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Abstract. Hyper-accretion disks are short-lived, powerful sources of neutrinos and magnetized jets.
Such disks are plausible sources of gamma-ray bursts. This review describes the disk structure, the
neutrino conversion to electron-positron plasma around the disk, and the post-burst evolution.
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INTRODUCTION

Hyper-accretion disks form when a neutron star merges with another compact object,
neutron star or a black hole. Recent numerical simulations of mergers [1, 2, 3] are fully
relativistic and show how most of the mass of the binary system disappears behind the
event horizon in about 10 ms, leaving a rotating debris disk around the black hole. The
mass of this centrifugally supported disk ism ∼ 0.01− 0.1 M⊙, similar to what was
found in previous non-relativistic simulations (e.g. [4, 5]). The ensuing disk accretion
is not followed by the merger simulations. It is establishedon a viscous timescale
tvisc∼ 0.1 s as the inner parts of the disk relax to a quasi-steady state; this relaxation was
studied numerically in [6, 7]. Most but not all of the disk is accreted on the timescale
tvisc, releasing an energy comparable tomc2 and emitting copious neutrinos. This disk
has an accretion ratėM ∼ (M⊙/s) (m/0.1M⊙) (tvisc/0.1 s)−1.

Similar neutrino-emitting disks may form during the core-collapse of massive stars
if the stellar material has a sufficient angular momentum [8,9]. These hypothetical
objects are often called “collapsars.” After the formationof a central black hole of mass
M ∼ 3 M⊙ collapsars develop an accretion disk that is fed by the continually infalling
stellar material. The high accretion rateṀ ∼0.1 M⊙ s−1 is sustained for∼10 s (the core-
collapse timescale). Recent relativistic MHD simulationsof this accretion show how the
black hole could accumulate a large magnetic flux and create jets via the Blandford-
Znajek process [10].

The studies of hyper-accretion disks are greatly stimulated by observations of cos-
mological gamma-ray bursts (GRBs, see [11] for a review). Hyper-accretion is ex-
pected to produce hyper-jets on a timescale∼ 0.1− 10 s. If a fractionεjet of the ac-
cretion powerṀc2 is channeled to a relativistic jet, it leads to an explosion with energy
Ejet ∼ 2×1051(Macc/M⊙)(εjet/10−3) erg, whereMacc is the mass accreted through the
disk. The energy and duration of the jet is consistent with GRB observations.

Hyper-accretion disks are markedly different from normal accretion disks in X-ray
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binaries and AGN. Their optical depth to photon scattering is enormous and radiation
is trapped inside the disk, being advected by the matter intothe black hole. However,
the disk can be efficiently cooled by neutrino emission. Significant neutrino losses can
occur whenṀ > 10−3 M⊙ s−1 and make the disk relatively thin and neutron rich.

The accreting black hole is expected to have a significant angular momentum, because
it forms from rotating matter and is further spun up by accretion. The black-hole spin
helps the jet formation through the Blandford-Znajek process. It also affects the black-
hole spacetime in such a way that the disk extends to smaller radii and the overall
efficiency of accretion significantly increases. For example, the inner radius of the disk
around a maximally-rotating black hole (spin parametera = 1) is reduced by a factor of
6 compared with the Schwarzschild casea = 0. This leads to a higher temperature and a
higher neutrino intensity above the disk, increasing the rate of neutrino annihilation into
e± pairs. Therefore, disks around rapidly spinning black holes can deposit an interesting
fraction of their energy into thee± plasma outside the disk and facilitate the formation
of ultra-relativistic jets.

The size of a hyper-accretion disk depends on the specific angular momentum of the
accreting matter,l, which is modest in neutron-star mergers and probably even smaller in
collapsars. The accretion flows in collapsars are quasi-spherical and may form a special
“mini-disk” that is not supported centrifugally and instead accretes on the free-fall time.
Largerl leads to standard viscous accretion, which leaves a relict disk carrying the initial
angular momentum of the accreted matter. The relict disk gradually spreads to larger
radii, and its late evolution may be relevant to the post-burst activity of GRBs.

VISCOUS DISKS

As matter spirals into the black hole, it is viscously heated: the gravitational energy
is converted to heat. The heat is distributed between nuclear matter, radiation, ande±

pairs, in perfect thermodynamic equilibrium. In particular, the equilibriume± population
is maintained. As discussed below, electrons are mildly degenerate in neutrino-cooled
disks, which affects thee± density. The equilibrium microphysics is determined by only
three parameters: temperatureT , baryon mass densityρ , and electron fractionYe (equal
to the charged nucleon fraction). Other parameters — e.g. the electron chemical potential
µe and density ofe± pairs,n± — are derived fromT , ρ andYe. At radii r <∼ 108 cm,
temperature and density are high enough to maintain the nuclear statistical equilibrium,
which determines the abundances of all nuclei. Nuclear matter in the disk is dissociated
into free nucleonsn and p inside radiusrα = (40−100)rg whererg ≡ 2GM/c2. The
temperature at this radius iskT <∼ 1 MeV.

Neutrino cooling is significant in the inner region wherekT > 1 MeV. The far domi-
nant mechanism of neutrino emission is thee± capture onto nucleons:

e−+ p → n+νe, e++n → p+ ν̄e. (1)

The escaping neutrinos not only cool down the disk — they alsochange its electron
fractionYe if the emission rates ofν and ν̄ are not exactly equal. The first goal of the
disk modeling is to findT , ρ , Ye, and self-consistently evaluate the neutrino losses.



Modeling disk accretion

Accretion is quasi-steady in the inner region of the disk where tvisc is shorter than the
timescale ofṀ evolution. Viscosity in accretion disks is caused by MHD turbulence,
sustained by the magneto-rotational instability [12]. It creates an effective kinematic
viscosity coefficientν, which may be related to the half-thickness of the disk,H, and
sound speed,cs: ν = αcsH, whereα ∼ 0.01− 0.1 is a dimensionless parameter. A
number of works studied hyper-accretion disks with this traditional parameterization of
viscosity [13, 14, 15, 16, 17, 18, 19]. Two works constructedmodels in full general
relativity and studied disks around spinning black holes [13, 17]. The following list
highlights advances and limitations of the current models [17]:

– The model is fully relativistic: the disk dynamics is calculated in Kerr metric.
– Hydrodynamic equations are solved with the vertically-integratedα prescription. The

equations include radial transport of heat and lepton number.
– Local microphysics is calculated exactly: nuclear composition, electron degeneracy,

neutrino emissivity and opacity etc., using the equilibrium distribution functions for
all species except neutrinos. Neutrinos are modeled separately in the opaque and
transparent zones of the disk, matching at the transition between the two zones.

– The model provides only vertically averagedT , ρ , andYe (which are approximately
equal to their values in the midplane of the disk). The diffusion of neutrinos in
the opaque zone is treated in the simplest one-zone approximation (using escape
probability). This gives a good approximation for the energy losses, however, does
not give the exact neutrino spectrum emerging from the opaque zone.

The vertically-integrated approximation provides no information about the vertical
structure of the disk and its corona. The vertical structuremay be eventually understood
with global 3D time-dependent MHD simulations that includeenergy losses, although
the results of such simulations generally depend on the assumed initial magnetic con-
figuration. The behavior of magnetic field on large scales is coupled to the local turbu-
lence cascade that extends to scales≪ H. The microscopic magnetic Prandtl number for
hyper-accretion disks has been recently estimated in [20].The models discussed here are
aware of the MHD issues only through the value ofα. They are computationally much
cheaper than MHD simulations and allow one to study the disk in a broad range oḟM
andα.

Vertically-integrated disks are described by 1D equationsthat express conservation of
baryon number, energy, and momentum (angular and radial) inKerr spacetime (see [21]
for a review). The full set of these equations can be solved [22], and the solutions show
that the deviation from circular Keplerian rotation is small (<∼ 10%) even when the disk
is strongly advective (i.e. when the released heat is transported radially without losses).1

Thus, the angular velocity of the disk can be approximated byits Keplerian valueΩK.
A small radial velocity is superimposed on this rotation:ur = −α S−1cs (H/r), where

1 A strong reduction ofΩ belowΩK can occur in the limit of a large steady disk with no cooling. This
limit does not apply to hyper-accretion disks which are transient and have a moderate radius.



FIGURE 1. Left panel: Contours of the equilibriumYe(T,ρ) on theT -ρ plane forν-transparent matter.

The electrons become degenerate near the dashed line given by kTdeg= h̄c(ρ/mp)
1/3 = 7.7ρ1/3

11 MeV.
TheYe contours are calculated assuming that the nuclear matter isdissociated into free nucleons; they
are invalid in the shaded region where matter is dominated bycomposite nuclei. The “neutronization

line” Ye = 0.5 is given bykTn = 33ρ1/2
11 MeV. Right panel: The equilibriumYe(T,ρ) for ν-opaque matter

with neutrino chemical potentialµν = 0. The free-nucleon region is the same as in the left panel. The
calculation of the equilibriumYe is now extended into the region of composite nuclei. The neutronization

line Ye = 0.5 is given bykTn = 23.1ρ1/2
11 MeV.

cs = (P/ρ)1/2 is the isothermal sound speed,H is the half-thickness of the disk;S(r)
is a numerical factor determined by the inner boundary condition [17]. This description
of the velocity field in the disk is a good approximation everywhere except in the very
vicinity of the inner boundary where|ur| exceedscs.

In contrast to accretion disks in X-ray binaries and AGN, there is one more conserva-
tion law that must be taken into account: conservation of lepton number,

1
H
(Ṅν̄ − Ṅν) = ur

[

ρ
mp

dYe

dr
+

d
dr

(nν −nν̄)

]

. (2)

HereṄν andṄν̄ are the number fluxes of neutrinos and anti-neutrinos per unit area (from
one face of the disk),nν andnν̄ are the number densities of neutrinos and anti-neutrinos
inside the disk. This equation determinesYe, which is related to the neutron-to-proton
ratio byYe = (nn/np +1)−1 and greatly affects the rate of neutrino cooling.

In the models solved in [17] and shown below,Ye is calculated using Eq. (2). Note,
however, that throughout most of theneutrino-cooled disk, the right side of Eq. (2) is
small compared with each of the two terms on the left side, andYe is nearly equal to the
local equilibrium value such thaṫNν̄ ≈ Ṅν . This equilibriumYe is determined by the local
temperature and density and found for both neutrino-opaqueand neutrino-transparent
matter [23, 24, 25]. It is shown in Fig. 1.



FIGURE 2. Boundaries of different regions on ther-Ṁ plane for disks around a black hole of mass
M = 3 M⊙ and spin parametera = 0.95. Neutrino cooling is inefficient in the shaded region below the
"ν-cooled" curve and above the “trapped” curve. The shaded region marked “unstable” is excluded: the
steady model is inconsistent in this region because of the gravitational instability. The disk extends down
to the marginally stable orbit of radiusrms ≈ rg whererg = 2GM/c2. Left panel: Disks with viscosity
parameterα = 0.1. Right panel: Disks with viscosity parameterα = 0.01. (From [17].)

Overview of disk properties

Hyper-accretion disks have several zones separated by the following characteristic
radii:

1. Radiusrα where 50% ofα-particles are decomposed into free nucleons. The
destruction ofα-particles consumes 7 MeV per nucleon, which makes the disk
thinner.

2. "Ignition" radiusrign where neutrino emission switches on. At this radius, the mean
electron energy becomes comparable to(mn−mp)c2, enabling the capture reaction
e−+ p → n+ ν. Then neutrino cooling due to reactions (1) becomes significant,
further reducing the disk thicknessH/r.

3. Radiusrν where the disk becomes opaque to neutrinos and they relax to athermal
distribution. The disk is still almost transparent to anti-neutrinos at this radius.

4. Radiusrν̄ where the disk becomes opaque to anti-neutrinos, so that both ν and ν̄
are now in thermal equilibrium with the matter. The disk is still cooled efficiently
at this radius sinceν andν̄ diffuse and escape the flow faster than it accretes into
the black hole.

5. Radiusrtr where neutrino diffusion out of the disk becomes slower thanaccretion,
and neutrinos get trapped and advected into the black hole.

The different zones of the disk are shown on theṀ − r diagram in Fig. 2. In addition,
this figure shows the zone of gravitational instability.



Three characteristic accretion rates can be defined:Ṁign above which the disk is
neutrino-cooled in the inner region,̇Mopaqueabove which the disk is opaque to neutrinos
in the inner region, anḋMtrap above which the trapping of neutrinos occurs in the inner
region. The dependence oḟMign, Ṁopaque, andṀtrap on α is well approximated by the
following power laws [17],

Ṁign = Kign

( α
0.1

)5/3
, Ṁopaque= Kopaque

( α
0.1

)

, Ṁtrap= Ktrap

( α
0.1

)1/3
. (3)

The normalization factorsK depend on the black hole spina. For a = 0.95 they are
Kign = 0.021 M⊙ s−1, Kopaque= 0.06 M⊙ s−1, Ktrap= 1.8 M⊙ s−1 and fora = 0 they are
Kign = 0.071 M⊙ s−1, Kopaque= 0.7 M⊙ s−1, Ktrap= 9.3 M⊙ s−1.

To complete this short guide to quasi-steady viscous disks,Figs. 3-4 showT , ρ , Ye,
andH/r for a model withṀ = 0.2 M⊙ s−1, M = 3 M⊙, anda = 0.95.
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FIGURE 3. Disk with Ṁ = 0.2 M⊙s−1 around a black hole of massM = 3 M⊙ and spina= 0.95. Three
models are shown with viscosityα = 0.1, 0.03, and 0.01. Radius is measured in units ofrg = 2GM/c2 =

10 km.Left panel: Temperature in units ofmec2. Right panel: Mass density. (From [17].)
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FIGURE 4. Electron fractionYe and thickness of the diskH/r for the same three models as in Fig. 3.
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FIGURE 5. Contributions to total pressureP from baryons,Pb, electrons and positronsPe = Pe− +Pe+ ,
radiationPγ , and neutrinosPν +Pν̄ for the accretion disk withṀ = 0.2 M⊙ s−1 around a black hole of
massM = 3 M⊙ and spina = 0.95. Left panel: Model with viscosity parameterα = 0.1. Right panel:
Model with α = 0.01. (From [17].)

The main properties of theneutrino-cooled disk (i.e. atr < rign) may be summarized
as follows [17].

◦ The disk is relatively thin,H/r ∼ 0.1−0.3, especially in the inner region where most
of accretion energy is released.

◦ Theν-cooled disk is locally very close toβ -equilibrium,Ṅν ≈ Ṅν̄ . In particular, the
relation betweenρ , T , andYe calculated under the equilibrium assumption (Fig. 1) is
satisfied with a high accuracy.

◦ Degeneracy of electrons in the disk significantly suppresses the positron densityne+ .
However, the strong degeneracy limit is not applicable — thedisk regulates itself
to a mildly degenerate state withµe/kT = 1− 3. The reason of this regulation is
the negative feedback of degeneracy on the cooling rate: higher degeneracyµe/kT
→ fewer electrons (lowerYe) and positrons (ne+/ne− ∼ e−µe/kT ) → weaker neutrino
emission→ lower cooling rate→ higher temperature→ lower degeneracy.

◦ Pressure inν-cooled disks is dominated by baryons,P ≈ Pb = (ρ/mp)kT , most of
which are neutrons (Fig. 5 shows contributions to pressure for two sample models).

◦ All ν-cooled disks are very neutron rich in the inner region, withYe ∼ 0.1 or lower.

NEUTRINO ANNIHILATION AROUND THE DISK

The emitted neutrinos and anti-neutrinos can collide and convert toe±, thereby deposit-
ing energy [26]. The emission of tau and muon neutrinos is negligible [17], so only
reactionνe + ν̄e → e− + e+ can be considered. Its cross section (assuming center-of-
momentum energy≫ mec2) is given byσνν̄ ≈ 3.3×10−45(pν ·pν̄)

2(p0
ν p0

ν̄)
−1cm2 where

pν , pν̄ are the 4-momenta ofνe andν̄e, expressed in units ofmec. The cross section is



small and only a small fractionε ∼ 10−3−10−2 of the total neutrino luminosityL con-
verts toe± plasma. Nevertheless, this energy may be sufficient to drivea relativistic jet
(or help the formation of a magnetically-dominated jet) since it occurs above the disk
where the mass density is relatively low, especially near the rotation axis [27].

Neutrinos emitted by the disk follow null geodesics in Kerr spacetime. The efficiency
ε of their annihilation can be calculated numerically by tracing the geodesics, evaluating
the local energy deposition rate ˙qνν̄ [erg s−1 cm−3] everywhere around the black hole,
and then integrating over volume to obtain the net energy deposition rateĖνν̄ (energy at
infinity per unit time at infinity). The neutrino emission andannihilation is concentrated
near the black hole, where accretion is expected to be quasi-steady.Ėνν̄ depends on four
parameters that specify the steady disk model:Ṁ, α, M, anda.

The energy deposition ratėEνν̄ was estimated in [13], approximating geodesics by
straight lines. Fully relativistic calculations were madefor several toy models, in par-
ticular for disks or tori with uniform temperature or other arbitrary distribution of tem-
perature or entropy (see [28] and refs. therein). Recently,the relativistic calculation for
a realistic disk around a spinning black hole has been done (Zalamea & Beloborodov,
in preparation). ˙qνν̄ has been obtained everywhere around the black hole, including its
ergosphere, and the dependence ofĖνν̄ on Ṁ, α, M, anda has been determined.

Besides tracing the geodesics, this calculation involves amodel for neutrino and anti-
neutrino spectra emitted by the disk. Using the results of [17], it is straightforward to
evaluate the spectra from the transparent zone of the disk. It is more difficult to find the
spectrum that emerges from the opaque zone, because the neutrino transport in this zone
depends on the unknown vertical distribution of viscous heating. Various assumptions
may be made about this distribution [15, 29, 30, 31, 32], including a strong heating
of the magnetic corona above the disk. Note that the corona ofa hyper-accretion disk
is always in thermodynamic equilibrium, and its temperature Tc is determined by its
thermal energy densityUc =Uγ +Ue ≈ 3arT 4

c wherear = 7.56×10−15 erg cm−3 K−4

is the radiation constant.Uc is generally smaller than the energy density inside the disk.
Therefore, relocating the heating from the disk to its corona cannot significantly increase
the energies of emitted neutrinos.

Fortunately, a robust estimate can be obtained forĖνν̄ in spite of the uncertainty in
the vertical structure of the disk. It is easy to see that all detailed models of neutrino
spectrum formation must predict practically the same rate of νν̄ annihilation above a
neutrino-cooled disk. For such a disk, neutrinos carry away a fixed energy fluxF− ≈ F+

whereF+ ∼ 3ṀΩ2
KS(r)/8π is the rate of viscous heating. Therefore, transfer models

that predict a higher average energy of emitted neutrinos,Eav, must also predict a
lower number density of the neutrinos above the disk,n ∼ F−/Eavc ∝ E−1

av . Since the
annihilation cross sectionσνν̄ ∝ E2

av, one finds that the reaction rate ˙nνν̄ ∼ cσνν̄ nνnν̄
is independent ofEav. The energy deposition rate ˙qνν̄ ∼ ṅνν̄ Eav is proportional toEav.
It cannot be changed without a substantial change in temperature (or electron chemical
potential) of the neutrino source, which would require a huge change in energy density
and therefore is hardly possible.

Detailed calculations confirm thaṫEνν̄ weakly depends on the details of the vertical
structure andν, ν̄ transfer in the disk. Consider two extreme models for the opaque zone.



FIGURE 6. Total energy deposition rate due toνν̄ annihilation outside the black-hole horizon,Ėνν̄ , as
a function of the disk accretion rate,̇M. The two characteristic accretion ratesṀign andṀtrap depend on
the viscosity parameterα = 0.1 (see eq. 3);α = 0.1 is chosen in this figure. The black hole is assumed to
have massM = 3 M⊙. Ėνν̄ strongly depends on the spin parameter of the black hole; thenumerical results
are shown for two cases:a = 0 (triangles) anda = 0.95 (squares). The uncertainty in the vertical structure
of the accretion disk leads to a small uncertainty inĖνν̄ as illustrated by two extreme models: Model A
(open symbols) and Model B (filled symbols), see the text for details. The results of both models are well
approximated by simple Model C that is given by Eq. (4) and also shown in the figure, by solid line for
ν-opaque disks (̇M > Ṁopaque) and by dashed line forν-transparent disks (̇M < Ṁopaque). (From Zalamea
& Beloborodov, in preparation.)

Model A: Neutrinosνe andν̄e are emitted with the same distributions as found inside the
disk (same temperatureT and chemical potentialµν ). The distribution normalization is,
however, reduced compared with the thermal level inside thedisk, so that the emerging
emission carries away the known energy fluxesFν and Fν̄ that are found in [17].
Model B: Neutrinos are emitted with a thermal Fermi-Dirac spectrum with chemical
potentialµν = 0 and the effective surface temperatureTeff. The effective temperature is
defined by(7/8)σT 4

eff = F−, whereF− = Fν +Fν̄ is the energy flux from one side of the
disk andσ = arc/4 is Stefan-Boltzmann constant. The factor 7/8 is determined by the
difference between Plank and Fermi-Dirac distributions and the fact that the disk emits
only νe andν̄e — the emission of other neutrino species is negligible.

The temperatureT inside an opaque disk exceedsTeff by factorT/Teff ∼ τ1/4
ν when

the neutrino optical depthτν ≫ 1. The neutrino chemical potential is modest and, ap-
proximately,Eav ∝ T . Hence, even the extreme Model A gives a moderate enhancement
of Ėνν̄ , by the factorT/Teff. Zalamea & Beloborodov (in preparation) calculatedĖνν̄



in both Models A and B. The results of numerical calculationsare shown in Fig. 6 and
demonstrate that the difference between the two models is indeed small.

It is instructive then to considerModel C: same as Model B except thatF− = F+ is
assumed at all radii. The assumption is clearly incorrect outside the regionrtr < r < rign.
Nevertheless, this simplest model gives a good approximation to Ėνν̄ in a broad range
Ṁign < Ṁ < Ṁtrap (Fig. 6).2 Note thatĖνν̄ in Model C is explicitly independent ofα.
However, the range oḟM where Model C is applicable depends onα (Eq. 3).

The scaling ofĖνν̄ with Ṁ is easy to evaluate analytically. The effective surface
temperature is related toF− ≈ F+ by T 4

eff ∝ F− ∝ Ṁ. The neutrino number density
above the disk is proportional toT 3

eff ∝ Ṁ3/4. The annihilation cross-sectionσνν̄ ∝ T 2
eff

(assumingkTeff > mec2). Hence the energy deposition rateĖνν̄ ∝ T 9
eff ∝ Ṁ9/4, and one

can write

Ėνν̄ = Ė0(a)

(

Ṁ
M⊙ s−1

)9/4

, Ṁign < Ṁ < Ṁtrap. (4)

The normalization factoṙE0 depends on the black hole spina and must be calculated
numerically. For example,a= 0.95 givesĖ0≈ 1052 erg s−1, which implies the efficiency
ε = Ėνν̄/L ≈ 0.05(Ṁ/M⊙ s−1)5/4. It is much larger than the corresponding value for a
non-rotating black hole, by two orders of magnitude.

The strong dependence ofĖνν̄ on a may be seen from the following rough estimate.
The neutrino luminosityL peaks atrpeak that is a few times the inner radius of the disk,
rms(a) — the marginally stable orbit, which is determined bya. The luminosity depends

on rms approximately asr−1
ms, andTeff at rpeakscales as(L/r2

peak)
1/4 ∝ r−3/4

ms . The energy

deposition rate ˙qνν̄ scales asT 9
eff andĖνν̄ scales asr3

msq̇νν̄ , which yieldsĖνν̄ ∝ r−15/4
ms .

Then the reduction inrms by a factor of 3 (asa increases from 0 to 0.95) gives a factor
of 60 in Ėνν̄ . This estimate neglects the fact that the gravitational bending of neutrino
trajectories is stronger for smallerrms. Stronger bending implies a larger average angle
between neutrinos and leads to an additional enhancement ofĖνν̄ . Therefore, a steeper
dependence oḟEνν̄ on rms is found in numerical simulations. A simple power law
Ėνν̄ ∝ r−4.7

ms is an excellent approximation to the numerical results for 0< a < 0.95
which corresponds torg < rms< 3rg (Zalamea & Beloborodov, in preparation).

Note thatĖνν̄ is defined as thetotal energy deposition rate outside the event horizon
(including the ergosphere). A significant fraction of the createde± plasma must fall into
the black hole, and only the remaining fraction ofĖνν̄ will add energy to the jet. This
fraction depends on the plasma dynamics outside the disk, which is affected by magnetic
fields and is hard to calculate without additional assumptions.

2 The deviation of Model B from Model C aṫM ∼ 2Ṁign is caused by the overshooting ofF− aboveF+,
which happens just inside ofrign (see Fig. 7 and 16 in [17]). As hot matter accretes into the neutrino-
cooled region, its stored heat is quickly emitted withF−/F+ reaching∼ 2 at r ≈ rign/2. For disks with
rign/2∼ a fewrg, this leads to the enhancement ofĖνν̄ by the factor∼ 29/4 compared with Model C that
assumesF− = F+.



FIGURE 7. The shaded region shows the range of angular momental0 that form a mini-disk with
insufficient centrifugal support, leading to accretion on the free-fall timescale.l0 is defined as the angular
momentum of the accretion flow in the equatorial plane; angular momentum decreases toward the polar
axis (shellsr = const are assumed to have a uniform angular velocityΩ ≪ ΩK atr ≫ rg). (From Zalamea
& Beloborodov, in preparation).

LOW-ANGULAR-MOMENTUM DISKS IN COLLAPSARS

The quasi-spherical accretion flows in collapsars create a centrifugally supported disk
if the circularization radius of the flow is sufficiently large, rcirc ∼ 10rg. A smaller
disk may not be centrifugally supported and then will accrete on a free-fall timescale
[33]. It accretes so fast (super-sonically) that the effects of viscosity can be neglected.
A steady model of this “mini-disk” was constructed in [33] and 2D time-dependent
hydrodynamical simulations were performed in [34].

The mini-disk can be thought of as a caustic in the equatorialplane of a rotating
accretion flow. It absorbs the feeding infall, and this interaction releases energy, making
the accretion radiatively efficient. With increasing angular momentum, the size of the
disk grows up to 14rgc, at which point the centrifugal barrier stops accretion, sothat it
can proceed only on a viscous timescale. Thus, the mini-diskmodel fills the gap between
two classical regimes of accretion — spherical (l < rgc) and standard accretion disk
(l ≫ rgc) — and is qualitatively different from both.

The calculations of [33] were limited to the case of a Schwarzschild black hole.
Recently, the model has been extended to the case of a Kerr black hole (Zalamea &
Beloborodov, in preparation). Fig. 7 shows the range of angular momenta that lead
to mini-disk formation around a black hole of spin 0< a < 1. The critical angular
momentum for viscous disk formation sets the maximum radiusof a mini-disk. This
radius is≈ 14rg = 28GM/c2 for a = 0 and≈ 5rg for a = 0.95.



The mini-disk is sandwiched by shocks through which the infalling matter enters the
disk. The model of [33] assumes that the cooling timescale ofthe postshock material is
sufficiently short, shorter than the accretion timescale inthe disk. Let us check if this
assumption can be valid for collapsars. The postshock mass density and energy density
can be estimated as

ρ ∼ 109ξ Ṁ0.1M−2
3

(

r
rg

)−3/2

g cm−3, U ∼ 0.2ρc2
(

r
rg

)−1

. (5)

Here ξ ∼ 2 is the compression in the shock (note that the shock dissipates only the
normal component of the infall velocity);̇M0.1≡ Ṁ/0.1M⊙ s−1 andM3≡M/3M⊙. The
postshock matter hasµe/kT < 1, andU is dominated by radiation ande± pairs, which

impliesU ≈ 3arT 4. The postshock temperature is thenT ≈ 5.3×1010ρ1/4
9 (r/rg)

−1/4 K.
Disintegration of nuclei in the shock consumes only∼ 10−2 of the energy released
at r ∼ rg, so the postshock matter can be cooled only by neutrino emission. Neutrino
emission is dominated by two processes: (i) capture reactions (1) provide cooling rate
q̇c ≈ 9×1032T 6

11ρ9 erg cm−3 s−1, and (ii) e± annihilatione++ e− → ν + ν̄ provides
q̇± ≈ 3.6×1033T 9

11 erg cm−3 s−1 (see e.g. [35]). This gives

q̇c ≈ 2×1031ρ5/2
9

(

r
rg

)−3/2 erg
cm3 s

, q̇± ≈ 1031ρ9/4
9

(

r
rg

)−9/4 erg
cm3 s

, (6)

Approximating the total ˙q = q̇c + q̇± ∼ q̇c, one finds

q̇ tacc

U
∼ 10−2ρ3/2

9

(

r
rg

)

M3 ∼ 10−2ξ 3/2Ṁ3/2
0.1

(

r
rg

)−5/4

M−2
3 , (7)

where tacc ∼ 10−4(r/rg)
−3/2M3 s. The mini-disk is neutrino-cooled if ˙q tacc/U >∼ 1,

which requires a high accretion rate, comparable to M⊙ s−1. Thus, only high-̇M mini-
disks are sandwiched by radiative shocks that stay near the equatorial plane in the
innermost region of the accretion flow. A large neutrino luminosity, up to∼ 0.1Ṁc2,
is produced by such disks.

For smaller accretion rates, the postshock matter is unableto cool on the free-
fall timescale, and the neutrino luminosity from the inner region is suppressed by
the factor ˙qtacc/U < 1. Then a hot low-angular-momentum bubble must grow around
the black hole. Mass flows into the bubble through the shock front that expands to
r ≫ rg. Such a bubble is observed in low-Ṁ simulations in [34]. It resembles the bub-
ble around viscous disks in the models of [9, 36], except for aslower rotation, less
centrifugal support, and faster accretion. The shock expansion can be stopped when
it approaches∼ 40rg = 4× 107M3 cm. Up to this radius, the postshock temperature,

T ≈ 7× 109Ṁ1/4
0.1 (r/40rg)

−5/8 K, is high enough to disintegrate nuclei at the density
ρ ∼ 4× 106Ṁ0.1(r/40rg)

−3/2 g cm−3. As the shock expands to 40rg, its energy de-
creases toGMmp/r ≈ 12(r/40rg)

−1 MeV per nucleon, and a large fraction of this en-
ergy is consumed by disintegration (8 MeV per nucleon); therefore, the shock stalls.



SPREADING OF VISCOUS DISKS AND NUCLEAR BURNING

Formation of a viscous disk withrcirc> 10rg implies that most of the angular momentum
of accreting matter will be stored outside the black hole, ina viscously spreading ring.
When matter supply to the disk stops, accretion will proceedfrom this ring. At any time
t, the characteristic size of the ringR(t) is where its mass peaks. Alternatively,R can be
defined byJ = (GMR)1/2m, whereJ is the angular momentum carried by the disk and
m is its mass.

Spreading of merger disks

Immediately after the merger, the characteristic size of the debris disk isR0 ∼ 107 cm,
and its initial massm0 may be as large as∼ 0.1M⊙.3 Its viscous evolution starts on a
timescalet0 = (αΩK)

−1(H/r)−2 <∼ 0.1(α/0.1)−1 s, with accretion ratėM0 ∼ m0/t0 that
can exceed 1 M⊙ s−1. The disk is initially hot andν-opaque (cf. Fig. 2); its nuclear
matter is composed of free nucleonsn andp.

The initial accretion phase lasts∼ t0. Following this stage, the disk massm(t) is
reduced and its radiusR(t) grows to conserve the angular momentum,J =m(GMR)1/2≈

const, which impliesm ∝ R−1/2. Several important changes occur in the disk as it spreads
to R ∼ 102rg ≈ 108 cm:

◦ TemperatureT and electron chemical potentialµe in the outer regionr ∼ R decrease
to ∼ 1 MeV. As a result, the disk material atr ∼ R is not ν-cooled anymore:R(t)
exits the neutrino-cooled regionr < rign on theṀ−r diagram (Fig. 2). The viscously
produced heat outsiderign is stored and advected by the spreading accretion disk. The
spreading matter is then marginally bound to the black hole,cs ∼ vK .

◦ Electrons become non-degenerated. Pressure is not dominated by neutrons anymore:
it is dominated by radiation ande± pairs,P ≈ Pγ +P± ≈ arT 4.

◦ Ye freezes.
◦ Nuclear burning occurs: free nucleonsn and p recombine intoα particles. This

process releases energy of 7 MeV per nucleon, comparable to the binding energy
GMmp/r, and unbinds most of the disk matter, ejecting it in a freely expanding wind.4

All these changes happen asR(t) grows from∼ 50 to∼ 100rg.

A one-zone model of the spreading disk is calculated in a recent work [38]. Let us
estimate here one characteristic radiusR⋆ at whichtvisc = tweak. Heretweak is the time
of conversionn ↔ p through reactions (1) [23]. AtR⋆, pressure is already becoming

3 The mass of the debris disk is sensitive to the parameters of the binary system before the merger, in
particular to the mass ratio and the spins of the two companions, see e.g. [37] for a review.
4 In addition to nuclear burning and viscous heating, the matter is heated by neutrinos emitted atr ∼ rg

(the mass accretion rate by the black hole is still significant whenR(t) approaches 108 cm). The energy
deposited by neutrinos in the advective zone of the spreading disk,r >∼ 50rg is comparable to the viscously
dissipated energy in this zone.



dominated by radiation and non-degeneratee± pairs. On the other hand,n and p have
not yet recombined. The timescalestweakandtvisc are then given by

tweak≈ 70

(

kT
mec2

)−5

s, tvisc≈
1

αΩK(r)

(

H
r

)−2

. (8)

Using the hydrostatic balanceP/ρ = (H/r)2v2
K with ρ ≈ m/4πr2H, one finds

kT ≈ 0.60h1/4M1/4
3

m1/4
32

R8
MeV,

µe

kT
≈ 1.0Ye h−7/4M−3/4

3 m1/4
32 , (9)

whereh ≡ 2H/R, M3 ≡ M/3 M⊙, m32≡ m/1032 g= (m/0.05M⊙), andR8 ≡ R/108cm.
(Note thatµe/kT depends onm andh only, notR.) This gives

tweak

tvisc
≈ 17h3/4α0.1M−3/4

3 R7/2
8 m−5/4

32 (10)

⇒ R⋆ ≈ 4.5×107h−3/14α−2/7
0.1 M3/14

3 m5/14
32 cm, (11)

whereα0.1 = α/0.1. The density and temperature of the disk atr = R = R⋆ are

kT⋆ ≈ 1.3h13/28α2/7
0.1 M1/28

3 m−3/28
32 MeV, (12)

ρ⋆ ≈ 2×108h−5/14α6/7
0.1 M−9/14

3 m−1/14
32 g cm−3. (13)

At this temperature and density matter is close to the neutronization linekTn(ρ) =
1.04(ρ/108 g cm−3)1/2 MeV (Fig. 2),

T⋆
Tn(ρ⋆)

≈ 0.9h9/14α−1/7
0.1 M5/14

3 m−1/14
32 . (14)

Hence theequilibrium value ofYe at R⋆ is Y ⋆
e ≈ 0.5. The actualYe in the spreading

disk gradually freezes out asR(t) passes throughR⋆ and its asymptotic value after
the transition can differ fromY ⋆

e . The freeze-outYe ∼ 0.3 is found in [38] using a
dynamical model for the spreading disk. Note that the model describes theaverage value
of Ye. Viscous spreading is a random diffusion process, so different elements of the disk
spend different times nearR⋆, and a longer residence time atR⋆ gives a higherYe. One
can therefore expect a mixture of differentYe in the spreading disk, with a dispersion
∆Ye/Ye ∼ 1 around the average value.

Soon after passingR⋆ this mixture is heated by nuclear recombination and ejectedin
a wind of duration∼ tvisc(R = 108 cm). Subsequent nucleosynthesis in the expanding
ejecta produces diverse radio-active elements, includingsome with a long life-time.
Their decay can make the ejecta visible to a distant observer[39]. In particular, material
with Ye ≈ 0.5 will synthesize56Ni. 56Ni decays when the ejecta expand so much that
their thermal radiation can diffuse out and escape to observer, producing an optical flash
similar to normal supernovae.



Spreading of collapsar disks

The collapsar disks are continually fed by the infalling stellar matter during a long
time tinfall ∼ 10 s (and longer, with a decreasing infall rate). The model posits that the
angular momentum of the infall,linfall, is sufficiently large to form a viscous disk [8, 9],
e.g., the circularization radius of the infall in the numerical model of [9] isrcirc <∼ 30rg.
The accretion timescale at this radius,tvisc ∼ 3×10−2α−1

0.1s is much shorter thantinfall.
This led [9] and many subsequent works to picture a low-mass disk, m ∼ tviscṀ ∼
3×10−3Ṁ that is continually drained into the black hole and re-filledwith fresh infalling
matter.

The picture of a low-mass viscous disk is, however, implausible. Conservation of
angular momentum requires the following: (1) The disk spreads duringtinfall to a radius
R∼ 3×102rg(α/0.1)−1 where the viscous timescale is comparable totinfall. (2) The disk
accumulates massm that carries angular momentumJ = Jtot−Jacc. HereJtot =Macclinfall
is the total angular momentum processed by the collapsar disk, Jacc∼ Maccrgc is the
angular momentum accreted by the black hole, andMacc∼ Ṁtinfall ∼M⊙ is the mass
accreted through the disk. SinceJtot > Jacc for any viscous disk and usuallyJtot ≫ Jacc,
such disks must storeJ ∼ Jtot (unless almost all angular momentum is carried away by
a wind). This implies that the disk accumulates the mass,

m ≈ Macc
lK(R)
linfall

= Macc

(

R
rcirc

)1/2

∼ M⊙. (15)

The disk mass may be much smaller than this estimate only iflinfall is so small that
Jtot ≈ Jacc, which leavesJ ≪ Jtot for the disk. This condition leads, however, to the
inviscid mini-disk described in the previous section. A low-massviscous disk could
form only if linfall is fine-tuned toward the boundary between the viscous and mini-disk
accretion regimes (cf. Fig. 7).5

Spreading of viscous disks in collapsars through a radius∼ 102rg is accompanied
by significant changes, similar to the evolution of merger disks described above. In
particular, matter acquires a positive Bernoulli constantas a result of viscous, nuclear,
and neutrino heating. The infalling material of the progenitor star exerts an external ram
pressure on the disk, and can confine the disk initially, but eventually the disk pressure
must win and its matter will expand with a velocity∼ 2×109 cm/s. The ejected mass
∼ 1033 g carries the energyE ∼ 1052 erg and will explode the outer parts of the star.
To a first approximation, the expansion of the outer disk may be described as a thermal
explosion driven mainly by nuclear burning ofn and p into α particles. A fraction of
the unbound disk matter will turn into56Ni and should create a bright supernovae-like
event.

5 The very smallm∼ 0.003 M⊙ found in the simulations of [9] may be the result of the imposed absorbing
boundary condition atrin = 50 km≈ 5rg, which is∼ 5 times larger than the true inner radius of the disk,
rms ∼ rg. The largerin implies an artificially largeJacc, which happens to be nearly equal toJtot in the
model, permittingJ ≪ Jtot. In addition, a (small) fraction ofJtot is carried away by the wind.



Self-similar spreading at late stages

The disk matter that has spread beyond∼ 108 cm is largely unbound and ejected,
however, some matter remains bound and rotating in a remnantdisk. Its mass is hard
to estimate; it could be as large as∼ 0.1 M⊙ for collapsars and∼ 0.01 M⊙ for mergers.
This remnant is composed of recombined nucleons, and further fusion reactions are not a
significant source of energy (compared with the virial/gravitational energy). The central
source of neutrinos switches off aṡM drops, so neutrino heating is also insignificant.
This advective remnant disk will continue to spread viscously to larger radii, gradually
draining its mass into the black hole and possibly losing mass to a wind.

If the mass loss through a wind is small, the spreading entersa simple self-similar
regime such thatJ = const, R(t) grows as a power-law with time, whilėM(t) andm(t)
decrease as power-laws with time. Detailed self-similar models of this type were studied,
see e.g. [40, 41]. The advective disk has a scale-heightH ∼ r, sound speedcs ∼ vK =
(GM/r)1/2, andΩ∼ΩK. Its kinematic viscosity coefficient isν ∼αcsH ∼αvKr =αlK,
wherelK(r) = (GMr)1/2. The disk spreading is a diffusion process described by

R2(t)∼ ν(R)t ∼α(GMR)1/2t ⇒ R(t)∼α2/3(GM)1/3t2/3∼R0

(

t
t0

)2/3

, (16)

where subscipt “0” refers to an initial reference moment of time t0. The disk massm(t)
is then found from the conditionJ = (GMR)1/2m = const,

m(t) =
J

(GMR)1/2
∼ m0

(

R
R0

)−1/2

∼ m0

(

t
t0

)−1/3

, (17)

and the accretion rate is given by

Ṁ(t)∼
m
t
∼ Ṁ0

(

t
t0

)−4/3

. (18)

This self-similar solution may not apply if the disk loses mass through a wind and [38]
consider solutions that include the wind. In general, advective disks are only marginally
bound by the gravitational field of the black hole and their Bernoulli constant can be
positive [42, 43]. This is expected to cause a strong wind. Onthe other hand, bound
solutions with a negative Bernoulli constant were found forspreading advective disks
[41]. The mass loss through a wind then depends on the poorly understood vertical
distribution of viscous heating inside the disk and the behavior of the magnetic field
above the disk.

CONCLUSIONS

Hyper-accretion disks are formed from matter with a modest angular momentum, with
circularization radiusrcirc well inside 102rg ≈ 108 cm. Matter withrcirc >∼ 10rg is sup-
ported by the centrifugal barrier, and its accretion is driven by viscous stresses on a



timescalet0 ∼ 0.1(α/0.1)−1 s, whereα ∼ 0.01−0.1 is the viscosity parameter. These
viscous disks are dense and hot, and emit copious neutrinos as long as the accretion rate
Ṁ exceedsṀign ∼ 0.03(α/0.1)5/3M⊙ s−1.

Neutrino annihilation above the disk deposits a significantenergy that can power GRB
explosions. In contrast to previous expectations, the rateof energy depositioṅEνν̄ is
found to be not sensitive to the details of neutrino transport and the vertical structure of
the accretion disk. It is given bẏEνν̄ ≈ Ė0(Ṁ/M⊙ s−1)9/4 in a broad range of accretion
ratesṀign <∼ Ṁ <∼ Ṁtrap (eq. 3). The normalization factoṙE0 is very sensitive to the black
hole spina. For instance,Ė0 ≈ 1052 erg s−1 is found for a black hole witha = 0.95,
which is two orders of magnitude larger thanĖ0 for the Schwarzschild casea = 0.

Remarkably, all neutrino-cooled viscous disks regulate themselves to a characteristic
state such that electrons are mildly degenerate,Ye ∼ 0.1, and free neutrons dominate
the pressure in the disk [17]. The neutron-rich matter may contaminate the jet from
the accreting black hole and get ejected with a high Lorentz factor. Then the gradual
decay of the ejected neutrons affects the global picture of GRB explosion on scales up
to 1017 cm, where the GRB blast wave is observed [44, 45, 46].

The disk sizeR grows with time as a result of viscous spreading. Most of the disk
massm(t) resides nearR(t) and its state is not described by the steady model (which
remains valid at radiir < R). Instead, it is described by a markedly different spreading
solution. In particular, as the disk spreads to∼ 100rg it is heated both viscously and
by the nuclear burning of free nucleons into helium.6 As a result, the disk is disrupted
before it spreads much beyond 108 cm: the heated flow acquires a positive Bernoulli
constant and gets unbound.

Then most of the disk massm is ejected with a velocity∼ 0.1 c and a total energy
∼ 1052(m/M⊙) erg. A fraction of the ejected matter acquiresYe ≈ 0.5, which favors the
synthesis of56Ni as the ejecta expand and their temperature drops. The ensuing gradual
decay of56Ni should produce a visible optical flash on a week timescale —a supernova-
like event. The flash is expected to be especially bright for collapsars that develop
massive spreading accretion disks. A similar (but weaker) flash should be produced by
the spreading disks around a merged binary; the ejected masscan be a few orders of
magnitude smaller in this case.

56Ni-rich matter may also be ejected from theinner, geometrically thin, neutrino-
cooled disk. This can occur if the inner disk produces a strong wind [47, 48, 49, 50]. Such
winds are modeled as quasi-steady magnetized outflows, illuminated by neutrinos which
can heat and de-neutronize the wind material. The details ofthis plausible mechanism
are uncertain because the mass outflow rate and the asymptotic Ye in the wind is hard to
predict with confidence — both depend on the assumed MHD behavior of the disk and
its corona.

6 In contrast, when matteraccretes through∼ 102rg (as in the steady-state model), this process is
reversed: helium is disintegrated, which leads tocooling.



Following the main burst, the accretion rate is determined by the amount of matter
that remains bound and rotating around the black hole.7 Ṁ(t) decreases steeply when
the disk spreads beyond 108 cm and most of its matter is ejected, however, some
matter remains bound and continues to accrete. The evolution of Ṁ may be related
to the observed puzzling features in the afterglow emissionof GRBs. The afterglow
is likely to be produced by the relativistic blast wave driven by the jet from the central
engine. Its luminosity is determined by the energy and magnetization of the jet as well
as the density profile of the ambient medium atr ∼ 1015−1017 cm. A long-lived jet
of luminosity Ljet = εjetṀc2 would certainly impact the afterglow emission. However,
current theories are unable to reliably predict the evolution of Ṁ andεjet. For instance,
one could speculate that the jet switches off abruptly asṀ decreases below a threshold,
which causes the observed steep decay in the afterglow lightcurves.

While the mechanism of the relativistic jet and its evolution with Ṁ(t) remain un-
certain, the non-relativistic massive ejecta withv ∼ 0.1c is a robust consequence of
viscous-disk accretion. Viscous disks certainly form in merger events. The standard col-
lapsar model also assumes the formation of a viscous disk, but this case is less certain.
The minimum angular momentum needed to form a disk is∼ rgc, and collapsars were
proposed as rare events of stellar collapse withl > rgc. Hence, statistically, the accretion
flows in collapsars are likely to have smalll and their disks can be smaller than∼ 10rg.
Such mini-disks are not centrifugally supported and accrete faster than viscous disks. In
contrast to the viscous regime, this low-angular momentum accretion leaves no remnant
disk in the end of the core collapse, involves no viscous spreading, and may not eject
much mass. However, it still can produce a powerful relativistic jet via the Blandford-
Znajek mechanism and/or neutrino heating near the rotationaxis.
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