
Efficient Online Top-k Retrieval with Arbitrary Similarity
Measures

Prasad M Deshpande
IBM India Research Lab

Bangalore, India
prasdesh@in.ibm.com

Deepak P
IBM India Research Lab

Bangalore, India
deepak.s.p@in.ibm.com

Krishna Kummamuru
IBM India Research Lab

Bangalore, India
kkummamu@in.ibm.com

ABSTRACT
The top-k retrieval problem requires finding k objects most
similar to a given query object. Similarities between ob-
jects are most often computed as aggregated similarities of
their attribute values. We consider the case where the simi-
larities between attribute values are arbitrary (non-metric),
due to which standard space partitioning indexes cannot be
used. Among the most popular techniques that can handle
arbitrary similarity measures is the family of threshold algo-
rithms. These were designed as middleware algorithms that
assume that similarity lists for each attribute are available
and focus on efficiently merging these lists to arrive at the
results. In this paper, we explore multi-dimensional index-
ing of non-metric spaces that can lead to efficient pruning of
the search space utilizing inter-attribute relationships, dur-
ing top-k computation. We propose an indexing structure,
the AL-Tree and an algorithm to do top-k retrieval using
it in an online fashion. The ALTree exploits the fact that
many real world attributes come from a small value space.
We show that our algorithm performs much better than the
threshold based algorithms in terms of computational cost
due to efficient pruning of the search space. Further, it out-
performs them in terms of IOs by upto an order of magnitude
in case of dense datasets.

Keywords
K-nearest neighbors, Index structures, similarity measures

1. INTRODUCTION
In this paper, we consider the problem of finding the top k
objects that are similar to a given object from a database of
objects. This is a fundamental problem that arises in many
different situations such as information retrieval and any
case of ranked retrieval of objects. Top-k algorithms evalu-
ate similarities over multiples attributes of objects and com-
bine the similarities using a monotone aggregation function.
Top-k retrieval has been extensively studied in the past and
many good algorithms and indexing structures have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00

developed [23]. The most popular simplifying assumption
employed is that of metric spaces. The assumption that at-
tribute similarities measures are metric, allows the creation
of indexing structures that can exploit the triangle inequality
property. Examples of metric-space based indexing struc-
tures for top-k retrieval include the widely used kd-tree [13]
among others [20, 7, 21]. However, the triangle inequality
property is too restrictive to model the (dis)similarities as
perceived by humans (for example, [11]). This is particularly
true in the case of similarities over categorical value spaces
such as softwate products from multiple vendors, journals
by different publishers etc. In this paper, we consider ar-
bitrary similarity measures where metric space approches
like kd-tree cannot be used. The most applicable method
of handling the generalized problem is the family of thresh-
old algorithms [8, 9, 10, 2]. These were designed as mid-
dleware algorithms that perform index scans over multiple
pre-computed index lists, one for each attribute in the query,
sorted in the descending order of similarity to the relevant
query attribute. Different algorithms from this family vary
in how they schedule between random and sequential ac-
cesses.

Many attributes of real-world objects come from extremely
restricted spaces. As an example, consider the case where a
top-k query is to be run over a database of servers within
an organization where similarities are computed on server
attributes such as hard disk capacity, memory capacity, op-
erating system, network card details, speed of processors
etc. A simplistic dataset (running example) of servers be-
ing represented by just two attributes, viz., OS and Memory
Capacity as given in Table 1. Each of these attributes take
values from a very restricted space; hard disks come in sizes
which are multiples of gigabytes and there are not more than
a score popular operating systems and versions. Due to the
very small space of values, these datasets have a lot of ob-
jects which assume the same value for any attribute. Such
datasets also appear in many other domains such as prod-
uct databases. The attribute specific index lists which the
family of threshold algorithms use, are not optimized to ex-
ploit the case where the number of objects per value of an
attribute is large. Since many objects have the same value,
a change in similarity score occurs infrequently leading to
infrequent candidate pruning.

In this paper, we exploit the distribution of objects across
various dimensions and similarity between various values of
each attribute in building an indexing structure which we

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192585562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Id OS Name Memory
1 MS Windows (MSW) 512M
2 MS Windows (MSW) 2048M
3 RedHat Linux (RHL) 2048M
4 SuSE Linux (SL) 1024M
5 SuSE Linux (SL) 1024M

Table 1: Sample dataset

use as the backend for top-k query processing. We call this
indexing structure as attribute-level tree (AL Tree). Each
level in AL Tree represents an attribute, nodes in a level
represent various values taken by the attribute and leaves
represent the data with appropriate attribute values. The
similarities between various values of each attribute are pre-
computed. At query time, we dynamically and virtually or-
der the values of attributes in AL Tree, to efficiently search
the space around the query object and output the nearest
neighbors as they are encountered and inferred. The ALTree
exploits the fact that many real world attributes come from
a small value space, by searching over the value space rather
than over objects. We show that this structure enables upto
an order of magnitude improvement on response times on
dense datasets over the conventional threshold based algo-
rithms. It may be emphasized here that the performance of
the proposed algorithm improves dramatically with the den-
sity of the dataset as opposed to conventional algorithms.
Further, the proposed algorithm emits results one at a time
in an online fashion. This enables the user to issue a query
with high value of k and stop the computation as soon as
the desired results are found.

The main contributions of our work are listed below:

• An attribute level indexing structure (AL Tree) that
optimizes storage for dense datasets, which can be used
as the backend for top-k query processing.

• An algorithm to return all objects within a specified
threshold distance of the query object using the AL
Tree backend.

• An on-line algorithm to return the top-k objects simi-
lar to the query object using the AL Tree backend.

• A detailed experimental evaluation of the algorithm
showing its effectiveness over conventional techniques,
especially on dense datasets.

The remainder of this paper is organized as follows. We
begin with a discussion of related work in Section 2. In Sec-
tion 3, we describe the problem formally. We describe the
AL Tree indexing structure in Section 4 and algorithms for
searching top-k in Section 5. We present our experimen-
tal results and comparison to CA and TA in Section 7 and
finally conclude in Section 8.

2. RELATED WORK
Top-k query processing has been well studied on scenarios
where the distance measure satisfies the metric property. A
distance measure has to satisfy the traingle inequality prop-
erty (among other properties such as symmetry and reflex-
ivity) to qualify to be a metric distance measure. In such

cases as metric distance measures, large areas of the space
can be pruned out while searching for top-k results. Pivot
points can be used to partition and thus restrict the search
space [13, 20]. However, in practice, there are several dissim-
ilarity measures that are non-metric [18]. These include the
k-median distance that measures the kth most similar por-
tion of the compared objects and partial Hausdorff distance
(pHD) for shape based image retrieval. Also, real world al-
gorithms for measuring the distance may be complex based
on data analysis, learning distances from the distribution,
or domain knowledge [16, 14, 11]. AL Tree can be used for
arbitrary non-metric similarity measures where the metric
based indexing methods such as the kd-tree or R-Tree can-
not be applied.

Another popular area where top-k queries are put to use is
that of information retrieval, retrieval of multimedia content
and web search engines. In case of text data, the number
of attributes are as much as the size of the whole vocab-
ulary and the values assumed by each attribute in a data
document is the (most commonly) tf-idf value of the same.
Multimedia and video retrieval also employ similar repre-
sentations for data objects. Such a representation leads to
a very sparse dataset and the distance measures used are
metric. We address a different domain of denser datasets
and non-metric similarities.

The other class of algorithms used in top-k query process-
ing, which have been quite popular in recent years, is the
class of threshold algorithms (TA) [10]. They maintain pre-
computed index lists on disk, one for each attribute value,
sorted in descending order of attribute dissimilarity and as-
sume that these lists can be accessed by random accesses
or sequential accesses. Threshold Algorithms perform scans
over these lists and aggregates similarity across various at-
tributes on the fly, thus maintaining a lower bound for the
rank-k result candidate and an upper bound for the scores
of the rest of the candidates. They stop processing as and
when they have prcessed enough to reach a condition that
the former is greater than the latter, which ensures that the
top-k candidates are indeed the top-k closest objects to the
query. Different algorithms in the TA family differ in how
they schedule the random accesses and sequential accesses
over the index lists. We differ from threshold algorithms in
two aspects: rather than assume a index list backend, we
build a specialized index that can capture inter attribute
dependencies and we return the top-k results in an online
fashion. Early members of the TA family made extensive
use of random access (RA) to index entries to resolve miss-
ing attribute-level dissimilarities of result candidates. But,
for very large index lists with millions of entries that span
multiple disk tracks, the resulting random access cost is 50 -
50,000 times higher than the cost of a sorted access (SA). To
address this problem, it has been proposed not to use ran-
dom access [10, 12]. This variant of TA is called NRA (No
RA). However, this may make NRA to scan longer parts
of index lists in order to discover incomplete information.
Therefore, Fagin proposed a combined algorithm (CA) [9]
that occasionally and carefully performs RAs for promis-
ing candidates which can contribute to major pruning of
candidates. Scheduling of sequential and random accesses
efficiently is critical for TA style algorithms and has been
addressed by many. Strategies for scheduling RAs on “ex-

pensive predicates” are presented in [4, 17]. They consid-
ered restricted attribute sources, such as non-indexed at-
tributes that do not support sorted access at all. The MPro
method [4] computes a list of candidates for the indexed
attributes and then schedules additional RAs on the non-
indexed attributes. A integrated approach of knapsack re-
lated optimization technique for SA and a statistics based
cost-model for RA scheduling is proposed in [2]. Many ap-
plications including web search need not have the truly best
results and can do with approximate best results. It has
been shown [19] that using probabilistic estimates of bounds
in place of the overly conservative estimates of bounds can
lead to performance improvements in TA style algorithms.
Recently, there has been some work [15] at designing online
versions of TA style algorithms without doing any random
accesses. In [22], the authors relax the assumption that the
aggregation functions are monotonic and propose an index-
merge paradigm that performs progressive search over the
space of joint states. In our work, we maintain the assump-
tion that the similarity aggregation function is monotonic.
For comparison, we choose CA and TA in our experiments
since they are applicable to non-metric spaces and are the
most widely studied algorithms.

3. PROBLEM DEFINITION
We will now define the problem formally. Let D be the
set of objects in the database. Assume that each object
in D have m attributes each. The distance function di for
attribute i is a function di : Ai × Ai → < where Ai is the
domain of attribute i. The distance between two objects is
defined as any monotone function of the distance between
the corresponding attributes:

d(Q,O) = f(d1(v1(Q), v1(O)) . . . dm(vm(Q), vm(O))

where vi(O) is the value of ith attribute of object O and f
is any monotone combining function. Most commonly, such
combining functions assume the form of a weighted sum:

d(Q,O, W) =
∑

i

widi(vi(Q), vi(O))

where W = [w1, . . . , wm], wi ≥ 0. If each di is bounded in
[0, 1] and

∑

i wi = 1, then d is also bounded between [0, 1].
Without loss of generality, we will use the weighted sum
combining function in the rest of the paper (for simplicity).
The notations used in this paper are listed in Table 2.

D Database of objects
m Number of attributes
Ai Domain of attribute i
k Number of objects to retrieve
O Instance of an object
vi(O) ith attribute value of O
Q Query object
W [w1, w2, . . . wm] Attribute weight vector
di Distance function for attribute i

Table 2: Notations

In this setting, the top-k query problem is defined as follows:

Definition 3.1. Top-k Query Problem: Given a Q
and W , find k objects from D that are nearest to the query

object Q where the distance is computed using weights W .
This corresponds to finding the set R ⊆ D, such that |R| =
k, and

O ∈ R ⇔ ∀O′ ∈ D − R, d(Q,O, W) ≤ d(Q, O′, W)

One of the commonly considered variants of this problem,
is that of computing a ranked set of results. Ranking the
results based on their distance from the query object would
enable the user to scan the set of results in that order. An-
other variant is that of computing and emitting the result
set online, in the increasing order of distance from the query,
which would enable the user to use the top results before the
entire top-k results have been computed. Both these vari-
ants assume significance when k is large. We address the
ranked online version of the top-k query problem in this pa-
per.

4. THE ATTRIBUTE LEVEL TREE
In this section, we describe the Attribute Level Tree (AL
Tree) data structure, the usage of indirection lists to achieve
dynamic sibling ordering and a compaction technique for the
AL Tree.

4.1 The AL Tree Data Structure
Consider a database of D objects having m attributes each.
Each level in the AL Tree rooted at R is associated with a
specific attribute in the dataset, and hence, each AL Tree
assumes an ordering of attributes. Thus, each dataset has a
unique AL Tree for a given ordering of attributes. Consider
an ordering of attributes where the ith attribute is denoted
by ai where 1 ≤ i ≤ m. Each internal node of the AL Tree
N is characterized by the level of the node L(N), which
denotes the number of edges from root to reach N , and a
value V (N) which would be one of the values from AL(N).
We represent each such internal node by (V (N)). Each node
N is associated with a set of data objects S(N). Consider
a node N , the route to whom from the root is R, N1, N2,
Ě NL(N)−1 , NL(N) where NL(N) = N . S(N) would then
comprise each object d which satisfies

∀L(N)
i=1 vi(d) = V (Ni)

The jth step away from the root fixes the value of the at-
tribute aj , and thus the set of objects that a node N repre-
sents is the subset of the parent’s objects restricted to those
which assume the value V (N) for the attribute aL(N). Thus,
S(N) would contain each object d from the set of objects
in it’s parent provided it satisfies the condition vL(N)(d) =
V (N). It may be noted that internal nodes (apart from the
root which represents the entire set of objects) represent sets
of objects which has the same value for at least one attribute,
whereas each leaf node represents sets of objects which have
the same values for all the attributes, i.e., duplicates. Hence,
every leaf node N , is characterized by the level L(N), the
value V (N) and the object ids of the objects that the node
represents, S(N) and can be represented by (V (N), S(N)).
Optionally, the leaf nodes may hold pointers to the location
of the objects that it represents. The S(N) attribute would
always be a singleton list in a database which doesn’t con-
tain duplicates. It may be noted that the database can be
fully re-created from the ALTree.

Example 4.1. Consider the dataset in Table 1. There
are two attributes in the dataset, Operating System and Mem-
ory Capacity. Shown alongside the dataset is the AL Tree
for the same assuming the ordering (OS, Memory) for at-
tributes. The top-level nodes, A, B & C stand for the three
values of the OS attribute, MSW, RHL and SL respectively.
Among data objects that assume the value MSW for the OS
attribute, there are two possible values, 512M and 2048M for
the Memory attribute. Thus, the node A has two children,
one for each of those values. The leaf node G stands for two
objects which assume value 1024M for the Memory attribute
(as that is the value associated with G) and the value SL
for the OS attribute (as that is the value associated with G’s
parent, C).

Figure 1: A sample AL Tree and dataset.

4.2 Indirection Lists and Dynamic Sibling Or-
dering

The AL Tree assumes no ordering among sibling nodes.
However, efficient top-k retrieval from the AL Tree requires a
controlled and directed traversal of the tree according to the
query. We accomplish query time sibling ordering in the AL
Tree using pre-computed indirection lists, which we describe
in this section. Let the values that attribute aj can assume
be denoted by be Aj = {Aj1 , Aj2 , . . . Ajcj

}. For every value

v of attribute aj , we maintain a list L, of values from Aj in
the non-decreasing order of distance (non-increasing order
of similarity) from v, i.e. the following holds,

dj(L[p], v) ≤ dj(L[q], v),∀p < q

For every attribute aj , there would be cj such lists (one list
per value from Aj), each of length cj . The total size of the
collection of lists would hence be Σj(cj

2) values. However,
as these lists are held on disk and each query needs to get
only as many lists as the number of attributes (the ordering
for children of sibling nodes would be the same for the same
query as the similarity lists are per attribute-value entities),
this approach is scalable. These similarity lists specify the
ordering for siblings of internal nodes.

Each internal node N, in the AL Tree would have a value
based lookup function for the children nodes which can be
defined as follows:

ChildN (v) =

C, if ∃C,3: (PARENT (C) = N)
∧ (V (C) = v)

null, otherwise

Let the number of attributes be n and the query be Q = (v1,
v2, . . . vm) such that vj ∈ Aj . Let the pre-computed list for
vj be denoted by Lj . We implement a lookup function for

every internal node N , to lookup the ith child of N (accord-
ing to the order specified by the appropriate indirection list),
denoted by ChildN (i, v) as follows

1. count = 0

2. for(j = 0; j < L.size(); j + +)

(a) if(ChildN (L[j])! = φ)count + +

(b) if(count = j) return ChildN (L[j])

3. return φ

This returns the ith child of N , when the children of N are
arranged in the same order as they are in the list correspond-
ing to the value specified in the ssecond parameter.

Figure 2: Similarity Lists & a Re-Ordered AL Tree.

Example 4.2. Consider the dataset in Table 1, and the
query (RHL, 2048M). The list for the value RHL (i.e.,
values of the same attribute in the decreasing order of simi-
larity) would thus be < RHL, SL, MSW > (the second row
in the OS Similarity Matrix) and that for the value 2048M
would be < 2048M, 1024M, 512M >. The re-ordered AL
Tree for the query (RHL, 2048M) is shown in Figure 1.
Consider the scenario in the search where we have to find
the 2nd child of A i.e., the invocation of ChildA(2, 2048M),
the second parameter being the value of the second attribute
from the query. The function progresses through the list
< 2048M, 1024M, 512M >, firing value based lookup queries
for each of the values in the list until it finds the 2nd non-
null child and returns it. The sequence of queries would be
ChildA(2048M), ChildA(1024M) and ChildA(512M). The
query ChildA(2, 2048M) stops traversing the list after mak-
ing the call ChildA(512M) because it finds the 2nd non-null
child then. Similarly, ChildA(1, 2048M) stops after the call
to ChildA(2048M) whereas ChildA(3, 2048M) returns null
because it can’t find a 3rd child even after exhausting the list.

The search algorithm that we present in a subsequent section
invokes the function to get the ith child only in sequence for a
given query, i.e., the call to ChildA(i, a) will not succeed the
call to ChildA(j, b) if j > i whatever be the values of the A,
a and b. This enables a straightforward optimization in the

ChildN (. . . , . . .) function. This involves the function main-
taining static counters to track the progress through each
node (through its appropriate list), so that for a given invo-
cation, the traversal through the list can start from where
it stopped for the last invocation for the same node rather
than from the beginning. Note that the tree is not actually
reordered per query. Rather the child nodes are accessed as
needed in the query specific order.

4.3 Compressed AL Tree
The AL Tree as described in Section 4.1 may contain inter-
nal nodes which have just one child and so do their descen-
dants until the leaf node, i.e., certain internal nodes may be
the head of a chain of nodes. Consider the attribute order-
ing < a1, a2, . . . am > for the AL Tree and a case where
given the assignment of the sequence of values < a1 =
k1, a2 = k2, . . . as = ks > for the first s attributes, there
can only be one possible assignment < as+1 = ks+1, as+2 =
ks+2, . . . am = km > for the remaining m − s attributes to
reach an object in the dataset. Note that this is different
from the functional dependency a1a2 . . . as → as+1 . . . am

in that not every assignment of values for the first s at-
tributes (but a specific assignment) determines the values of
the remaining attributes. We denote such a dependency as
(a1a2 . . . as)(k1k2...ks) → as+1 . . . am. Each such dependency
for the least value of s leads to a chain of length m−s in the
AL Tree. Consider such a chain of nodes N1, N2, . . . Nm−s.
The search algorithm that we present in a later section works
by traversing the internal nodes to reach leaves. Thus, al-
though there is a single leaf node under N1, visiting it would
require m − s steps (to visit each node in the chain) for the
search algorithm.

A compressed AL Tree can be formed by collapsing each such
chain into the head of the chain. With such a representation,
the search procedure would be able to reach the leaf node
in just one step as opposed to (m − s − 1) steps in the
earlier case. Such a representation would imply that each
such node N1 at the head of a chain of length m − s would
have to maintain additional information regarding the other
attribute values of the remaining m − s attributes as well
as the object ids of the objects at the leaf of the chain.
We represent each such compressed node N as (L(N), <
V (N), . . . >, S(N)) where L(N) denotes the level of the node
in the tree, < V (N), . . . > denotes the sequence of attribute
values in the chain from head of the chain to leaf, and S(N)
denotes the set of object ids taken from the leaf node of the
chain.

Figure 3: A Compressed AL Tree.

Example 4.3. Consider the dataset in Table 1, and the
corresponding AL Tree. The dependencies a1RHL

→ a2

and a1SL
→ a2 exist in this dataset, leading to the chains

< B, F > and < C, G > respectively. We collapse the

chain < B, F > to the single node at B represented by
(< RHL, 2048M >, {3}) because B represents the collapsed
chain containing itself representing value RHL and the leaf
node F which stands for the value 2048M and stands for
the single object 4. The compressed tree with both the chains
compressed would be as in Figure 3.

5. SEARCHING THE AL TREE FOR TOP-
K NEAREST NEIGHBORS

The search through the AL Tree employs controlled expan-
sion of the tree using the information from the ordering of
the siblings in the tree. Consider a query Q = (v1, v2,
. . . vm) such that vj ∈ Aj associated with weights W = (w1,
w2,. . . wm), wherein the distance between Q and an object
O = {o1, o2, . . . om} would be computed as d(Q, O, W). We
track the progress of the expansion (search) procedure by
maintaining information in the form of 4-tuples, which are
referred to hereafter as candidates. A candidate points to a
node in the AL Tree, and maintains information about which
child of the node it would lead the search to, and distance
information for the current node. We define a candidate C
= < N, M, d, dmin > to point to a node N , M being the
leftmost child of N yet to be seen in the search process. d
refers to the distance of the Query object to the candidate
C based on the attributes seen so far (at each level from
the root to N) whereas dmin is the lower bound on the dis-
tance of any child of C from the query object, based on the
AL Tree nodes seen so far. We defer further explanation of
the functionality of dmin to a subsequent paragraph. Let
N0 = R, N1, N2, . . . , NL(N) = N be the route to N from
the root R. The distance based on the attributes seen so
far is calculated as the aggregated distances of the value at
each node in the route to the appropriate value of the query
object, i.e.,

d =

L(N)
∑

i=1

(di(V (Ni), vi) ∗ wi)

The search procedure works by expanding candidates. The
expansion of a candidate leads to visiting a new node, not
seen so far, or to the emission of some objects to the result
stream. The expansion of C would lead to emission of the
|S(N)| objects into the top-k output if N is a leaf node. The
expansion of C would yield the following candidates if N is
an internal node

1. < M, P, e, e > where e = d + dL(M)(V (M), vL(M)) ∗
wL(M) and P is the leftmost child of M AND

2. Either of

(a) < N, M ′, d, d + dL(M)(V (M), vL(M)) ∗ wL(M) >
where M ′ is the right adjacent sibling of N OR

(b) null, if M is the rightmost child of N

We refer to the first candidate of the expansion as the child
of C, and the second candidate (if non-null) as the variant
of C. The child is the expansion of C to M , the child of
N as directed by C. The variant is a modification of C
and points to N itself, but differs from C in that it directs
the expansion of itself to the next child of N . There is yet
another difference between C and the variant, and that is

1. S = {< Root, ChildRoot(v1, 1), 0.0, 0.0 >}

2. while(S != φ AND |results emitted| < k)

(a) Pick P , the candidate in S which has the least
value for the dmin and expand P

(b) If P is a leaf node, emit the PC objects that it
stands for

(c) Else S = (S - {P}) ∪ {non-null expansions of P}

Figure 4: The Search Algorithm.

in the dmin. The dmin of the variant, as can be observed,
assumes the same value as the d of the child. This is because;
any child resulting out of the expansion of the variant of C
cannot be at a distance closer than the actual distance of the
child of C generated out of the same expansion. Thus, the
actual distance of the child generated out of the expansion
of any node is a lower bound for the distance of any child
generated out of the variant from the same expansion. This
unique property exists because children are arranged in the
non-decreasing order of distances from the query. Further,
the child of C has its d and dmin assuming identical values
because no expansion of M has taken place yet, and thus, the
lower bound for the distance of any child of the generated
child is the same as its actual distance so far. Thus, the
dmin of any candidate holds the lower bound of distance of
any child of the candidate as estimated by the nodes of the
tree seen so far. This lower bound if used by the search
procedure outlined in a subsequent paragraph to pick the
next candidate to be expanded.

Example 5.1. Consider the dataset in Table 1, and the
query (MSW, 1024M) with the weights (1.0, 1.0). The or-
dered tree corresponding to this query would be as in Fig-
ure 1. Assume that each unit of difference causes a dis-
tance of one unit. Let < A,D, 0.0, 0.0 > be a candidate
which is picked for expansion in the search process. Both d
and dmin are 0.0 because there the actual distance so far
is 0.0 (as the query as well as the node A, assumes the
value of MSW for the first parameter and because no chil-
dren of A have been expanded so far). The expansion of
< A, D, 0.0, 0.0 > leads to the child < D, ϕ, 1.0, 1.0 > and
the variant < A, E, 0.0, 1.0 >. The child has d set to 1.0, be-
cause the 2nd attribute’s value in the query i.e., 1024M , has
a distance of 1.0 with the attribute value for C, i.e., 512M .
The fact that E occurs to the right of D implicitly means
that the distance between the attribute value for E and the
query’s second attribute is at least as much as 1.0. Hence,
the variant has a value of 1.0 for dmin, the lower bound of
distance for any child of the variant.

The search procedure maintains a list of candidates, and
works by expanding the one in the list with least value for
the dmin, until at least k nearest neighbors are emitted. It
may be noted that it guarantees that the nearest neighbors
are emitted in the non-decreasing order of distance from the
query. The procedure is outlined in Figure 4 for the Query
Q = (v1, v2, . . . vm).

Upon completion of the algorithm, either k candidates would
have been emitted or S would have been exhausted. The
latter condition occurs if the database itself contains less
than k objects.

Example 5.2. Consider the dataset in Table 1, and the
query (MSW, 1024M) with the weights (1.0, 1.0). We illus-
trate how S changes in the course of the search for k=1. S
starts as { < Root, A, 0.0, 0.0 > } . Upon expansion of the
sole element, it becomes { <A, D, 0.0, 0.0 >, < Root, B,
0.0, 0.0 > }. As both the candidates have the same value
for dmin, we choose the element pointing to A to expand,
arbitrarily breaking the tie. As S changes to { < D, ϕ, 1.0,
1.0 >, < A, E, 0.0, 1.0 >, < Root, B, 0.0, 0.0 > }, we
pick the candidate pointing to Root to expand, leading to the
new set { < D, ϕ, 1.0, 1.0 >, < A, E, 0.0, 1.0 >, < B, F,
1.0, 1.0 >, < Root, C, 0.0, 1.0 > }. Among the candidates
having 1.0 as the dmin, we choose the one pointing to D for
expansion, which results in the emission of the element with
object id 1, thus completing the search process.

Theorem 5.1. If d(O1, Q,W) < d(O2, Q,W) then O1 is
emitted before O2.

Proof. Each candidate C =< N, M, d, dmin > repre-
sents a subset of the leaves of the tree. To be precise, it
represents all leaves that are reachable from N by passing
through the child M or through other children to the right
of M . Let L(C) represnt the set of leaves represented by C.
We have the following observations based on the way the
candidates are generated.

1. The subsets represented by each candidate are disjoint

2. Each leaf is covered by at least one candidate

3. dmin ≤ d(l, Q, W) for all l ∈ L(C)

The first two obeservations hold since we start with the
candidate < R, ChildR(v1, 1), 0, 0 > which represents all
the leaves of the tree. Also, at each step, the candidate
C =< N, M, d, dmin > chosen is replaced by two candidates
that partition L(C) – one subset consists of leaves reach-
able through M and the other consists of leaves reachable
through children to the right of M . The third observation
follows from the way dmin is calculated and the fact that
children of each node are explored in the increasing order of
distance from the query.

The proof is by contradiction. Let O2 be emitted before O1.
From the previous observations, at the time O2 is emitted,
there is some candidate, say C1 =< N, M, d, dmin > that
covers the leaf O1. The candidate corresponding to O2 is
C2 =< O2, null, d(O2, Q,W), d(O2, Q, W) >. Since C2 was
chosen over C1 as a result, it implies that d(O2, Q,W) ≤
dmin. Since dmin ≤ d(O1, Q, W), we get d(O2, Q, W) ≤
d(O1, Q, W) which is a contradiction.

Theorem 5.1 implies that results are emitted in the increas-
ing order of distance, thus making this an online algorithm.

Also, the first k results represent the top-k similar objects.
Note that the top-k result set may not be unique since there
can be multiple results with identical similarity scores. This
algorithm is guaranteed to return k objects such that there
is no other object closer to the query than the result objects.

Choosing the next candidate to expand: Step 2(a) in the al-
gorithm presented in Figure 4 may be complicated in cases
where there are multiple candidates with the minimal value
for the dmin. Although the result would be identical regard-
less of the choice, certain heuristics would help in arriving
at the results by visiting fewer nodes and within fewer iter-
ations (on the average). We list a couple of such heuristics
with justifications as below:

1. Among two candidates which point to nodes in differ-
ent levels in the tree, choose the candidate pointing
to the deeper node. This is because the candidate at
the deeper node has more chances of containing ob-
jects closer to the query as it’s distance estimate has
already factored in more attributes.

2. Among those candidates that point to nodes in the
same level, choose the candidate that has the second
element pointing to the leftmost child of the first el-
ement in preference to others. This is because dmin

assumes the value of the real distance only for those
candidates that satisfy the above condition. For all
other candidates, dmin represents a lower bound of the
distance.

5.1 Using AL Tree for Range Queries
In sparse datasets, the top-k nearest neighbors may be too
far off from the query point to make any sense. In such
cases, as well as in a variety of other cases, range queries
which expect all the data objects within a specific distance
r from the query point are useful. Such queries can be han-
dled by a simple adaptation of the algorithm presented in
Figure 4 where we keep emitting nearest neighbors until they
are within r distance of the query point, at the same time
maintaining only such candidates in the candidate set which
have their dmin lesser than r. In this section, we present an
algorithm which uses the AL Tree to answer range queries.
A recursive function R(N, Q, r) which returns all objects
within r distance of the query object Q using a weight vec-
tor W , considering only attributes below a specific node N
in the tree can be defined as below.

1. if r < 0.0 return ∅

2. if N is a leaf, return S(N)

(a) RS = ∅

(b) for each M ∈ C(N)

• r′ = wL(M) ∗ d(vi(Q), V (M))

• RS = RS ∪ R(M, Q, r − r′)

(c) return RS

The function works by recursively calling the function on its
child nodes with smaller values for r computed by factoring

in the distance increment (r′) incurred by moving to the
child. The range query to find objects within a distance of
r from Q can then be computed as R(Root,Q, W, r). It may
be noted that this algorithm is significantly IO-friendly as
compared to the top-k search algorithm as it does not revisit
any node in the AL Tree, but does not emit the results
online.

6. DISK-BASED IMPLEMENTATION
A disk based implementation of an AL Tree is necessary for
large datasets. In this section, we describe our approach
of packing the AL Tree on to disk and address the issue of
updating such a disk based implementation when the dataset
changes over time.

6.1 Subtree Packing
The search through the AL Tree proceeds by picking can-
didates and expanding them, which involves accessing the
child nodes of the node (pointed to, by the candidate). To
optimize disk accesses in such a setting, we use a variant
of breadth first packing. We start with the root and do
breadth first packing until the page is full. The frontier
nodes (nodes which have been packed in the current page,
and have at least one of their children left to be packed) are
collected, and the breadth first packing is done on sub-trees
rooted at those nodes and the resulting frontier nodes are
collected. This process is continued until all the nodes in the
tree are packed. This packing is optimized for top-k search
on the AL Tree as it tries to pack entire subtrees in a page,
this clustering nodes that are processed together in a page.

6.2 Updating the AL Tree on Disk
Addition of a new tuple to the AL Tree at most affects or
creates one node in the tree due to the compressed nature of
the AL Tree (Section 4.3). If a new node needs to be created,
it can be created on a new page on the disk without affect-
ing the correctness of the algorithm. If the tuple contains a
new attribute value (one which is not already present in the
similarity lists), the similarity lists for that attribute needs
to be re-computed. If a lot of new nodes get added and
existing nodes get deleted, the tree becomes very dispersed
on the disk and the disk IO performance of the algorithm
deteriorates (although the correctness is not affected). In
such cases, a periodic re-run of the Subtree packing proce-
dure can be done to restore the disk performance optimized
packing structure for the tree. AL Tree was designed for an
application where updates are infrequent, where periodically
repacking the tree is not an issue. Deletion of a node is a
straightforward operation which involves deletion of the link
to that node, freeing up the space occupied by that node in
the page.

7. EXPERIMENTS
In this section we describe our experimental results. We per-
formed a detailed study of the AL Tree based algorithm and
compared it to the Combined Algorithm (CA) and Thresh-
old Algorithm (TA). We chose CA and TA for comparison
since they are applicable to non-metric spaces.

7.1 CA and TA Adaptation
We make two modifications to the threshold style algorithms
that we compare against on the lines of the block based
optimizations used in [2].

1. In the TA and CA algorithms, we access lists in blocks.
This has implications on the access cost computations
which we explain in Section 7.2.

2. We update the best scores for candidates in CA once
per block of list items. The book-keeping in CA is
prohibitively expensive since it needs to update the
best possible score for each candidate in each iteration.
Updating once per block of list items leads to huge
savings in computational costs.

7.2 Experimental Setup
We compare our AL Tree based algorithm against TA, CA
and the classical full merge algorithm (followed by partial
sort). Our comparisons are based on both computational
costs and IO costs. IO costs are measured in terms of ei-
ther sequential or random page IOs, of which the latter is
significantly costiler than the former. Studies on CA have
assumed the ratio of cost of random item access, cr to the
cost of sequential item access, cs to be between 1000 and
100000. IO accesses are typically done at the page level;
if a page can hold t list items, the ratio of costs between
random page accesses, pr and sequential page accesses, ps

would be (cr/cs)/t. Our implementation uses a t of 1000
and we set the cost ratio (pr/ps) to 10 for our experiments,
i.e., (cr/cs) = 10000. Algorithms that access data sequen-
tially, such as CA and full merge, need just one page per
attribute for scanning the lists. On the other hand, AL Tree
can make use of extra memory to cache pages that are read
once as nodes (and hence pages) may be revisited. Unless
otherwise mentioned, we use a LRU cache of the size of 7.5%
of the dataset for our experiments. A sequential item access
for TA and CA implies stepping through one item on each
of the lists. Thus, it is a particularly advantageous scenario
for TA and CA if there are as many disks (or diskheads) as
there are attributes, so that m pages (one per attribute) are
accessible by sequential IO at any given configuration. On
the other hand, AL Tree is a single tree structured entitity
and does not have any straightforward partitioning to lever-
age the presence of multiple disks. For our experiments, we
use multiple disks (one per attribute) for the CA and TA
implementation whereas we use a single disk for storing the
AL Tree. It may be noted that this setting is very favorable
to CA and TA as the next page for any list is accessible by
sequential IO. However, it is somewhat unrealistic since this
setting requires a number of disks equal to the number of
attributes, which makes it dataset dependent. The random
access for CA and TA for a particular object involves filling
in the values for the unseen attributes for that object. This
would typically need as many random accesses as there are
unseen attributes. [2] describe an approach where enough
information can be stored in memory to get all the unseen
attributes using one random access. We use such an imple-
mentation for CA for our experiments. For the disk based
implementation of the AL Tree based algorithm, we do sub-
tree packing(Section 6.1) of the AL Tree. We performed our
experiments on an IBM X Series running Windows Server

2003 on an Intel Pentium Four 3.4 Ghz Processor with 2.0
GB of RAM.

As we are interested in analysing the AL Tree based algo-
rithm in a very general setting, we use synthetic datasets up-
front to illustrate the behavior by varying parameters such
as k and data density. Data density is computed as the ratio
of the number of data objects to the total possible number of
distinct tuples in the space. We generate synthetic datasets
with uniform random distribution and random distances so
that each value of each attribute has a uniform represen-
tation in the dataset. Further, we use Gaussian distribu-
tions with random similarity measures to gain insights as to
how to order the attributes during the creation of the AL
Tree. Lastly, we analyze our algorithms against the classical
threshold algorithms on real datasets from the UCI Machine
Learning Repository [6] and validate the observations from
the experiments on synthetic datasets.

7.3 Computational Costs
To isolate the computational costs from IO costs, we use a
setting where all the objects and indexes are loaded in mem-
ory. So there is no IO cost involved and the cost is purely
computational. We measured the execution times, the num-
ber of iterations and the maximum candidate set size. For
CA and TA, the number of iterations is a measure of the
number of items processed from each list. For AL Tree it
refers to the number of executions of the loop (picking a can-
didate and expanding it). For all algorithms, the maximum
candidate set size refers to the maximum number of candi-
dates held in memory during the run. It is a measure of the
memory overhead of these algorithms and also indicative of
the execution time in the case of CA and AL Tree. For all
experiments, the number of attributes is 5 with 25 distinct
values per attribute unless otherwise mentioned. For CA,
the cr/cs was 10000 which correponds to pr/ps of 10. The
numbers reported are an average over 100 random queries.

7.3.1 Varying density
In this subsection, we analyse the execution times for AL
Tree, CA and TA for varying densities while keeping the
dataset size constant. Density is varied by varying the size
of the value space (i.e., the number of attributes and the
number of values per attribute). We vary the number of
values per attribute from 62 to 18 fixing k and the dataset
size at 5 and 1 million respectively. Figure 5 plots the exe-
cution time against the varying density. Note that AL Tree
and TA are plotted on the first Y axis, while CA is plotted
on the second Y axis since there is a order of magnitude
difference in the times. TA and CA remain more or less sta-
ble because they do object based indexing and the number
of objects is held constant throughout. Both CA and TA
are not able to exploit the increased density as they do not
do value space indexing, whereas AL Tree registers a sharp
improvement in performance as the density increases, espe-
cially during the initial period when the density increases
from very low values to a substantial figure. To analyze the
execution times, we plot the number of iterations in Fig-
ure 6. This graph follows the same trend as the execution
times. CA and TA do many more iterations since they have
to process a significant percentage of the lists. AL Tree uses
the index to explore the neighbourhood of the query, so can
find the results in lesser number of iterations. The number

Figure 5: Execution Time vs
Density (Section 7.3.1)

Figure 6: Number of Iterations
vs Density

Figure 7: Maximum candidate
set size vs Density

Figure 8: Candidate set size ra-
tio vs Density

Figure 9: Execution Time for
varying k

Figure 10: Candidate set size ra-
tio vs k

of iterations for AL Tree reduces with density since the top-k
are in a smaller neighbourhood.

Figure 7 shows the maximum candidate set sizes. TA uses
a fixed candidate set size of the current top k objects at any
time. For CA, the maximum candidate set size keeps de-
creasing with density because it needs to scan lesser down
the lists to reach the results. The maximum candidate set
size of AL Tree reduces sharply with density in the earlier
stages where there is upto an ten-fold decrease. Overall,
CA has a order of magnitude higher memory overhead than
AL Tree, whereas TA has the least memory overhead. Fig-
ure 8 plots the ratio of the maximum candidate set size to
the number of objects for CA and AL Tree. The interesting
thing to note is that as data density decreases, the ratios for
both increase. As the data density approaches 0, the ratios
for both will be 1. This indicates that at very low densi-
ties, the nearest neighbour could be spread out over the en-
tire space, so indexing doesn’t really help. In fact, previous
studies [3] have questioned the meaningfulness of the nearest
neighbour query in high dimensional spaces that are sparse,
since the distance to the nearest neighbour approaches the
distance of the farthest neighbour for these datasets. Also,
a simple linear scan is often better for nearest neighbour
search in very sparse high dimensional spaces.

7.3.2 Varying k
In these experiments, the data set size was fixed at 300000
with a density of 0.03 and k was varied from 5 to 500. Fig-
ure 9 plots the execution times as k is increased. As ex-
pected, the execution times of all the algorithms increases
with k. As before, AL Tree performs much better than CA
and TA. The number of iterations follows a similar trend
and is not shown here. Figure 10 plots the ratio of the max-

imum candidate set size to the number of objects for CA
and AL Tree. It can be seen as k increases, the ratio in-
creases, indicating that at higher values of k, we explore a
larger percentage of the entire space leading to larger execu-
tion times. With an online algorithm, such as the AL Tree
based one, the user need not be concerned with using a large
value of k since they can stop the query as soon as they get
satisfactory results.

7.4 IO Costs
While dealing with huge datasets, objects and indexes have
to be stored on disk, thus making the IO cost an important
quantity to measure and optimize. In this subsection, we de-
scribe a set of experiments to compare the IO cost of the AL
Tree based algorithm with CA and TA, and with the clas-
sical full merge algorithm. We report IO accesses in terms
of page IO accesses, assuming, unless otherwise mentioned,
a (pr/ps) ratio of 10 (which corresponds to a cr/cs ratio
of 10000). Although we consider a ratio of 10 consistently,
we compared the behavior of AL Tree and CA on varying
ratios wherein we found that although smaller ratios are ad-
vantageous for AL Tree (as it does more random accesses),
AL Tree outperforms CA on IO costs upto a page access
ratio of around 250 (i.e., for cr/cs upto 250000). Thus, the
weighted page IO cost would be computed as s +(pr/ps) ∗ r
where s and r stand for the number of sequential and ran-
dom page accesses respectively. The numbers reported are
an average over 100 random queries.

7.4.1 Varying density
In this subsection, we analyse the IO costs for AL Tree,
CA and TA for varying densities while keeping the dataset
size constant. Density is varied by varying the size of the

Figure 11: Page IO Cost vs Den-
sity (Section 7.4.1)

Figure 12: Page IO Access Cost
vs k

Figure 13: IO Cost/Iterations vs
No of Skewed Attributes Used

value space (i.e., the number of attributes and the num-
ber of values per attribute). We vary the number of values
per attribute from 62 to 18 fixing k and the dataset size
at 5 and 1 million respectively. As can be seen from Fig-
ure 11, the performance of CA remains quite stable (as it
uses object-based indexes) whereas that of AL Tree improves
with density (as it used value-based index). AL Tree out-
performs CA by a good margin and it outperforms TA (IO
Cost plotted on a different axis) quite significantly. As seen
earlier, for low density datasets, the number of candidates
explored increases sharply which in turn leads to traversing
more nodes in the AL Tree resulting in more random IOs.
Also, since the search algorithm may visit a node multiple
times employing a best first strategy, the working set size
tends to increase with the number of nodes visited. This
leads to trashing increasing the IO cost significantly since
most of these IOs are random IOs.

7.4.2 Varying k
In these experiments, the dataset size was fixed at 300000
with a density of 0.55 and k was varied from 5 to 100. Fig-
ure 12 plots the weighted IO cost as k is increased for the
CA, AL Tree and Full Merge algorithms. The Full Merge
IO cost remains constant as it has to access all the lists (by
sequential access). The IO costs for CA increase much faster
than that of the AL Tree and the former is at least twice as
much as the latter for any value of k that we experimented
with.

7.5 Disk Based Implementation Performance
The performance of a disk based implementation of any top-
k query mechanism depends on both the computational ex-
pense and the IO access cost. Thus, the metric that is con-
sidered of high significance is the total response time for a
disk based implementation. Having analysed the computa-
tional costs and IO costs separately in the last sections, we
analyse the response time of AL Tree against the classical
threshold algorithms in this section. We simulate the disk-
based implementation where we assume page access costs
to be 1ms and 10ms for sequential and random access re-
spectively using a disk page size of 8192 bytes. It may be
noted that these estimates are in tune with disk performance
figures reported in literature [5] [1].

We do response time analysis for varying density using the
same configuration as in Sections 7.4.1 and 7.3.1 and by
varying k using the configuration in Section 7.4.2 and 7.3.2.
As can be seen in Figure 15 and Figure 16 respectively, AL

Tree performs significantly better as compared to the clas-
sical algorithms in both the cases.

7.6 AL Tree Specific Experiments
In this section, we describe a set of experiments to analyse
the AL Tree based algorithm with respect to ordering of
attributes and caching.

As the order of attributes is fixed at AL Tree creation time,
it should be good enough to cover a wide variety of cases.
So far, we have been dealing with uniform distributions over
different values of each attribute. But, real datasets are
often skewed, and attributes differ in the amount of skew.
We analyzed the AL Tree by using Gaussian (skewed) dis-
tributions for a subset of attributes. We analyze the trend
by varying the number of Gaussian attributes from 1 to 4
in a dataset of 7 attributes, and considered the case where
they are placed together at the top of the tree and the case
where they are placed together at the bottom of the tree.
As can be seen in Figure 13, placing the skewed attributes
at the top of the tree is a favorable case for the AL Tree
based search procedure. As Gaussian distributions are very
skewed, the number of objects that assume different values
per attribute vary widely. These results may be generalized
to conjecture that lesser the number of values per a given
attribute (being an extreme case of attribute skew), higher
up should it be in the AL Tree as attributes with very few
values are an extreme case of attributes with highly skewed
distribution. Since the tree is processed from top to bottom,
the number of iterations is sensitive to the number of nodes
at the higher levels in the tree. By having attributes with
lesser number of values at the top, the number of nodes at
higher levels is reduced.

AL Tree is a tree based data structure which revisits nodes
(and hence, pages) due to the best first search strategy em-
ployed. This makes it quite sensitive to cache sizes. We
studied the behavior of the AL Tree based algorithm for
varying cache sizes. Figure 14 plots the weighted IO cost
against the cache size represented as a fraction of the to-
tal dataset size. This experiment was performed on a 3%
dense dataset having 5 attributes. The IO performance im-
proves drastically for small increments in cache sizes when
the cache is small. This is expected because of thrashing
when working with small caches because the working set is
not in the cache. As more of the working set is in the cache,
the performance improvements decrease for the same cache
size increments. For this specific dataset, the working set

Figure 14: IO Cost vs Cache-
Dataset Ratio

Figure 15: Response Time vs
Density Figure 16: Response Time vs k

can be inferred to be close to 25% of the dataset size.

7.7 Performance Analysis on Real Datasets
We analyzed the performance of the AL Tree against CA
on real world datasets. Real-world datasets are usually very
skewed (non-random) and thus may be significantly different
from the synthetic random datasets, on which we reported
results in the previous sections. We use two real-world
datasets from the UCI Machine Learning Repository[6] for
our experiments in this section.

7.7.1 Census Income Dataset
The Census Income Dataset contains details census data
about 199523 people for 1970, 1980 and 1990 from the Los
Angeles area 1. We chose a subset of attributes from the
dataset, based on their utility in measuring similaritites be-
tween objects. The attributes chosen for the Census dataset
were Age, Education, Number of Minor Family Members,
Number of Weeks Worked and Number of Employees which
assume 91, 17, 5, 53, and 7 distinct values respectively in
the dataset. The density of this dataset on the selected at-
tributes is 0.07. Taking cue from the observations from Sec-
tion 7.6, we ordered the attributes based on the increasing
number of distinct values per attribute in the AL Tree from
top to bottom. As can be seen from Figure 17 (which has
the Y axis plotted on log-scale), the response time for AL
Tree is much better than that of CA for the Census dataset
over varying values of k by orders of magnitude. Further,
the graph also shows the IO-cost constituent (in terms of
time) for both the methods. It may be noted that AL Tree
spends a considerable amount of its time in performing IO,
mainly because of node revisits.

7.7.2 ForestCover Dataset
The ForestCover dataset contains data on the Forest Cover
type for 581012 30 X 30 meter cells over regions in the US
2. The attributes chosen from the ForestCover dataset had
67, 551, 2, 700, 2, 7 and 2 distinct values (The ForestCover
dataset has 44 binary attributes among the 55 attributes
present). This dataset is markedly different from the Census
Income Dataset in that the data is very sparse with a density
of 0.0004. We compare the performance of the AL Tree
based algorithm and CA for varying values of Cache Sizes.
We performed two sets of experiments by varying k, one
with the cache size set to 7.5% of the dataset size, whereas

1
http://kdd.ics.uci.edu/databases/census-income/census-income.html

2
http://kdd.ics.uci.edu/databases/covertype/covertype.data.html

Figure 17: Response Time vs k (Census Data)

the other set was run setting cache size to 0.05% of the
dataset size. As CA does not revisit entries in the disk, it
is unable to take advantage of the increased cache size. On
the other hand, our algorithm is able to effectively utilize the
cache as it revisits parts of the tree very often. As can be
seen in Figure 18, the performance of AL Tree deteriorates
quite drastically when the cache size is reduced to a very
small cache fraction of the dataset (0.05% in this case). Yet,
it may be noted that even with a very small cache size,
AL Tree outperforms CA on very sparse datasets such as
ForestCover.

8. CONCLUSIONS AND FUTURE WORK
The top-k problem is an important problem in many do-
mains. Non-metric distance functions are essential to effec-
tively capture the notion of similarity in many cases. Most of
the existing multi-dimensional indexing methods are appli-
cable only to metric spaces. To this end, we have developed
the AL Tree structure that takes advantage of there being
few distinct values per attribute. The top-k algorithm based
on the AL Tree efficiently explores the value space to find
the top results in an online fashion. We did a detailed com-
parison of AL Tree with TA and CA. Threshold algorithms
store per attribute similarity lists whereas AL Tree captures
the inter attribute dependencies as well, leading to a better
pruning of the search space. Our results show that in terms
of computation costs, AL Tree outperforms TA and CA by
orders of magnitude. Exploring the space efficiently saves a
lot of cost over merging large lists. In terms of the IO cost,

Figure 18: Response Time vs k (Forest Cover)

AL Tree performs better for dense datasets whereas CA per-
forms better when the dataset is very sparse. As such AL
Tree is the recommended structure for dense datasets and
when memory available is large so that computational costs
become dominant.

For future work, the IO performance of AL Tree warrants
further study. In this paper, we have used an algorithm
that tries to pack subtrees onto a disk page. There could
be better ways of mapping the tree to disk that need to
be explored. The access pattern on the AL Tree is such
that the same node and page may be visited multiple times
during a search. While this is not an issue for in memory
computation, it leads to many more IOs for disk based com-
putation if the cache size is small. Caching entire nodes in
pages is wasteful since children that are far with respect to
the query value may never be visited. Thus, rather than
using the available memory to cache entire pages, it may be
better to use it to store candidates. Once a page is read, we
could generate all possible candidates from it and add them
to the candidate pool. By using the available memory to
store the most promising candidates, we could potentially
avoid revisiting a page. This would lead to a big saving in
the IO cost and make it feasible for low density datasets as
well. Another direction for further study is to handle at-
tributes with large number of distinct values. For attributes
that are from an ordered domain such as < and take many
distinct values, we could bucketize the attribute values into
a smaller number of buckets. This will effectively increase
the data density, leading to better performance of the AL
Tree at the cost of query accuracy.

9. REFERENCES
[1] How fast is your disk?

http://www.linuxinsight.com/how fast is your disk.html,
January 2007.

[2] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
G. Weikum. Io-top-k: Index-access optimized top-k
query processing. In VLDB, pages 475–486, 2006.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is “nearest neighbor” meaningful?
Lecture Notes in Computer Science, 1540:217–235,
1999.

[4] K. C.-C. Chang and S. won Hwang. Minimal probing:

supporting expensive predicates for top-k queries. In
SIGMOD Conference, pages 346–357, 2002.

[5] W. Chung, Gray and Horst. Windows 2000 disk io
performance. Microsoft Research Technical Report,
MSTR-2000-55, June 2000.

[6] C. B. D.J. Newman, S. Hettich and C. Merz. UCI
repository of machine learning databases, 1998.

[7] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula.
D-index: Distance searching index for metric data
sets. Multimedia Tools Appl., 21(1):9–33, 2003.

[8] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, pages 216–226. ACM Press, 1996.

[9] R. Fagin. Combining fuzzy information: an overview.
SIGMOD Record, 31(2):109–118, 2002.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[11] K. Goh, B. Li, and E. Chang. Dyndex: A dynamic
and nonmetric space indexer, 2002.

[12] U. Guntzer, W.-T. Balke, and W. Kiesling. Towards
efficient multi-feature queries in heterogeneous
environments. itcc, 00:0622, 2001.

[13] I. Kalantari and G. McDonald. A data structure and
an algorithm for the nearest point problem. IEEE
Trans. Software Eng., 9(5):631–634, 1983.

[14] K. Kummamuru, R. Krishnapuram, and R. Agrawal.
On learning asymmetric dissimilarity measures. In
ICDM, pages 697–700. IEEE Computer Society, 2005.

[15] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W.
Cheung. Efficient aggregation of ranked inputs. In
L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang,
editors, ICDE, page 72. IEEE Computer Society, 2006.

[16] T. Mandl. Learning similarity functions in information
retrieval. In EUFIT, pages 771–775, 1998.

[17] A. Marian, N. Bruno, and L. Gravano. Evaluating top-
queries over web-accessible databases. ACM Trans.
Database Syst., 29(2):319–362, 2004.

[18] T. Skopal. On fast non-metric similarity search by
metric access methods. In EDBT, pages 718–736, 2006.

[19] M. Theobald, G. Weikum, and R. Schenkel. Top-k
query evaluation with probabilistic guarantees. In
M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, editors,
VLDB, pages 648–659. Morgan Kaufmann, 2004.

[20] J. K. Uhlmann. Satisfying general
proximity/similarity queries with metric trees.
Information Processing Letters, 40(4):175–179, 1991.

[21] E. Vidal. New formulation and improvements of the
nearest-neighbour approximating and eliminating
search algorithm (aesa). Pattern Recognition Letters,
15(1):1–7, 1994.

[22] D. Xin, J. Han, and K. C.-C. Chang. Progressive and
selective merge: computing top-k with ad-hoc ranking
functions. In SIGMOD Conference, pages 103–114,
2007.

[23] P. Zesula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search - The Metric Space Approach.
Springer, 1978.

