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Abstract
In this paper, we consider the Barnes-type Daehee with λ-parameter and degenerate
Euler mixed-type polynomials. We present several explicit formulas and recurrence
relations for these polynomials. Also, we establish a connection between our
polynomials and several known families of polynomials.
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1 Introduction
In this paper, we use umbral calculus techniques (see [, ]) to obtain several new and in-
teresting identities of Barnes-type Daehee with λ-parameter and degenerate Euler mixed-
type polynomials. To define the umbral calculus, let � be the algebra of polynomials
in a single variable x over C and �∗ be the vector space of all linear functionals on �.
The action of a linear functional L ∈ �∗ on a polynomial p(x) is denoted by 〈L|p(x)〉,
and linearly extended as 〈cL + dL′|p(x)〉 = c〈L|p(x)〉 + d〈L′|p(x)〉, where c, d ∈ C. Define
H = {f (t) =

∑
k≥ ak

tk

k! | ak ∈ C} to be the algebra of formal power series in a single vari-
able t. The formal power series f (t) ∈ H defines a linear functional on � by setting
〈f (t)|xn〉 = an for all n ≥ . Thus, we have (see [, ])

〈
tk|xn〉 = n!δn,k for all n, k ≥ , (.)

where δn,k is the Kronecker symbol. Let fL(t) =
∑

n≥〈L|xn〉 tn

n! . By (.), we get that
〈fL(t)|xn〉 = 〈L|xn〉. Thus, the map L �→ fL(t) gives a vector space isomorphism from �∗

onto H. Therefore, H is thought of as a set of both formal power series and linear func-
tionals, which is called the umbral algebra. The umbral calculus is the study of umbral
algebra.

The order O(f (t)) of the non-zero power series f (t) is defined to be k when f (t) =
∑

n≥k antn and ak 
= . Suppose that O(f (t)) =  and O(g(t)) = . Then there exists a unique
sequence sn(x) of polynomials such that 〈g(t)f (t)k|sn(x)〉 = n!δn,k , where n, k ≥ . The se-
quence sn(x) is called the Sheffer sequence for (g(t), f (t)), and we write sn(x) ∼ (g(t), f (t))
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(see [, ]). For f (t) ∈ H and p(x) ∈ �, we have that 〈eyt|p(x)〉 = p(y), 〈f (t)g(t)|p(x)〉 =
〈g(t)|f (t)p(x)〉, f (t) =

∑
n≥〈f (t)|xn〉 tn

n! and p(x) =
∑

n≥〈tn|p(x)〉 xn

n! . Therefore, 〈tk|p(x)〉 =
p(k)(), 〈|p(k)(x)〉 = p(k)(), where p(k)() denotes the kth derivative of p(x) with respect to
x at x = . So, tkp(x) = p(k)(x) = dk

dxk p(x) for all k ≥  (see [, ]).
Let sn(x) ∼ (g(t), f (t)). Then we have


g(f̄ (t))

eyf̄ (t) =
∑

n≥

sn(y)
tn

n!
(.)

for all y ∈C, where f̄ (t) is the compositional inverse of f (t) (see [, ]). For sn(x) ∼ (g(t), f (t))
and rn(x) ∼ (h(t),�(t)), let sn(x) =

∑n
k= cn,krk(x). Then we have

cn,k =

k!

〈
h(f̄ (t))
g(f̄ (t))

(
�
(
f̄ (t)

))k
∣
∣
∣xn

〉

(.)

(see [, ]).
Throughout the paper, let r, s ∈ Z>, and let a = (a, a, . . . , ar), b = (b, b, . . . , bs) with

aj, bi 
=  for all i, j. We define the Barnes-type Daehee with λ-parameter and degenerate
Euler mixed-type polynomials DEn(λ, x|a; b) (for other Barnes-types, see [–]) as

Pr,s(t)( + λt)
x
λ =

∑

n≥

DEn(λ, x|a; b)
tn

n!
, (.)

where we define

Pr,s(t) =
r∏

i=

(
log( + λt)

λ(( + λt)
ai
λ – )

) s∏

i=

(


( + λt)
bi
λ + 

)

.

For x = , DEn(λ|a; b) = DEn(λ, |a; b) are called the Barnes-type Daehee with λ-parameter
and degenerate Euler mixed-type numbers.

We recall here that the polynomials Dn,λ(x|a) given by

Pr,(t)( + λt)
x
λ =

∑

n≥

Dn,λ(x|a)
tn

n!

are called the Barnes-type Daehee polynomials with λ-parameter (see [, ]). Also, the
polynomials En(λ, x|b) given by

P,s(t)( + λt)
x
λ =

∑

n≥

En(λ, x|b)
tn

n!
(.)

are called the Barnes-type degenerate Euler polynomials which are studied in [–]. In the
case x = , we write En(λ|b) = En(λ, |b), which are called the Barnes-type degenerate Eu-
ler numbers. Note that limλ→ En(λ, x|b) = En(x|b) and limλ→∞ λ–nEn(λ,λx|b) = (x)n, where
(x)n =

∏n–
i= (x – i) with (x) =  and En(x|b) are the Barnes-type degenerate Euler polyno-

mials given by

s∏

i=

(


ebit + 

)

ext =
∑

n≥

En(x|b)
tn

n!
.
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It is immediate from (.) and (.) to see that DEn(λ, x|a; b) is the Sheffer sequence for the
pair g(t) =

∏r
i=( eait–

t )
∏s

i=( ebit+
 ) and f (t) = eλt–

λ
. Thus,

DEn(λ, x|a; b) ∼
( r∏

i=

(
eait – 

t

) s∏

i=

(
ebit + 



)

,
eλt – 

λ

)

. (.)

The aim of the present paper is to present several new identities for Barnes-type Daehee
with λ-parameter and degenerate Euler mixed-type polynomials by the use of umbral cal-
culus. For some of the related works, one is referred to the papers [–].

2 Explicit formulas
In this section we suggest several explicit formulas for the Barnes-type Daehee with
λ-parameter and degenerate Euler mixed-type polynomials. To do that, we recall that the
Stirling numbers S(n, m) of the first kind are defined as (x)n =

∑n
m= S(n, m)xm ∼ (, et –)

or 
j! (log( + t))j =

∑
�≥j S(�, j) t�

�! . Let (x|λ)n be the generalized falling factorials defined by
(x|λ)n =

∏n–
i= (x – iλ) with (x|λ) = , namely (x|λ)n = λn(x/λ)n.

Let BEn(x|a; b) be the Barnes-type Bernoulli and Euler mixed-type polynomials given by

r∏

i=

(
t

eait – 

) s∏

i=

(


ebit + 

)

ext =
∑

n≥

BEn(x|a; b)
tn

n!
. (.)

Note that BEr,s
n (x) denotes the special case BEn(x| , , . . . , 

︸ ︷︷ ︸
r

; , , . . . , 
︸ ︷︷ ︸

s

) and was treated in
[, ] by using p-adic integrals on Zp.

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

m=

S(n, m)λn–mBEm(x|a; b).

Proof By (.), we have that

r∏

i=

(
eait – 

t

) s∏

i=

(
ebit + 



)

DEn(λ, x|a; b) ∼
(

,
eλt – 

λ

)

. (.)

Thus,

DEn(λ, x|a; b) =
n∑

m=

S(n, m)λn–m
r∏

i=

(
t

eait – 

) s∏

i=

(


ebit + 

)

xm

=
n∑

m=

S(n, m)λn–mBEm(x|a; b),

as claimed. �

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

j=

( n∑

�=j

(
n
�

)

S(�, j)λ�–jDEn–�(λ|a; b)

)

xj.
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Proof We proceed the proof by applying the conjugate representation: for sn(x) ∼
(g(t), f (t)), we have Sn(x) =

∑n
j=


j! 〈g(f̄ (t))– f̄ (t)j|xn〉xj. By (.), we obtain

〈
g
(
f̄ (t)

)– f̄ (t)j|xn〉

=
〈

Pr,s(t)
logj( + λt)

λj

∣
∣
∣xn

〉

= λ–j
〈

Pr,s(t)
∣
∣
∣j!

∑

�≥j

S(�, j)
λ�t�

�!
xn

〉

= λ–jj!
n∑

�=j

(
n
�

)

S(�, j)λ�
〈
Pr,s(t)|xn–�

〉
= λ–jj!

n∑

�=j

(
n
�

)

S(�, j)λ�DEn–�(λ|a; b).

Therefore, DEn(λ, x|a; b) =
∑n

j=(
∑n

�=j
(n
�

)
S(�, j)λ�–jDEn–�(λ|a; b))xj, as claimed. �

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n–∑

�=

(
n – 

�

)

λ�B(n)
� BEn–�(x|a; b),

where B(n)
� is the �th Bernoulli number of order n (see []).

Proof We proceed the proof by using the following transfer formula: for pn(x) ∼ (, f (t))
and qn(x) ∼ (, g(t)), we have that qn(x) = x( f (t)

g(t) )nx–pn(x) for all n ≥ . So, by the fact that
xn ∼ (, t) and (.), we obtain

r∏

i=

(
eait – 

t

) s∏

i=

(
ebit + 



)

DEn(λ, x|a; b)

= x
(

λt
eλt – 

)n

xn– = x
∑

�≥

B(n)
�

λ�t�

�!
xn– =

n–∑

�=

(
n – 

�

)

λ�B(n)
� xn–�,

which, by (.), implies

DEn(λ, x|a; b) =
n–∑

�=

(
n – 

�

)

λ�B(n)
�

r∏

i=

(
t

eait – 

) s∏

i=

(


ebit + 

)

xn–�

=
n–∑

�=

(
n – 

�

)

λ�B(n)
� BEn–�(x|a; b),

as required. �

In order to state our next theorem, we recall the polynomials βEn(λ, x|a; b), which are
called the Barnes-type degenerate Bernoulli and Euler mixed-type polynomials. They are
defined as

Qr,s(t)( + λt)
x
λ =

∑

n≥

βEn(λ, x|a; b)
tn

n!
, (.)

where Qr,s(t) =
∏r

i=( t

(+λt)
ai
λ –

)
∏s

i=( 

(+λt)
bi
λ +

), for example, see [].
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Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)βEn–�(λ, x|a; b).

Proof By (.), we have

DEn(λ, y|a; b) =
〈∑

�≥

DE�(λ, y|a; b)
t�

�!

∣
∣
∣xn

〉

=
〈
Pr,s(t)( + λt)

y
λ |xn〉

=
〈

Qr,s(t)( + λt)
y
λ

∣
∣
∣
logr( + λt)

λrtr xn
〉

=
〈

Qr,s(t)( + λt)
y
λ

∣
∣
∣r!

∑

�≥

S(� + r, r)λ�t�

(� + r)!
xn

〉

=
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

〈∑

m≥

βEm(λ, y|a; b)
tm

m!

∣
∣
∣xn–�

〉

,

which, by (.), implies DEn(λ, x|a; b) =
∑n

�=
(n
�)

(�+r
r )

λ�S(� + r, r)βEn–�(λ, x|a; b), as re-
quired. �

In order to present our next theorem, we recall the polynomials βn(λ, x|a), which are
called the Barnes-type degenerate Bernoulli polynomials. They are given by

Qr,(t)( + λt)
x
λ =

∑

n≥

βn(λ, x|a)
tn

n!
, (.)

for example, see [, , ].

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

�=

n–�∑

m=

(n
�

)(n–�

m
)

(
�+r

r
) λ�S(� + r, r)En–�–m(λ|b)βm(λ, x|a)

=
n∑

�=

n–�∑

m=

(n
�

)(n–�

m
)

(
�+r

r
) λ�S(� + r, r)βn–�–m(λ|a)Em(λ, x|b).

Proof By the proof of Theorem ., we have

DEn(λ, y|a; b) =
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

〈
Qr,s(t)( + λt)

y
λ |xn–�

〉

=
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

〈
Q,s(t)|Qr,(t)( + λt)

y
λ xn–�

〉
.

Thus, by (.) and (.), we obtain

DEn(λ, y|a; b)

=
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

〈

Q,s(t)
∣
∣
∣
∣

n–�∑

m=

(
n – �

m

)

βm(λ, y|a)xn–�–m

〉
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=
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

n–�∑

m=

(
n – �

m

)

βm(λ, y|a)
〈
Q,s(t)|xn–�–m〉

=
n∑

�=

(n
�

)

(
�+r

r
)λ�S(� + r, r)

n–�∑

m=

(
n – �

m

)

βm(λ, y|a)En–�–m(λ|b),

which completes the proof of the first formula.
The second formula can be obtained by using very similar techniques. �

3 Recurrence relations
In this section, we present several recurrence relations for Barnes-type Daehee with
λ-parameter and degenerate Euler mixed-type polynomials. Our first recurrence is based
on the polynomials (x|λ)n.

Theorem . For all n ≥ ,

DEn(λ, x + y|a; b) =
n∑

j=

(
n
j

)

DEj(λ, x|a; b)(y|λ)n–j.

Proof Let pn(x) =
∏r

i=( eait–
t )

∏s
i=( ebit+

 )DEn(λ, x|a; b). By (.) we have that pn(x) =
(x|λ)n ∼ (, eλt–

λ
), which leads to the required recurrence. �

The second recurrence is obtained from the fact that f (t)sn(x) = nsn–(x) for all sn(x) ∼
(g(t), f (t)) (see [, ]).

Theorem . For all n ≥ ,

DEn(λ, x + λ|a; b) – DEn(λ, x|a; b) = nλDEn–(λ, x|a; b).

Proof By (.) and f (t)sn(x) = nsn–(x) whenever sn(x) ∼ (g(t), f (t)), we have

eλt – 
λ

DEn(λ, x|a; b) = nDEn–(λ, x|a; b),

which implies DEn(λ, x + λ|a; b) – DEn(λ, x|a; b) = nλDEn–(λ, x|a; b), as required. �

The next result gives an explicit formula for d
dx DEn(λ, x + λ|a; b).

Theorem . For all n ≥ ,

d
dx

DEn(λ, x|a; b) = n!
n–∑

�=

(–λ)n–�–

�!(n – �)
DE�(λ, x|a; b).

Proof It is well known that for sn(x) ∼ (g(t), f (t)), d
dx sn(x) =

∑n–
�=

(n
�

)〈f̄ (t)|xn–�〉s�(x) (see [,
]). In our case, by (.), we have

〈
f̄ (t)|xn–�

〉
=

〈

λ

log( + λt)
∣
∣
∣xn–�

〉

= λ–
〈∑

m≥

(–)m–(m – )!λmtm

m!

∣
∣
∣xn–�

〉
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= λ–(–)n–�–λn–�(n – � – )!

= (–λ)n–�–(n – � – )!.

Thus d
dx DEn(λ, x|a; b) = n!

∑n–
�=

(–λ)n–�–

�!(n–�) DE�(λ, x|a; b), as required. �

Another recurrence relation can be stated as follows.

Theorem . For all n ≥ ,

DEn(λ, x|a; b)

=

(

x –
r∑

i=

ai –
s∑

j=

bj

)

DEn–(λ, x – λ|a; b) +
r
n

n∑

�=

(
n
�

)

λ�
b�DEn–�(λ, x – λ|a; b)

–

n

r∑

i=

ai

n∑

�=

(
n
�

)

λ�
b�DEn–�(λ, x – λ|ai, a, . . . , ar ; b)

+



s∑

j=

bjDEn–(λ, x – λ|a; bj, b, . . . , bs),

where bn is the nth Bernoulli number of the second kind, which is defined by t
log(+t) =

∑
n≥ bn

tn

n! .

Proof Let n ≥ . Then

DEn(λ, y|a; b)

=
〈∑

�≥

DE�(λ, y|a; b)
t�

�!

∣
∣
∣xn

〉

=
〈
Pr,s(t)( + λt)y/λ|xn〉 =

〈
d
dt

(
Pr,s(t)( + λt)y/λ)

∣
∣
∣xn–

〉

=

〈
d
dt

r∏

i=

(
log( + λt)

λ(( + λt)
ai
λ – )

) s∏

i=

(


( + λt)
bi
λ + 

)

( + λt)y/λ
∣
∣
∣
∣x

n–

〉

(.)

+

〈 r∏

i=

(
log( + λt)

λ(( + λt)
ai
λ – )

)
d
dt

s∏

i=

(


( + λt)
bi
λ + 

)

( + λt)y/λ
∣
∣
∣
∣x

n–

〉

(.)

+
〈

Pr,s(t)
d
dt

( + λt)y/λ
∣
∣
∣xn–

〉

. (.)

By (.), the term in (.) equals

y
〈
Pr,s(t)( + λt)(y–λ)/λ|xn–〉 = yDEn–(λ, y – λ|a; b). (.)

For the term in (.), we observe that

d
dt

s∏

i=

(


( + λt)
bi
λ + 

)

=
s∏

i=

(


( + λt)
bi
λ + 

) s∑

i=

(
–bi

 + λt
+

bi

( + λt)


( + λt)bi/λ + 

)

.
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So the term in (.) is

–
s∑

j=

bj
〈
Pr,s(t)( + λt)(y–λ)/λ|xn–〉 +




s∑

j=

bj

〈

Pr,s(t)
( + λt)(y–λ)/λ

( + λt)bj/λ + 

∣
∣
∣xn–

〉

= –
s∑

j=

bjDEn–(λ, y – λ|a; b) +



s∑

j=

bjDEn–(λ, y – λ|a; bj, b, . . . , bs). (.)

For the term in (.), we note that

( + λt)
d
dt

r∏

i=

(
log( + λt)

λ(( + λt)
ai
λ – )

)

=
r∏

i=

(
log( + λt)

λ(( + λt)
ai
λ – )

)(

–
r∑

i=

ai +

t

r∑

i=

(
λt

log( + λt)
–

ait
( + λt)ai/λ – 

))

,

where λt
log(+λt) – ait

(+λt)ai/λ–
has order at least . Thus, the term in (.) equals

–
r∑

i=

ai
〈
Pr,s(t)( + λt)(y–λ)/λ|xn–〉

+

〈

Pr,s(t)( + λt)(y–λ)/λ
∣
∣
∣
∣

t

r∑

i=

(
λt

log( + λt)
–

ait
( + λt)ai/λ – 

)

xn–

〉

= –
r∑

i=

aiDEn–(λ, y – λ|a; b)

+

n

〈

Pr,s(t)( + λt)(y–λ)/λ
∣
∣
∣
∣

r∑

i=

(
λt

log( + λt)
–

ait
( + λt)ai/λ – 

)

xn

〉

= –
r∑

i=

aiDEn–(λ, y – λ|a; b)

+
r
n

〈

Pr,s(t)( + λt)(y–λ)/λ
∣
∣
∣
∣

r∑

�≥

b�

λ�t�

�!
xn

〉

–

n

r∑

i=

ai

〈
log( + λt)

λ(( + λt)ai/λ – )
Pr,s(t)( + λt)(y–λ)/λ

∣
∣
∣
∣
∣

r∑

�≥

b�

λ�t�

�!
xn

〉

,

which is equal to

–
r∑

i=

aiDEn–(λ, y – λ|a; b) +
r
n

n∑

�=

(
n
�

)

λ�
b�DEn–�(λ, y – λ|a; b)

–

n

r∑

i=

ai

n∑

�=

(
n
�

)

λ�
b�DEn–�(λ, y – λ|ai, a, . . . , ar ; b). (.)

By using (.), (.) and (.) instead of (.), (.) and (.), respectively, we complete the
proof. �
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Theorem . For all n ≥ ,

DEn+(λ, x|a; b)

= xDEn(λ, x – λ|a; b) –
r∑

i=

ai

n∑

m=

S(n, m)λn–mBEm(x – λ|a; b)

–
n∑

m=

m∑

�=

S(n, m)λn–m
(

n
m

)(
B�+

� + 

r∑

i=

a�+
i +

E�()


s∑

j=

b�+
j

)

× BEm–�(x – λ|a; b),

where B� is the �th Bernoulli number and E�() is the �th Euler polynomial evaluated at .

Proof It is well known that for sn(x) ∼ (g(t), f (t)), sn+(x) = (x – g ′(t)/g(t)) 
f ′(t) sn(x) (see [,

]). In our case, by (.), we have

DEn+(λ, x|a; b) = xDEn(λ, x – λ|a; b) – e–λt g ′(t)
g(t)

DEn(λ, x|a; b),

and by Theorem ., we obtain

DEn+(λ, x|a; b) = xDEn(λ, x – λ|a; b)

–
n∑

m=

S(n, m)λn–me–λt g ′(t)
g(t)

BEm(x|a; b). (.)

Note that

g ′(t)
g(t)

=
(
log g(t)

)′ =
r∑

i=

aieait

eait – 
–

r
t

+
s∑

j=

bjebjt

ebjt + 

=
r∑

i=

ai +

t

r∑

i=

(
ait

eait – 
– 

)

+



s∑

j=

bjebjt

ebjt + 

=
r∑

i=

ai +

t

r∑

i=

∑

�≥

β�a�
i

t�

�!
+




s∑

j=

∑

�≥

E�()b�+
j

t�

�!

=
r∑

i=

ai +
∑

�≥

β�+

(� + )!

r∑

i=

a�+
i t� +




∑

�≥

E�()
�!

s∑

j=

b�+
j t�.

So

g ′(t)
g(t)

BEm(x|a; b) =
r∑

i=

aiBEm(x|a; b) +
m∑

�=

(
m
�

)
β�+

� + 

r∑

i=

a�+
i BEm–�(x|a; b)

+



m∑

�=

(
m
�

)

E�()
s∑

j=

b�+
j BEm–�(x|a; b).

Hence, by substituting into (.), we complete the proof. �
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4 Relations with other families of polynomials
In this section, we establish a connection between Barnes-type Daehee with λ-parameter
and degenerate Euler mixed-type polynomials and several known families of polynomials.

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

m=

(
n
m

)

DEn–m(λ|a; b)(x|λ)m.

Proof Note that (x|λ)n ∼ (, eλt–
λ

). Let DEn(λ, x|a; b) =
∑n

m= cn,m(x|λ)m. By (.) and (.),
we have

cn,m =


m!
〈
Pr,s(t)|tmxn〉 =

(
n
m

)
〈
Pr,s(t)|xn–m〉

=
(

n
m

)

DEn–m(λ|a; b),

which completes the proof. �

For the following, we note that B(α)
n (x) ∼ ( (et–)α

tα , t).

Theorem . For all n ≥ , the polynomial DEn(λ, x|a; b) is given by

n∑

m=

( n∑

�=m

n–�∑

k=

n–�–k∑

q=

q∑

p=

(n
�

)(n–�

k
)(n–�–k

q
)

(q+α

α

) a�,k,q,pDEn–�–k–q(λ|a; b)

)

B(α)
m (x),

where a�,k,q,p = S(�, m)S(q + α, q – p + α)S(q – p + α,α)λk+�+p–mb(α)
� and b(α)

� is the �th
Bernoulli number of the second kind of order α given by ( t

log(+t) )α =
∑

�≥ b(α)
�

t�
k! .

Proof Let DEn(λ, x|a; b) =
∑n

m= cn,mB(α)
m (x). By (.) and (.), we have

cn,m =


m!λm

〈

Pr,s(t)
(

( + λt)/λ – 
t

)α(
λt

log( + λt)

)α∣
∣
∣
(
log( + λt)

)mxn
〉

=


λm

n∑

�=m

(
n
�

)

λ�S(�, m)
〈

Pr,s(t)
(

( + λt)/λ – 
t

)α∣
∣
∣
∣

(
λt

log( + λt)

)α

xn–�

〉

=


λm

n∑

�=m

n–�∑

k=

(
n
�

)(
n – �

k

)

S(�, m)λ�+kb(α)
k

〈

Pr,s(t)
(

( + λt)/λ – 
t

)α∣
∣
∣xn–�–k

〉

.

One can show that

(
( + λt)/λ – 

t

)α

=
(

e

λ

log(+λt) – 
t

)α

=
∑

q≥

q∑

p=

(
q + α

α

)–

S(q + α, q – p + α)S(q – p + α,α)λp tq

q!
,
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where S(n, m) is the Stirling number of the second kind. Thus,

〈

Pr,s(t)
(

( + λt)/λ – 
t

)α∣
∣
∣xn–�–k

〉

=
n–�–k∑

q=

q∑

p=

(n–�–k
q

)

(q+α

α

) S(q + α, q – p + α)S(q – p + α,α)λp〈Pr,s(t)|xn–�–k–q〉,

where 〈Pr,s(t)|xn–�–k–q〉 = DEn–�–k–q(λ|a; b). Hence,

cn,m =
n∑

�=m

n–�∑

k=

n–�–k∑

q=

q∑

p=

(n
�

)(n–�

k
)(n–�–k

q
)

(q+α

α

) a�,k,q,pDEn–�–k–q(λ|a; b),

which completes the proof. �

By similar techniques as in the proof of the last theorem, we can express our polynomials
DEn(λ, x|a; b) in terms of the degenerate Bernoulli polynomials β

(α)
n (λ, x) of order α. These

polynomials are the Sheffer sequence which is given by β
(α)
n (λ, x) ∼ (( λ(et–)

eλt– )α , eλt–
λ

).

Theorem . For all n ≥ , the polynomial DEn(λ, x|a; b) is given by

n∑

m=

(
n
m

)

cn,mβ (α)
m (λ, x),

where cn,m =
∑n–m

q=
∑q

p=
(n–m

q )

(q+α
α )

S(q + α, q – p + α)S(q – p + α,α)λpDEn–m–q(λ|a; b).

Now we are interested in expressing our polynomials in terms of H (α)
n (x|μ) which are

called the Frobenius-Euler polynomials of order α. Note that H (α)
n (x|μ) ∼ (( et–μ

–μ
)α , t) (see

[, ]).

Theorem . For all n ≥ ,

DEn(λ, x|a; b) =
n∑

m=

(
an,m

( – μ)αλm

)

H (α)
m (x|μ),

where

an,m =
n∑

�=m

n–�∑

k=

α∑

p=

(
n
�

)(
n – �

k

)(
α

p

)

S(�, m)λ�(–μ)α–pDEk(λ|a; b)(p|λ)n–�–k .

Proof Let DEn(λ, x|a; b) =
∑n

m= cn,mH (α)
m (x|μ). By (.) and (.), we have

cn,m =


m!( – μ)αλm

〈
Pr,s(t)

(
( + λt)/λ – μ

)α|(log( + λt)
)mxn〉

=


m!( – μ)αλm

〈

Pr,s(t)
(
( + λt)/λ – μ

)α
∣
∣
∣m!

∑

�≥m

S(�, m)
λ�

�!
t�xn

〉
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=


( – μ)αλm

n∑

�=m

(
n
�

)

S(�, m)λ�
〈(

( + λt)/λ – μ
)α|Pr,s(t)xn–�

〉

=


( – μ)αλm

n∑

�=m

n–�∑

k=

(
n
�

)(
n – �

k

)

S(�, m)λ�DEk(λ|a; b)wn,�,k ,

where

wn,�,k =
〈(

( + λt)/λ – μ
)α|xn–�–k 〉

=

〈
α∑

p=

(
α

p

)

(–μ)α–p( + λt)p/λ
∣
∣
∣
∣x

n–�–k

〉

=
α∑

p=

(
α

p

)

(–μ)α–p
〈∑

q≥

(p|λ)q
tq

q!

∣
∣
∣xn–�–k

〉

=
α∑

p=

(
α

p

)

(–μ)α–p(p|λ)n–�–k .

Thus, the constants cn,m are given by


( – μ)αλm

n∑

�=m

n–�∑

k=

α∑

p=

(
n
�

)(
n – �

k

)(
α

p

)

S(�, m)λ�(–μ)α–pDEk(λ|a; b)(p|λ)n–�–k ,

which completes the proof. �

Now we are interested in expressing our polynomials in terms of E (α)
n (λ, x) which are

called the degenerate Euler polynomials of order α. Note that

E (α)
n (λ, x) ∼

((
et + 



)α

,
eλt – 

λ

)

(see []). Using similar techniques as in the proof of the above theorem, we obtain the
following relation.

Theorem . For all n ≥ , the polynomial DEn(λ, x|a; b) is given by


α

n∑

m=

(
n
m

)(n–m∑

q=

α∑

p=

(
n – m

q

)(
α

p

)

(p|λ)qDEn–m–q(λ|a; b)

)

E (α)
m (λ, x).
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