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Abstract

Background: Guidelines increasingly encourage the use of multivariable risk models to predict the presence of
prevalent undiagnosed type 2 diabetes mellitus worldwide. However, no single model can perform well in all
settings and available models must be tested before implementation in new populations. We assessed and
compared the performance of five prevalent diabetes risk models in mixed-ancestry South Africans.

Methods: Data from the Cape Town Bellville-South cohort were used for this study. Models were identified via
recent systematic reviews. Discrimination was assessed and compared using C-statistic and non-parametric
methods. Calibration was assessed via calibration plots, before and after recalibration through intercept adjustment.

Results: Seven hundred thirty-seven participants (27 % male), mean age, 52.2 years, were included, among whom
130 (17.6 %) had prevalent undiagnosed diabetes. The highest c-statistic for the five prediction models was
recorded with the Kuwaiti model [C-statistic 0.68: 95 % confidence: 0.63–0.73] and the lowest with the Rotterdam
model [0. 64 (0.59–0.69)]; with no significant statistical differences when the models were compared with each
other (Cambridge, Omani and the simplified Finnish models). Calibration ranged from acceptable to good, however
over- and underestimation was prevalent. The Rotterdam and the Finnish models showed significant improvement
following intercept adjustment.

Conclusions: The wide range of performances of different models in our sample highlights the challenges of
selecting an appropriate model for prevalent diabetes risk prediction in different settings.
Background
Diabetes mellitus, type 2 diabetes in particular, is a
growing epidemic worldwide with developing countries
currently paying the highest toll [1]. In 2013 there were
approximately 382 million individuals with type 2 dia-
betes, and this number will surge to approximately 592
million by 2035 [1]. This rapid rise of diabetes will result
in an even greater and more profound burden which de-
veloping countries are not equipped to handle. Type 2
diabetes in developing countries is further characterized
by a low detection rate with a high proportion of people
being undiagnosed. Strategies are therefore needed for
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early detection and risk stratification such that treatment
measures can be implemented to prevent the onset or
delay the progression of related complications.
The use of multivariable risk prediction models has

been advocated as practical and potentially affordable
approaches for improving the detection of undiagnosed
diabetes. Accordingly, guidelines, including those of the
International Diabetes Federation, increasingly promote
the use of reliable, simple and practical risk scoring sys-
tems or questionnaires and derivatives for diabetes risk
screening around the world [2, 3]. During the last two
decades, numerous diabetes prediction models have
been developed. However, only a few models have been
externally validated, and generally not in developing
countries [4, 5]. Consequently, many developing countries
have to rely on prediction models developed in other pop-
ulations and not necessarily validated in their context.
However, issues relating to differences in case-mix across
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populations, inherent to the development of models, can
severely affect the applicability of a model in different set-
tings [6, 7].
This study aimed to validate and compare the per-

formance of selected common models for predicting
prevalent undiagnosed diabetes based upon non-
invasively measured predictors, in mixed ancestry South
Africans.

Methods
Study population and design of study
The Cape Town Bellville-South study data served as the
basis for models validation [8]. Bellville-South is located
within the Northern suburbs of Cape Town, South Africa
and is a traditionally a mixed-ancestry township formed in
the late 1950s. According to the 2001 population census,
its population stands at approximately 26,758 with
80.48 % (21,536) consisting of the mixed ancestry individ-
uals [22]. The study was approved by the Ethics Commit-
tee of the Cape Peninsula University of Technology
(CPUT/HW-REC 2008/002 and CPUT/HW-REC 2010)
and Stellenbosch University (N09/05/146).
The Bellville South Study was a cross-sectional study

conducted from mid-January 2008 to March 2009 (cohort 1),
and from January 2011 to November 2011 (cohort 2). The
target population for this study were subjects ≥ 35 y. Using
a map of Bellville South obtained from the Bellville muni-
cipality, random sampling was approached as follows: first,
the area was divided into six strata; second, within each
strata the streets were classified as short (≤22 houses),
medium (23–40 houses) and long (≥40 houses) streets
based on the number of houses. Two of each respective
streets were randomly selected from each strata. In those
instances where the numbers of houses were too few, a
short or a medium street was randomly selected and
added to such a stratum. The result was a total of 16
short streets representing approximately 190 houses, 15
medium (approximately 410 houses) and 12 long streets
(approximately 400 houses). From the selected streets, all
household members meeting the selection criteria were
invited to participate in the study. One thousand subjects
who met the criteria were approached and 642 partici-
pated in the study. In addition, community authorities re-
quested that willing participants outside the random
selection area should benefit from the study. Therefore
volunteers (304 in 2008–2009 [cohort 1), and 308 in 2011
[cohort 2]) from the same community, but who were not
part of the randomly selected streets or did not meet the
age criteria, were also included.

Recruitment strategy
Information regarding the project was disseminated to
residents through the local radio station, community
newspaper, brochures and fliers; the latter bearing
information about the project and distributed through
school children and taxis by the recruitment team. Add-
itionally, a ‘road show’ strategy that involved a celebrity
suffering from diabetes from the same community was
also used, especially in the targeted streets. Recruited
subjects were visited by the recruitment team the even-
ing before participation and reminded of all the survey
instructions. These included overnight fasting, abstin-
ence from drinking alcohol or consumption of any fluids
in the morning of participation. Since the participants
were required to bring in an early morning mid-stream
urine sample, they were provided with a sterile container
as well as instructions on how to collect the sample. Fur-
thermore, participants were encouraged to bring along
their medical/clinic cards and/or medication they were
currently using.

Identification of prediction models
Existing prediction models were obtained from a system-
atic review by Brown et al. [9]. The search strategy from
Brown’s paper was re-run in PubMed for the time-
period up to April 2014, to identify possible new models.
The following string search was used, as per Brown
et al.: ((“type 2 diabetes” OR “hyperglycaemia” OR
“hyperglycemia”) AND (“risk scores)).” Selected models
were only those developed to predict the presence of un-
diagnosed diabetes. We focused on models developed
using non-invasively measured predictors which were
available in the Bellville-South cohort database. Models
were excluded if they were developed for male and fe-
male individual separately.

Outcome and predictors’ definition and measurements
The main outcome was newly diagnosed type 2 diabetes
from the standard oral glucose tolerance test (OGTT),
applying the World Health Organisation (WHO) criteria
(i.e. fasting plasma glucose ≥ 7.0 mmol/L and/or 2 h
plasma glucose ≥ 11.1 mmol/L) [10]. At the baseline
evaluation conducted between 2008 and 2011, partici-
pants received a face-to-face interview administered by
trained personnel to collect data on personal and family
history of diabetes mellitus, cardiovascular disease
(CVD) and treatments; habits including smoking, alco-
hol consumption, physical activity and diet; demograph-
ics and education.
Clinical measurements included: height, weight, hip

and waist circumferences and blood pressure (BP). BP
measurements used a semi-automatic digital blood pres-
sure monitor (Rossmax MJ90, USA) on the right arm, in
sitting position, after a 10 min rest. The lowest value
from three consecutive measurements 5 min apart was
used in the current analysis. Weight to the nearest
0.1 kg was determined on a Sunbeam EB710 digital
bathroom scale, with each subject in light clothing,
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without shoes and socks. Height to the nearest centi-
metre was measured with a stadiometer, with subjects
standing on a flat surface. Body Mass Index (BMI) was
calculated as weight per square meter (kg/m2).
Blood samples were collected and processed for a wide

range of biochemical markers. Plasma glucose was mea-
sured by enzymatic hexokinase method (Cobas 6000,
Roche Diagnostics, USA). High density lipoprotein chol-
esterol (HDL-c) and triglycerides (TG) were estimated
by enzymatic colorimetric methods (Cobas 6000, Roche
Diagnostics, USA).

Assessment of model performance
The original selected models were validated for the over-
all data and subsets using the formulas, without any re-
calibration. The predicted probability of undiagnosed
diabetes for each participant was computed using the
baseline measured predictors. The performance was
expressed in terms of discrimination and calibration.
Discrimination describes the ability of the model’s per-
formance in distinguishing those at a high risk of devel-
oping diabetes from those at low risk [11]. The
discrimination was assessed and compared using con-
cordance (C) statistic and non-parametric methods [12].
Calibration describes the agreement between the prob-

ability of the outcome of interest as estimated by the
model, and the observed outcome frequencies [13]. It
was assessed graphically by plotting the predicted risk
against the observed outcome rate. The agreement be-
tween the expected (E) and observed (O) rates (E/O)
was assessed overall and within pre-specified groups of
participants. The 95 % confidence intervals for the ex-
pected/observed probabilities (E/O) ratio were calculated
assuming a Poisson distribution [14]. We also calculated
1) the Yates slope, which is the difference between mean
predicted probability of type 2 diabetes for participants
with and without prevalent undiagnosed diabetes, with
higher values indicate better performance; and 2) the
Brier score, which is the squared difference between pre-
dicted probability and actual outcome for each partici-
pant with values ranging between 0 for a perfect
prediction model and 1 for no match in prediction and
outcome [11, 13]. To determine optimal cut-off for maxi-
mising the potential effectiveness of a model, the Youden’s
J statistic (Youden’s index) was used to determine the best
threshold [15], with sensitivity, specificity and percentage
of correctly classified individuals determined for each
threshold. The main analysis was done for the overall cohort
and for subgroups defined by sex, age (<60 vs. ≥60 years)
and BMI (<25 kg/m2 vs. ≥25 g/m2).

Sensitivity analysis
To improve performance and eliminate differences in dia-
betes prevalence between the development population and
the test population, models were recalibrated to the test-
population-specific prevalence using intercept adjustment
[16]. The correction factor calculated is based on the
mean predicted risk and the prevalence in the validation
set and is the natural logarithm of the odds ratio of the
mean observed prevalence and the mean predicted risk
[16]. To assess the potential effect on model performance
of validation studies from complete case analysis, we also
assess the discrimination of model across five datasets
after application of multiple data imputation procedures
to fill missing data.

Results
Identification of prediction models
Five non-invasive prevalent diabetes prediction models
were selected for validation following the screening
process; the Cambridge Risk Score [17], Kuwaiti Risk
Score [18], Omani Diabetes Risk Score [19], Rotterdam
Predictive Model 1 [20] and the simplified Finnish Dia-
betes Risk Score [21] (Fig. 1). Table 1 summarizes the
models’ characteristics. All models included age as a pre-
dictor, while a range of other predictors were variably
combined in models. These included: sex, BMI, use of
antihypertensive medication, family history of diabetes,
waist circumference, past or current smoking and the
use of corticosteroids. Additional 1: Table S1 comprises
of the full equations for each of the models.

Participants’ characteristics
A total of 1256 participants were examined in the Bellville
South studies, including 173 with a history of diagnosed
diabetes who were excluded. A further 346 participants
were excluded for missing data on predictors or outcome
variable. Therefore the final dataset comprised of 737
participants, of whom 580 (78.70 %) were female. In the
Additional file 2: Table S2, we compare the profile of
participants in the final sample vs. that of participants
excluded for missing data. Excluded participants com-
prised more men (27.2 vs. 21.3 %, p = 0.012), were more
likely to display a better lifestyle profile for alcohol in-
take (18.8 % vs. 28.1 %, p <0.001), smoking (31.8 % vs.
43.8 %, p < 0.001), lower family history of diabetes (all
p ≤0.001), higher systolic blood pressure (126 vs.
123 mmHg, p = 0.009) and lower triglycerides (1.4 vs.
1.5 mmol/l, p = 0.043); although absolute differences
were mostly clinically trivial.
The baseline profile for men and women included in the

study is described in Table 2. The mean baseline age was
51.2 years overall, and 53.5 and 52.1 years, respectively in
men and women (p = 0.311). The BMI (p < 0.001) waist
circumference (p = 0.024) and fasting blood glucose (p =
0.036) were significantly higher in women, while smoking
(p <0.001) and alcohol consumption (p <0.001) were fre-
quent among men.



Fig. 1 Flow diagram of selected studies
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Prediction of prevalent undiagnosed diabetes in the
overall sample
A total of 130 participants (17.6 %) had prevalent un-
diagnosed diabetes. This prevalence was similar in men
vs. women (14 % vs. 18.6 %, p = 0.220) (Table 2). Table 1
and Additional file 1: Table S1 shows the discrimination
for the selected prediction models in their original form
in the overall sample. Discrimination was modest-to-
acceptable and similar between models, with C-statistics
(95 % CI) ranging from 0.64 (0.59–0.69) for the Rotterdam
model to 0.68 (0.63–0.73) for the Kuwaiti model (all
p > 0.05 for c-statistics comparison; Additional file 3:
Table S3). At the total population level, the absolute
risk of prevalent diabetes was acceptably estimated by
the Omani model, overestimated by 81 % (9–152 %) by
the Cambridge model, underestimated by 74 % (61–87 %)
by the Finnish model and marginally underestimated by
the Kuwaiti and Rotterdam models (Table 1). The calibra-
tion curves are shown in Fig. 2 and supplemental Fig. 2.
There was a systematic risk underestimation across the
continuum of predicted probability by the Finnish and
Rotterdam models, a selective upper strata risk overesti-
mation by the Cambridge and Omani models, and a com-
bination of both lower strata risk underestimation and
upper strata risk overestimation by the Kuwaiti model.
Comparison of the C-statistics from the development
study and the models’ performance in this population
shows a drop in performance of all the models. Other per-
formance measures are shown in Table 1.

Prediction of prevalent undiagnosed diabetes in
subgroups
The performance of the original models across sub-
groups was parallel to that in the overall dataset
(Table 3). When comparing patterns of predictions
across complementary subgroups, only stand-alone dif-
ferences were seen in performance for a subgroup,
which was not carried through all performance mea-
sures. Estimates of C-statistics were broadly similar
across complementary subgroups, except for the Omani
and Finnish models across BMI subgroups, whereby
lower estimates were always found in the overweight/
obese subgroup. The pattern of the overall calibration
(E/O) across complementary subgroups varied substan-
tially across models. For instance, across gender sub-
groups, the overall diabetes risk was acceptably and
equally predicted by the Omani model, equally under-
estimated by the Kuwaiti and Finnish models, equally
overestimated by the Cambridge model, but acceptably
estimated in men and underestimated in women by the



Table 1 Overview of the included prevalent diabetes risk prediction models and their performance for the original model and the intercept adjusted model

Incident diabetes risk models

Description Cambridge risk score Kuwaiti risk score Omani risk score Rotterdam predictive model 1 Simplified Finnish risk score Bellville South

Authors Griffin et al. [17] Al Khalaf et al. [18] Al-Lawati & Tuomilehto [19] Baan et al. [20] Bergmann et al. [21] -

Year published 2000 2008 2007 1999 2007 -

Country UK Kuwaiti Oman Netherlands Germany South Africa

Validation External [23-28, 35] None External [28] External [23, 27, 29] External [23, 27, 28] -

Sample size 1077 460 4881 1016 526 737

Type of study Cross-sectional Cross-sectional Cross-sectional Cohort Cohort Cohort

Age range 40 – 79 20 – >40 (36.2) 20 – 80 55 – 75 41 – 79 15–95

Population Caucasian Arab Arab Caucasian Caucasian Mixed ancestry

Diagnosis of diabetes FBG ≥ 7.0 mmol/l; 2 h
glucose ≥ 11.1 mmol/l

FBG ≥ 7.0 mmol/l; Random
glucose ≥ 11.1 mmol/l

FBG ≥ 7.0 mmol/l; 2 h
glucose ≥ 11.1 mmol/l

FBG ≥ 7.0 mmol/l; 2 h
glucose ≥ 11.1 mmol/l

FBG ≥ 7.0 mmol/l; 2 h
glucose ≥ 11.1 mmol/l

FBG ≥ 7.0 mmol/l; 2 h
glucose ≥ 11.1 mmol/l

Development C-
statistic

0.80 (0.68 – 0.91) 0.82 (NS) 0.83 (0.82 – 0.84) 0.68 (0.64 – 0.72) 0.75 (0.68 – 0.81) -

Predictors

Age Yes Yes Yes Yes Yes Yes

Sex– Yes No No Yes Yes Yes

BMI Yes No Yes Yes Yes Yes

Use of HTN drugs Yes Yes No Yes Yes Yes

Family history Yes Yes Yes No Yes Yes

WC No Yes Yes No No Yes

Smoking Yes No No No Yes Yes

Corticosteroids Yes No No No Yes Yes

Systolic/diastolic No No Yes No No Yes

Performance Original Adjusted Original Adjusted Original Adjusted Original Adjusted Original Adjusted

E/O (95 % CI) 1.81 (1.09–2.52) 1.22 (0.61–1.83) 0.72 (0.40–1.12) 0.94 (0.47–1.41) 1.28 (0.63–1.93) 1.06 (0.47–1.66) 0.54 (0.50–1.04) 0.98 (0.91–1.05) 0.26 (0.13–0.39) 0.89 (0.51–1.26) −

Brier score 0.193 0.160 0.141 0.143 0.164 0.157 0.147 0.140 0.157 0.143 −

Yates slope 0.379 0.379 0.496 0.496 0.392 0.392 0.971 0.971 0.491 0.491 −

C-statistic (95 % CI) 0.67 (0.62–0.72) − 0.68 (0.63–0.73) − 0.66 (0.61–0.70) − 0.64 (0.59–0.69) − 0.67 (0.62–0.71) − −

Optimal threshold 0.29 0.16 0.13 0.18 0.12 0.09 0.20 0.18 0.02 0.08 −

Sensitivity 65 65 61 61 85 85 57 57 75 75 −

Specificity 61 61 63 63 42 42 65 65 48 48 −

Correctly classified 62 62 63 63 50 50 64 64 53 53 −

*95 % CI 95 % confidence interval, BMI body mass index, DM diabetes mellitus, E/O ratio expected/observed event rate, FBG fasting blood glucose, HTN hypertension, OGTT 2 h post load oral glucose tolerance test, UK
United Kingdom, WC waist circumference
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Table 2 Characteristics comparison of participants with valid data between male and female

Male (157) Female (580) p-value Overall (737)

Prevalent undiagnosed DM (%) 22 (14.0) 108 (18.6) 0.220 130 (17.3)

Age (years) 53.5 (15.0) 52.1 (14.3) 0.311 52.2 (14.5)

Body mass index (kg/m2) 25.5 (5.8) 29.6 (7.0) <0.001 29.4 (7.1)

Waist circumference (cm) 92.5 (15.2) 95.6 (14.7) 0.024 95.9 (14.9)

Hypertensive medication (%) 43 (27.4) 208 (35.9) 0.059 251 (34.1)

Smoking status (% smoking) 88 (56.1) 235 (40.5) <0.001 323 (43.8)

Systolic blood pressure (mmHg) 124.3 (16.6) 121.6 (19.2) 0.077 122.0 (18.7)

Diastolic blood pressure (mmHg) 75.6 (11.1) 74.7 (12.1) 0.365 74.7 (11.9)

Height (m) 1.7 (0.1) 1.6 (0.1) <0.001 1.6 (0.1)

Mother having diabetes (%) 17 (10.8) 92 (15.9) 0.147 109 (14.8)

Father having diabetes (%) 14 (8.9) 44 (7.6) 0.702 58 (7.9)

Sister having diabetes (%) 12 (7.6) 80 (13.8) 0.053 92 (12.5)

Brother having diabetes (%) 9 (5.7) 49 (8.5) 0.340 58 (7.9)

Fasting blood glucose (mmol/L) 5.4 (1.4) 5.7 (2.0) 0.036 5.8 (1.9)

HDL (mmol/L) 1.2 (0.4) 1.3 (0.3) 0.136 1.3 (0.3)

Weight (kg) 72.3 (16.4) 73.9 (17.7) 0.290 74.1 (17.5)

Ever consumed alcohol (%) 116 (73.9) 240 (41.4) <0.001 356 (48.3)

Current drinking (%) 80 (51.0) 127 (21.9) <0.001 207 (28.1)

Using Corticosteroid use (%) 1 (0.6) 4 (0.7) >0.99 5 (0.7)

Triglyceride (mmol/L) 1.4 (0.9) 1.4 (0.9) 0.836 1.4 (0.9)

Fig. 2 Calibration curves in the overall cohort for the models before (upper panel) and after the intercept adjustment (lower panel). A Cambridge
Risk Score, B Kuwaiti Risk Score, C Omani Diabetes Risk Score, and D Simplified Finnish Diabetes Risk Score and E Rotterdam Predictive Model 1.
Calibration describes the agreement between the probability of undiagnosed diabetes as estimated by the model and the recorded frequencies
of the outcome. The ideal calibration is graphically represented by the dotted diagonal line at 45°. Participants are grouped into percentiles
across increasing predicted risk. The vertical lines at the bottom of the graph depict the frequency distribution of the calibrated probabilities of
diabetes. E/O, expected/observed ratio
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Table 3 Discrimination and calibration statistics for diabetes risk model performance in subgroups of participants by gender, age and body mass index (BMI)

Models Male Female Age < 60 years Age≥ 60 years BMI < 25 kg/m2 BMI≥ 25 kg/m2

Cambridge Diabetes Risk Score [17] E/O (95 % CI) 2.30 (1.21−3.37) 1.71 (1.00−1.41) 1.57 (0.71−2.44) 2.10 (1.51−2.69) 1.08 (0.55−1.61) 1.96 (1.30−2.63)

Brier score 0.195 0.192 0.151 0.282 0.102 0.230

Yates slope 0.373 0.384 0.368 0.384 0.450 0.368

C-statistic (95 % CI) 0.67 (0.56−0.78) 0.67 (0.62−0.73) 0.66 (0.60−0.72) 0.65 (0.56−0.73) 0.69 (0.58−0.79) 0.64 (0.59−0.70)

Kuwaiti Risk Score [18] E/O (95 % CI) 0.73 (0.40−1.06) 0.72 (0.34−1.10) 0.73 (0.37−1.10) 0.71 (0.32−1.11) 0.33 (0.20−0.46) 0.81 (0.43−1.19)

Brier score 0.112 0.149 0.121 0.186 0.097 0.159

Yates slope 0.588 0.468 0.476 0.449 0.890 0.468

C-statistic (95 % CI) 0.70 (0.58−0.82) 0.67 (0.61−0.72) 0.67 (0.61−0.74) 0.65 (0.57−0.73) 0.61 (0.51−0.72) 0.66 (0.60−0.71)

Omani Diabetes Risk Score [19] E/O (95 % CI) 1.33 (0.45−2.20) 1.32 (0.65−2.00) 1.26 (0.53−1.99) 1.40 (0.60−2.20) 1.16 (0.41−1.92) 1.36 (0.71−2.01)

Brier score 0.137 0.173 0.140 0.221 0.096 0.194

Yates slope 0.347 0.399 0.393 0.296 0.620 0.304

C-statistic (95 % CI) 0.62 (0.49−0.74) 0.66 (0.61−0.71) 0.66 (0.60−0.71) 0.60 (0.52−0.68) 0.71 (0.61−0.82) 0.61 (0.56−0.67)

Rotterdam Predictive Model 1 [20] E/O (95 % CI) 0.84 (−0.38−2.06) 0.48 (0.45−0.93) 0.52 (0.44−0.96) 0.49 (0.39−0.88) 0.72 (0.34−1.06) 0.51 (0.45−0.96)

Brier score 0.117 0.155 0.125 0.199 0.096 0.168

Yates slope 0.913 1.154 1.135 0.838 0.791 0.886

C-statistic (95 % CI) 0.62 (0.49−0.75) 0.66 (0.60−0.72) 0.62 (0.55−0.69) 0.61 (0.52−0.69) 0.61 (0.50−0.72) 0.63 (0.57−0.69)

Simplified Finnish Diabetes Risk score [21] E/O (95 % CI) 0.22 (0.09−0.35) 0.32 (0.18−0.45) 0.34 (0.18−0.50) 0.26 (0.14−0.37) 0.11 (0.06−0.15) 0.34 (0.21−0.48)

Brier score 0.128 0.162 0.128 0.213 0.103 0.176

Yates slope 0.538 0.591 0.487 0.608 1.345 0.562

C-statistic (95 % CI) 0.70 (0.59−0.81) 0.66 (0.60−0.71) 0.64 (0.58−0.71) 0.67 (0.60−0.75) 0.77 (0.69−0.86) 0.62 (0.57−0.68)
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Rotterdam model (Table 3). Other performance mea-
sures across subgroups are shown in Table 3.

Performance of the intercept adjusted models
As expected, intercept adjustment yielded acceptable
agreement between predicted and observed prevalent
diabetes rates at the total population level. A perfect
agreement was also observed across the continuum of
the predicted probability by the updated Rotterdam
model. However, despite some attenuation, selective
upper strata risk overestimations were apparent for
other models.

Model performance at the optimal threshold
The performances of models at the optimal thresholds
are shown in Table 1. As expected, the optimal threshold
probability for our sample varied across models and for
the same model between the original and intercept ad-
justed versions. The sensitivity at the optimal threshold
ranged from 61 % for the Kuwaiti model to 85 % with
the Omani model, the specificity from 42 % (Omani
model) to 65 % (Rotterdam model), and the proportion
of participants correctly classified from 50 % (Omani
model) to 64 % (Rotterdam model).

Model performance after multiple imputation of missing
data
The discrimination (c-statistic) of models across five
datasets obtained after multiple imputation of missing
data was very similar: 0.69 (0.64–0.73) for the Cam-
bridge model, 0.69 (0.65–0.74) for the Kuwaiti model,
0.65 (0.61–0.69) for the Omani model, 0.65 (0.60–0.69)
for the Rotterdam model and 0.66 (0.62–0.70) for the
Finnish model. The values were also very similar to
those from the validation of models on dataset compris-
ing only participants with complete data (Table 1).

Discussion
To our knowledge, this is the largest and most compre-
hensive validation study of prevalent diabetes prediction
models in a sub-Saharan African population. In the Bellville
South cohort, the selected existing prediction models
based upon non-invasive measured predictors had
modest-to-acceptable discriminatory ability to predict
prevalent undiagnosed diabetes, both overall and within
subgroups. Simple intercept adjustment had mixed ef-
fect on the calibration performance of the models,
while none of the models was significantly better than
other models to be uniquely recommended for use in
this setting. At the optimal probability thresholds, the
best performing model would correctly classify only
about 2/3rd of the population, indicating the existing
scope for further improving the models’ performance
in this setting.
The need for diabetes screening programs is impera-
tive in the reduction of the worldwide burden of compli-
cations from diabetes in undiagnosed individuals. In
view of the large and continuously growing burden of
diabetes the Centre for Disease Control strongly advo-
cates for diabetes screening programs. In its most recent
guidelines for type 2 diabetes screening and diagnosis,
the International Diabetes Federation has recommended
that each health service should decide on programs to
detect undiagnosed diabetes based on the prevalence
and the resources available in that region [3]. In areas
with limited care, such as developing countries, the de-
tection programs are suggested to be opportunistic and
should be limited to high-risk individuals. The World
Health Organization African region promotes the
screening of at-risk individuals in Africa in healthcare
settings and social gatherings [22]. Risk assessment
scores are feasible and cost-effective and can be consid-
ered, but applicability must be certain, with the required
tests available in the area and the validation of that risk
score in the population.
With the exception of the Kuwaiti model [18], all

other models assessed in our study have been validated
externally. The most validated appeared to be the
Cambridge model [17], with c-statistics ranging from
0.67 to 0.83 across validation studies [23-27]. With a c-
statistic of 0.67 in the Bellville South data set, the
Cambridge model performance in this population fell
to the bottom end of other validation study results.
Similarly, the Finnish model’s discrimination performance
(c-statistic: 0.67) also compared with lower c-statistic’s
from validation studies [23, 27, 28]. The Rotterdam model
mirrored the validation study results (0.64 vs. 0.63–0.65)
[23, 27, 29], while the Omani model underperformed
(c-statistic: 0.66) when compared to the only validation
study the authors are aware of (c-statistic: 0.72) [28].
Through an attempt to improve calibration with simple

intercept adjustment, the E/O ratios for all models were
improved. Despite the expected decision that no model
was ready for immediate implementation, the Rotterdam
Predictive Model 1 showed the best improvement in cali-
bration following this adjustment. A review by Brown
et al. in 2012 [9] of 17 undiagnosed Type 2 diabetes risk
scores, which included all five models discussed here, de-
termined that performance was not associated to the
number of predictors in the model. Overall, validation
studies showed a drop in model performance when tested
in a new population, with the Rotterdam model having the
lowest validation performance range, when compared to
the other models. This was echoed in our results for the
original Rotterdam model validation. The possible reasons
to explain the drop in the performance of diabetes predic-
tion models in new population, some of which apply to
our study, have been extensively discussed elsewhere [30].
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At the optimal probability threshold, the models tested
in our study would at best correctly detect two-thirds of
participants, with diagnostic performance mostly similar
to those from published studies [25, 30]. This indicates
the existing scope for improving the performance of dia-
betes prediction models in our setting. This could be
done by adopting or developing models enriched with
predictors to improve the predictive accuracy. Such an
approach however, has to be balanced against the fact
that the number of predictors and the complexity and
cost of their measurements are severe limitations for
their uptake in routine practice [30]. What is probably
needed the most in resources limited settings like Africa
is evidence to confirm that the introduction of diabetes
prediction models in routine practice will improve early
detection of diabetes by healthcare practitioners, and the
outcome of those diagnosed with diabetes in the long
run.
The results of this study were strengthened by the

diagnosis of diabetes based on OGTT, thus limiting the
risk of misclassification. The age distribution was wide,
including a vast majority of the high-risk population. A
potential limitation of the study was the exclusion of
some risk scores due to the necessary information being
unavailable. The fewer number of males in the final
dataset could have played a role in the performance of
the models, owing to the significant difference between
the genders in BMI, a predictor in four out of the five
models. No power estimation was done, in the absence
of consensus methods for sample size estimation in
model validation studies. However, studies have sug-
gested that at least 100 events and 100 non-events were
the minimum required samples for external validation
studies [31]. These requirements were largely met in our
main analysis. Our study participants comprised a subset
of randomly selected individuals and subset of self-
selected participants from the same community. In the
absence of any influence on participants’ selection of a
prior knowledge of the association between relevant
study outcomes and predictors included in tested model,
any differential effect of the sample selection strategy on
the discriminatory performance of tested models, is very
unlikely. The prevalence of screen-detected diabetes in
our randomly selected participants alones has been esti-
mated to be 18.1 % [32], which is very close to the
17.6 % found in combined sample, suggested the absence
of a differential effect on the calibration performance of
models. The total number of participants with screen-
detected diabetes in the combined sample precluded re-
liable stratified analyses to investigate and confirm the
assumptions above. Finally, a substantial number of par-
ticipants were excluded from the main analyses due to
missing data on predictors included in models or on the
status for prevalent undiagnosed diabetes. However,
participants with complete data were mostly similar to
those with missing data, particularly regarding the distri-
bution of key predictors included in models such as age,
gender and measures of adiposity. Therefore, differential
effect on the model performance of validation based on
complete case analyses, is very unlikely. Indeed, in sensi-
tivity analysis, the discriminatory performance of models
was very similar across multiple imputed datasets, and
not appreciable different from the performance based on
complete case analysis. Furthermore, variables with high
frequency of missingness were likely to be those that are
very difficult to accurately measure in routine setting
like family history of diabetes, and therefore, less indi-
cated for uncritical inclusion in models for predicting
diabetes across settings [33, 34].
Conclusions
Our findings highlight the performance variation of
models differs across different populations, particularly
calibration. This low performance can be explained by the
obvious lack of transportability due to the differences in
development and validation population characteristics and
the affect case-mix difference has on model performance.
With no model development in the mixed ancestry popu-
lation of South Africa, selection of generalizable models
for validation was limited. There is a great clinical need for
a unique, robust and convenient tool for identifying un-
diagnosed diabetes and predicating future diabetes quicker
and more economically in this South African population.
Through efficient application of prediction models’ im-
provement procedures, the final model would improve risk
assessment specific to this community. With no acceptable
validated model, unique model development is possibly
the best way forward.
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