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Band Engineering in Cooper-Pair Box: Dispersive
Measurements of Charge and Phase
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Abstract. Low-frequency susceptibility of the split Cooper-pair box(SCPB) is investigated for use in sensitive measurements
of external phase or charge. Depending on the coupling scheme, the box appears as either inductive or capacitive reactance
which depends on external phase and charge. While coupling to the source-drain phase, we review how the SCPB looks like
a tunable inductance, which property we used to build a novelradio-frequency electrometer. In the dual mode of operation,
that is, while observed at the gate input, the SCPB looks likea capacitance. We concentrate on discussing the latter scheme,
and we show how to do studies of fast phase fluctuations at a sensitivity of 1 mrad/

√
Hz by measuring the input capacitance

of the box.
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INTRODUCTION

Josephson junctions (JJ) store energy according toE =
−EJ cos(ϕ), whereϕ is the phase difference across the
junction, and the Josephson energyEJ is related to the
junction critical currentIC throughIC = 2eEJ/h̄. Since
JJ’s also typically exhibit negligible dissipation, they can
be used as reactive circuit components. By combining
the Josephson equationsI = IC sin(ϕ) andϕ̇ = 2eV(t)/h̄,
whereV(t) is the voltage across the junction, we find that
a single JJ behaves as a nonlinear inductance,

LJ(ϕ) =
h̄

2eICcos(ϕ)
=

LJ0

cos(ϕ)
, (1)

where we defined the linear-regime Josephson induc-
tanceLJ0 = h̄/(2eIC).

Quantum effects in mesoscopic JJ’s [1, 2] may mod-
ify Eq. (1) in an important manner. In particular, the
Josephson reactance may become capacitive [3, 4]. In
this brief communication, we investigate the Josephson
reactance in the split Cooper-pair box (SCPB) geome-
try, with emphasis on detector applications. We first re-
view the inductive susceptibility, and then concentrate on
discussing the capacitive susceptibility in the spirit of a
novel phase detector. The discussion relies heavily on the
energy bands [5]Ek of the SCPB, two lowest of them
given in the limitEJ/EC ≪ 1 as

E0,1 = EC(n
2
g−2ng+2)∓

√

(EJ cos(ϕ/2))2+(2EC(1−ng))
2−CgV

2
g /2

(2)
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as a function of the classical fieldsϕ = 2πΦ/Φ0 and
ng =CgVg/e (see Fig. 1).

FIGURE 1. (a) Schematics of the SCPB. The mesoscopic
island (thick line) has a total capacitanceCΣ and charging en-
ergyEC = e2/(2CΣ); (b) two lowest energy bandsEk (k= 0,1)
of the SCPB , forEJ/EC = 1.7 (without the parabolic back-
ground−(nge)2/(2Cg), see Eq. (2)). Inductive and capacitive
susceptibilities are illustrated by the arrows parallel toϕ and
ng, respectively.

QUANTUM INDUCTANCE

With respect toϕ , the SCPT behaves as an inductance
(Fig. 2 (b)), dependent, first of all, on the band indexk,
as well as onng andϕ :

Lk
eff(ng,ϕ) =

(

d2Ek

dΦ2

)−1

=

(

Φ0

2π

)2(d2Ek

dϕ2

)−1

. (3)

The strongng dependence ofL0
eff whenEJ/EC ≪ 1 has

been used by the present authors to implement a fast re-
active electrometer [6], using the scheme of Fig. 2 (a).
The measurements are performed by studying the phase
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shift Θ = arg(Vout/Vin) of the "carrier" microwave re-
flected from a resonant circuit containing the SCPB. De-
noting byZ the lumped-element impedance seen when
looking towards the resonance circuit from the transmis-
sion line of impedanceZ0 = 50Ω, the reflection coeffi-
cient of a voltage wave is

Γ =
Vout

Vin
=

Z−Z0

Z+Z0
= Γ0eiΘ. (4)

Since the whole setup consists in principle only of reac-
tances, the inductively read scheme should be superior in
terms of noise and back-action [7] over the previous fast
electrometer, the rf-SET [8], which relies on the control
of dissipation.

FIGURE 2. (a) Schematics of the capacitively coupled
"L-SET" inductive rf-electrometer. The resonance frequency

f−1
p = 2π

√

(L ‖ Lk
eff)C depends on the SCPB Josephson in-

ductanceLk
eff; (b) calculated modulation of the secondng -

derivative (inverseL0
eff, see Eq. (3)) at the SCPB ground energy

band, for differentEJ/EC, andϕ = 0. The circles mark optimal
bias points for the electrometer operation.

The crucial number for electrometer operation is the
differential modulation ofLeff (at the ground band), or
dimensionless "gain":

g≡ ∂
∂ng

(

Leff

Leff,0

)

, (5)

which we have presented as normalized byLeff,0 which
denotes the Josephson inductance at the special point

(ng = ±1, ϕ = 0). Using Eq. (2), we haveLeff,0 = 4LJ0.
For the best electrometer performance,ng should be
biased at the points marked by circles in Fig. 2 (b). From
Eq. (2) we also find the maximum gaingm which grows
rapidly whenEJ/EC ≪ 1: gm ≃ 2(EJ/EC)

−1. Another
important figure is the value ofLeff at the optimal gate
bias which yieldsgm, denoted here asLeff,m [9]. To
some extent, the rapidly growingLeff,m towards lowering
EJ/EC (see Fig. 3) cancels the benefit of growinggm
from the point of view of charge sensitivity.

FIGURE 3. Numerical values of the SCPB ground band
Josephson inductanceLeff,0 (that atng =±1,ϕ = 0), andLeff,m
(at maximum gain, atϕ = 0) for a typical aluminium device.
Also shown is the "classical" Josephson inductanceLJ0 in
Eq. (1).

Without going into details, optimal charge sensitiv-
ity limited by zero-point fluctuationsin the loadedLC-
oscillator in Fig. 2 (a) is [10]:

sQL
q =

16
√

2e(Leff,m)
2√2kBTN

gmπ
√

h̄Φ0LJ0
√

Qi
, (6)

whereTN is the noise temperature of the rf-amplifier,
and Qi is the internal quality factor of the resonator.
Evaluating the values in Eq. (6) numerically, we find
that sq ∼ 10−7e/

√
Hz, order of magnitude better than

the shot-noise limit of rf-SET, is intrinsically possible
for the L-SET if Qi ∼ 103 and TN ∼ 200 mK. So far,
the sensitivity in experiment [10, 11] has been limited
by Qi . 20 down tosq ≃ 2×10−5e/

√
Hz. The limit of

Eq. (6) is reached when parameter values are chosen so
that

ωp =
Φ2

0(Leff,m+L)
64h̄Leff,mL

. (7)

Equation (7) yields values typicallyfp = ωp/(2π) ≃
1−2 GHz, though dependence offp is rather weak.

QUANTUM CAPACITANCE

The band energies of an SCPB depend on the (gate)
chargeng, see Fig. 1 (b), and the SCPB should then
behave like a capacitance with respect to changes ofng



[2, 3], which means that the point of observation is at the
gate electrode:

Ck
eff =−∂ 2Ek(ϕ ,ng)

∂V2
g

=−
C2

g

e2

∂ 2Ek(ϕ ,ng)

∂n2
g

. (8)

Phasemodulation of the input capacitanceCeff(ng,ϕ) of
the SCPB observed in this manner is plotted in Fig. 4 (b).
As seen in the figure,Ceff has a strong phase dependence
in the limit EJ/EC ≫ 1 aroundϕ = ±π . Exactly at
ϕ = ±π , Cooper-pair tunneling is completely blocked,
and Ceff reduces to classical series capacitance of the
junctions andCg, that is,

[

(C1+C2)
−1+C−1

g

]−1
.

The input capacitance depends sensitively (quadrati-
cally) on the coupling capacitanceCg, and even when
Cg is made unusually large such that it practically limits
the charging energy,Ceff typically remains very small, in
the femto-Farad range, see right hand scale of Fig. 4 (b).
However, it has been suggested that the extremely strong
phase dependence could be used for fast, reactively read
phase detection [4]. This "CSET" mode of operation is
somewhat dual to the "L-SET" electrometry.

FIGURE 4. (a) Schematics of the experiment used to study
how the SCPB appears as a tunable capacitanceCeff; (b) left
scaleis the calculated secondng-derivative of the SCPB ground
band atng = 0, andright scaleis the corresponding effective
capacitance ifCg = 1 fF andCΣ = 2 fF.

An important figure of merit for phase sensitivity is
the differential gain, analogous to Eq. (5):

f ≡ ∂
∂ϕ

(

Ceff

C2
g/(2CΣ)

)

. (9)

The maximum off w.r.t. ϕ at ng = 0 is plotted in Fig. 5.
We consider the experimental setup of Fig. 4 (a),

where the quantum capacitanceCeff is in parallel with
a (generally much larger) stray capacitanceC, and forms
a resonator with an inductanceL. In this scheme, it is
typical to operate in the limit of vanishing internal dis-
sipation which corresponds to change of phaseΘ of the
reflected carrier changing by 2π around the resonant fre-
quencyfp.

Similarly as in the inductive readout, there are here
no internal noise sources except quantum fluctuations
in the resonator. Typically, therefore, sensitivity is again
limited by noise of the preamplifier: spectral density of
the voltage noise referred to preamplifier input issVout =√

2kBTNZ0, which can be regarded as a phase noise of
the microwave carrier,sΘ = sVout/Vout. When the carrier
amplitude is optimally large, it can be shown that under

the conditions mentioned,Vout =
e

2Cg
Z0

√

C
L

1
2π . When

referred as an equivalent flux noise at detector input
using Eq. (9), the result becomes

sϕ =
sΘ

∂Θ/∂ϕ
= 2

√
πe

(

C
Cg

)√
kBTNZ0

fmEC

≃ 4
√

πC
√

kBTNZ0

fme
,

(10)

where the last form follows from the assumption that
at highEJ/EC, charging energy is limited by the large
gate capacitance. This is the ultimate limit with ad-
vanced junction fabrication (very thin oxide). The pre-
dicted phase sensitivity is plotted in Fig. 5. Evidently,
sensitivity improves with decreasing stray capacitanceC,
since this results in larger modulation of total capacitance
C+Ceff. We see thatsϕ < 10−6rad/

√
Hz, far beyond an

equally fast rf-SQUID, is possible in principle at high
EJ/EC ∼ 10 and a low stray capacitanceC∼Cg.

We investigated the discussed phase detection exper-
imentally in the scheme of Fig. 4 (a), with the param-
eter valuesEJ = 0.30 K, EC = 0.83 K, EJ/EC = 0.36,
Cg = 0.65 fF,C= 250 fF,C/Cg = 380, andL = 160 nH.
ExceptCg, the sample parameters were determined by
microwave spectroscopy [12]. To the input bias coil of
the phase detector, we applied low-frequency modulation
by 0.013Φ0 at 80 Hz. Its amplitude was calibrated rely-
ing on Φ0-periodicity of the static response. This way,
we obtained a sensitivity of 1.3 mrad/

√
Hz, see the black

curve in Fig. 6, limited by the 4 K amplifier noise, which
figure is even better than expected (see Fig. 5).

We shall now discuss Fig. 6 in more detail. Both the
curves were measured at a flux bias close toϕ ∼ π which
yields the largest gainfm. For the black curve,f (ng,ϕ)
was further maximized by tuningng close to 1, which
also yielded a high level of low-frequency noise as can
be seen in the data. Since the low-frequency noise is



FIGURE 5. Left scale (dashed lines): Phase sensitivity pre-
dicted for the CSET, Eq. (10), first form, ifZ0 = 50Ω and
EC = 1 K, for different ratios of the gate capacitance to stray
capacitance. Right scale: the maximum gainfm of the phase
detector. Experimental point is given by the rectangle (note that
it had a larger capacitance ratio of∼ 380).

significantly reduced when we tunedng = 0 where the
response is insensitive to charge fluctuations (the gray
curve), we assign the increased noise aroundng = 1 to
the ubiquitous low-frequency background charge noise.

Since the low-frequency noise atng = 0 is free from
the effect of charge noise, we were able to directly mea-
sure in the scheme the apparent flux noise, which we at-
tribute to critical-current fluctuations. The power spec-
trum of the gray curve shows 1/ f 2 dependence in con-
trast to typical 1/ f rule [13] for big junctions. We convert
this noise into fluctuations in critical current of either of
the junctions, in other words, we ask the question: what
would be theIC fluctuation∆IC = 2e/h̄(∆EJ) in either
one of the junctions which would cause a capacitance
fluctuation∆Ceff, and hence an apparent phase fluctua-
tion ∆ϕ ? Equation (9) implies

∆Ceff(ng,ϕ) = f (ng,ϕ)C0∆ϕ , (11)

where we have markedC0 = C2
g/(2CΣ). This then con-

verts intoEJ fluctuation according to

∆EJ = ∆Ceff

(

∂Ceff

∂EJ

)−1

(12)

We compute the partial derivative in Eq. (12) numeri-

cally; the result is∂Ceff
∂EJ

≃ 0.072
(

Cg
e

)2 EC
EJ

≃ 0.30
(

Cg
e

)2
.

We also setf (ng,ϕ) → fm since we had tuned to the
maximum gain.

Finally, since the spectral densities of fluctuations are
related similarly as the fluctuations itself, we have the
amplitude spectrum ofIC noise:

sIC =
2e
h̄

sEJ =
2e
h̄

fmsϕC0

(

∂Ceff

∂EJ

)−1

. (13)

This yields the gray line in Fig. 6, with the numbers
around 10 Hz being comparable to big junctions.

FIGURE 6. Measured equivalent flux noise at CSET in-
put (left scale, black curve) and critical current noise (right
scale, gray curve). Low-frequency flux modulalation by
0.013Φ0,RMS at 80 Hz was used as a marker.
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