by using Mann’s result [], we know that {xn} converges weakly to a fixed point
x∗ of T . That is, for any f ∈ (E,‖ · ‖F )∗, we have

lim
n→∞ f (xn) = f

(
x∗).

By using Theorem ., we know that (E, F)∗ ⊆ (E,‖ · ‖F )∗, so for any f ∈ (E, F)∗, we have
also that

lim
n→∞ f (xn) = f

(
x∗).

That is, the Mann iterative sequence {xn} probabilistically converges weakly to x∗. The
proof is complete. �

In , Xu proved the following strong convergence theorem for nonexpansive map-
pings in a uniformly smooth Banach space.

Theorem . ([]) Let (E, F) be a uniformly smooth Banach space, C be a closed convex
subset of E and T : C → C be a nonexpansive mapping with nonempty fixed point set and
f : C → C be a contraction. Assume that the sequence {αn} ⊂ [, ] satisfies the following
conditions:

() limn→∞ αn = ;
()

∑∞
n= αn = +∞;

() either limn→∞ αn+
αn

=  or
∑∞

n= |αn+ – αn| = +∞.
For any guess x ∈ E, the iterative sequence {xn} generated by

xn+ = +αnf (xn) + ( – αn)Txn

converges strongly to a fixed point of T .

By using Theorem . and an ingenious method, we can prove the following convergence
theorem for nonexpansive mappings in the framework of probabilistic Banach space.



Xu et al. Fixed Point Theory and Applications  (2015) 2015:155 Page 11 of 17

Theorem . Let (E, F) be a probabilistic Banach space with condition (.), T : E → E be
a nonexpansive mapping with nonempty fixed point set F(T) and f : C → C be a contrac-
tion. Assume that the sequence {αn} ⊂ [, ] satisfies the following conditions:

() limn→∞ αn = ;
()

∑∞
n= αn = +∞;

() either limn→∞ αn+
αn

=  or
∑∞

n= |αn+ – αn| = +∞.
For any guess x ∈ E, the iterative sequence {xn} generated by

xn+ = +αnf (xn) + ( – αn)Txn

probabilistically converges to a fixed point of T .

Proof By the same reasoning as in Theorem ., we know that the mapping T : E → E is
also a nonexpansive mapping in the framework of Banach space (E,‖ · ‖F ). Condition (.)
implies that (E,‖·‖F ) is a Hilbert space, so the conditions of Theorem . were satisfied. By
using Theorem ., we know that the iterative sequence {xn} converges in norm ‖ · ‖F to a
fixed point x∗ of T . That is, xn ⇒ x∗, which implies xn → x∗ (see the proof of Theorem .).
The proof is complete. �

Definition . Let (E, F) be a probabilistic normed space. A mapping T : E → E is said to
be probabilistic asymptotically nonexpansive if

FTnx–Tny(t) ≥ Fx–y

(
t

kn

)

, ∀t ∈ (–∞, +∞)

for all x, y ∈ E and all positive integers n, where kn ∈ [, +∞) and limn→∞ kn = .

In , Osilike and Aniagbosor proved the following weak convergence theorem for
asymptotically nonexpansive mappings in the framework of uniformly convex Banach
space with Opial’s condition.

Theorem . ([]) Let E be a uniformly convex Banach space satisfying Opial’s condition,
and let K be a nonempty closed convex subset of E. Let T : K → K be an asymptotically
nonexpansive mapping with F(T) 
= ∅ and a sequence {kn} ⊂ [, +∞) such that lim kn = 
and

∑∞
n=(kn – ) < +∞. Let {un} and {vn} be bounded sequences in K , and let {an}, {bn},

{cn}, {αn}, {βn}, {γn} be real sequences in [, ) satisfying the conditions:
() an + bn + cn = αn + βn + γn = , ∀n ≥ ;
()  < a ≤ βn ≤ b < , ∀n ≥ ;
() limn→∞ βn = ;
()

∑∞
n= cn < +∞,

∑∞
n= γn < +∞.

Then the sequence generated from an arbitrary x ∈ K by

yn = anxn + bnTnxn + cnun,

xn+ = αnxn + βnTnyn + cnvn,

converges weakly to some fixed point of T .
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By using Theorem . and an ingenious method as in Theorem ., we can prove the fol-
lowing probabilistic weak convergence theorem for nonexpansive mappings in the frame-
work of probabilistic Banach space.

Theorem . Let (E, F) be a probabilistic Banach space with condition (.). Let T : E → E
be an asymptotically nonexpansive mapping with F(T) 
= ∅ and a sequence {kn} ⊂ [, +∞)
such that lim kn =  and

∑∞
n=(kn – ) < +∞. Let {un} and {vn} be bounded sequences in K ,

and let {an}, {bn}, {cn}, {αn}, {βn}, {γn} be real sequences in [, ) satisfying the conditions:
() an + bn + cn = αn + βn + γn = , ∀n ≥ ;
()  < a ≤ βn ≤ b < , ∀n ≥ ;
() limn→∞ βn = ;
()

∑∞
n= cn < +∞,

∑∞
n= γn < +∞.

Then the sequence generated from an arbitrary x ∈ K by

yn = anxn + bnTnxn + cnun,

xn+ = αnxn + βnTnyn + cnvn,

probabilistically converges weakly to some fixed point of T .

Proof Condition (.) implies that (E,‖ · ‖F ) is a Hilbert space. Since T : E → E is proba-
bilistic asymptotically nonexpansive, from Definition . we have

∫ +∞


t dFTnx–Tny(t) ≤

∫ +∞


t dFx–y

(
t

kn

)

for all x, y ∈ E and all positive integers n, where kn ∈ [, +∞) and limn→∞ kn = . This im-
plies that

∥
∥Tnx – Tny

∥
∥

F ≤ kn‖x – y‖F

for all x, y ∈ E and all positive integers n, where kn ∈ [, +∞) and limn→∞ kn = . Then T
is an asymptotically nonexpansive mapping from a Hilbert space (E,‖ · ‖F ) into itself. By
using Theorem ., we know that the iterative sequence {xn} converges weakly to some
fixed point x∗ of T . That is, for any f ∈ (E,‖ · ‖F )∗, we have limn→∞ f (xn) = f (x∗). By using
Theorem ., we know that (E, F)∗ ⊂ (E,‖ · ‖F )∗; therefore, for any f ∈ (E, F)∗, we have
limn→∞ f (xn) = f (x∗). Then {xn} probabilistically converges weakly to some fixed point
of T . The proof is complete. �

Let E be a real Banach space and let J denote the normalized duality mapping from E
into E∗ given by

J(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖f ‖ = ‖x‖}, x ∈ E.

Recall that a mapping T with domain D(T) and range R(T) in a Banach space is said to
be pseudocontractive if there exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖, ∀x, y ∈ D(T).
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Recall that a mapping with domain D(T) and range R(T) in a Banach space is said to be
strongly pseudocontractive (k-strongly pseudocontractive) if there exists j(x – y) ∈ J(x – y)
such that

〈
Tx – Ty, j(x – y)

〉 ≤ k‖x – y‖, ∀x, y ∈ D(T),

where k ∈ (, ) is a constant. In a Hilbert space, the above inequality can be written as

〈Tx – Ty, x – y〉 ≤ k‖x – y‖, ∀x, y ∈ D(T).

In , Deimling [] proved the following fixed point theorem.

Theorem . Let E be a real Banach space, K be a nonempty closed convex subset of E,
and T : K → K be a continuous strongly pseudocontractive mapping. Then T has a unique
fixed point in K .

Lemma . Let E be a real Hilbert space, K be a nonempty closed convex subset of E,
and T : K → K be an L-Lipschitz k-strongly pseudocontractive mapping with Lipschitz
constant L ≥ . Then T has a unique fixed point x∗ in K and for any given x ∈ K , the
iterative sequence

xn+ = ( – μn)xn + μnTxn (.)

converges strongly to x∗, where {μn} ⊂ (, ) is a sequence of real numbers which satisfies
the following condition:

 < μn < μ <
 – k

L +  – k
, ∀n ≥ , (.)

for some constant μ.

Proof From condition (.), we have

 < μ <
 – k

L +  – k

⇔ μ
(
 + L – k

)
<  – k

⇔ μ
(
 + L – k

)
+ k < 

⇔ μ
(
 + L) + k – μk < 

⇔ μ
(
 + L) + k – μk –  < 

⇔ μ + μL + k – μk –  < 

⇔ μ + μL + μk – μk – μ < 

⇔  + μ + μL + μk – μk – μ < 

⇔ ( – μ) + μL + μ( – μ)k < . (.)
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Let Tμ = ( – μ)I + μT , where I is the identity operator. For ∀x, y ∈ K , we have

‖Tμx – Tμy‖

=
∥
∥( – μ)x + μTx – ( – μ)y – μTy

∥
∥

=
〈
( – μ)x + μTx – ( – μ)y – μTy, ( – μ)x + μTx – ( – μ)y – μTy

〉

=
〈
( – μ)(x – y) + μ(Tx – Ty), ( – μ)(x – y) + μ(Tx – Ty)

〉

= ( – μ)‖x – y‖ + μ‖Tx – Ty‖ + μ( – μ)〈Tx – Ty, x – y〉
≤ ( – μ)‖x – y‖ + μL‖x – y‖ + μ( – μ)k‖x – y‖

=
(
( – μ) + μL + μ( – μ)k

)‖x – y‖. (.)

From (.) we know

 < ( – μ) + μL + μ( – μ)k < .

From (.) we know that Tμ is a contractive mapping from K into itself. By using the
Banach contraction mapping principle, we know that Tμ has a unique fixed point x∗. That
is,

x∗ = Tμx∗ = ( – μ)x∗ + μTx∗,

which is equivalent to x∗ = Tx∗.
From condition (.), we have

μn
(
 + L – k

)
< μ

(
 + L – k

)
,

μn
(
 + L) + k – μk –  < μ

(
 + L) + k – μk – ,

μn + μnL + k – μnk –  < μ + μL + k – μk – ,

μ
n + μ

nL + μnk – μ
nk – μn < μ + μL + μk – μk – μ < ,

 + μ
n + μ

nL + μnk – μ
nk – μn <  + μ + μL + μk – μk – μ < ,

( – μn) + μ
nL + μn( – μn)k < ( – μ) + μL + μ( – μ)k < .

(.)

Next we prove that the iterative sequence defined by (.) converges strongly to x∗. Ob-
serve

∥
∥xn+ – x∗∥∥

=
∥
∥( – μn)

(
xn – x∗) + μn

(
Txn – x∗)∥∥

=
〈
( – μn)

(
xn – x∗) + μn

(
Txn – x∗), ( – μn)

(
xn – x∗) + μn

(
Txn – x∗)〉

= ( – μn)∥∥xn – x∗∥∥ + μ
n
∥
∥Txn – Tx∗∥∥ + μn( – μn)

〈
Txn – Tx∗, xn – x∗〉

≤ ( – μn)∥∥xn – x∗∥∥ + μ
nL∥∥xn – x∗∥∥ + μn( – μn)k

∥
∥xn – x∗∥∥

=
(
( – μn) + μ

nL + μn( – μn)k
)∥
∥xn – x∗∥∥. (.)
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From (.) and (.) we have

∥
∥xn+ – x∗∥∥ ≤ (

( – μ) + μL + μ( – μ)k
)∥
∥xn – x∗∥∥ → 

as n → ∞, so that xn → x∗ as n → ∞. This completes the proof. �

Next, we give the definition of probabilistic strongly pseudocontractive mappings in a
probabilistic normed space.

Definition . Let (E, F) be a probabilistic normed space. A mapping T : E → E is said
to be probabilistic strongly pseudocontractive (k-strongly pseudocontractive) if

FTx–Ty+x–y(
√

t) ≥ kFx–y
(
t) + FTx–Ty–(x–y)(

√
t) (.)

for all x, y ∈ E, t ∈ [, +∞), where k ∈ (, ) is a constant.

Theorem . Let (E, F) be a probabilistic Banach space with condition (.), K be a
nonempty closed convex subset of E, and T : K → K be an L-Lipschitz k-strongly pseu-
docontractive mapping with Lipschitz constant L ≥ . Then T has a unique fixed point x∗

in K , and for any given x ∈ K , the iterative sequence

xn+ = ( – μn)xn + μnTxn (.)

probabilistically converges to x∗, where {μn} ⊂ (, ) is a sequence of real numbers which
satisfies the following condition:

 < μn < μ <
 – k

L +  – k
, ∀n ≥ ,

for some constant μ.

Proof Noting that

FTx–Ty+x–y(
√

t), kFx–y
(
t) + FTx–Ty–(x–y)(

√
t)

are nondecreasing and

FTx–Ty+x–y(
√

) = , kFx–y
(
) + FTx–Ty–(x–y)(

√
) = .

Therefore, from (.) we have, for all x, y ∈ E, that

∫ +∞


t dFTx–Ty+x–y(

√
t) ≤

∫ +∞


t d

(
kFx–y

(
t) + FTx–Ty–(x–y)(

√
t)

)
,

which implies that




∫ +∞


t d

(
FTx–Ty+x–y(t) – FTx–Ty+y–x(t)

) ≤ k
∫ +∞



√
t dFx–y(t)
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for all x, y ∈ E. From Theorem . and Definition ., we have

〈Tx – Ty, x – y〉 ≤ k‖x – y‖
F , ∀x, y ∈ E,

‖Tx – Ty‖F ≤ L‖x – y‖F , ∀x, y ∈ E.

This shows that T is an L-Lipschitz k-strongly pseudocontractive mapping with Lipschitz
constant L ≥  in a Hilbert space (E,‖ · ‖F ). By using Lemma ., we know that T has
a unique fixed point x∗ in K , and for any given x ∈ K , the iterative sequence defined by
(.) converges in norm ‖·‖F to x∗. Noting that the convergence in norm ‖·‖F implies the
probabilistic convergence, so that the iterative sequence defined by (.) probabilistically
converges to x∗. This completes the proof. �

Remark The research into probabilistic normed spaces and relevant fixed point theory is
an important topic. Many relevant results have been given by some authors [, –].
However, the profound relationship with the probabilistic theory has not received close
attention. The S-probabilistic normed spaces and relevant probabilistic methods will play
an important role in the theory and applications.
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22. Čirič, LB: Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces.
Chaos Solitons Fractals 42, 146-154 (2009)
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