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Abstract. We have computed and analyzed the evolution of intermediate-mass stars of metallicity
Z = 10−5 from the main sequence until the early stages of the TP-(S)AGB phase. In order to check
the influence of mixing we have performed our calculations using two different evolutionary codes,
EVOLVE — which does not include diffusion but allows for overshooting — andLPCODE, which
includes diffusion and overshooting “à-la-Herwig”. Important differences appear during the TP–
AGB phase, as the calculations done withEVOLVE lead to an almost negligible third dredge-up,
whereas the sequences computed withLPCODE show important third dredge-up and, therefore,
significant enrichment in metals of the envelope. This fact has consequences on the strength of the
winds during the TP-AGB phase and, ultimately, on the final fate of the considered stars. Also, the
models computed withLPCODE show strong double flashes produced by the ingestion of protons
on the helium burning shell.
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INTRODUCTION

Primordial and extremely low metallicity stars are drawingincreasing attention, not only
because we have now a harvest of new observations of more metal poor environments
[1, 2], but also because of the recent progresses achieved inthe theoretical calculations.
Recent studies [3, 4] have found peculiar flashes that ensue during the evolution of
extremely metal poor stars, which could dramatically affect — and be affected by —
the mixing mechanisms that must be taken into account. We might be facing a problem
not to be accounted for either by the standard mixing length recipes nor by diffusion.
Instead, inputs from multidimensional hydrodynamic simulations might be required
[4, 5]. Moreover, recent calculations of the evolution of intermediate-mass primordial
stars [6, 7, 8], point out to the possibility that these starsmight end their lives as SNeI1/2
[9], since the initial lack of metals of the envelope and the inefficiency of the dredge-up
process favour very weak winds, that are unable to eject the envelope before the core
reaches the Chandrasekhar mass.

In this work we explore the effects of the initial metallicity on the late stages and final
fate of intermediate-mass stars of extremely low metallicity (Z = 10−5), and we discuss
whether the results obtained for their counterparts of primordial composition hold for
these objects. We target as well the consequences of different mixing prescriptions.
Finally, we also assess the impact of the numerical schemes adopted in the evolutionary
codes, by computing evolutionary sequences with two different codes. In section 2 we
describe the codes and we outline the evolution during the main central burning stages.
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FIGURE 1. Evolution in the Hertzsprung-Russell diagram of ourZ = 10−5 models computed with
EVOLVE.

In section 3 we describe the early stages of the TP-AGB phase and focus on the problem
of their final fate, whereas in the last section we summarize our findings and we draw
the main conclusions of our work.

INPUTS, EVOLUTIONARY CODES AND SEQUENCES

In order to check how the mixing prescriptions affect the evolution of extremely low
metallicity intermediate-mass stars, we have computed a series of sequences using two
different codes:EVOLVE andLPCODE. The evolutionary codeEVOLVE follows the H-
and He-burning phases and has been updated to include carbonburning [10] and the
new OPAL opacities [11], but does not include element diffusion. Recently, it has been
used to analyze intermediate-mass primordial stars and howovershooting can affect their
main properties [11, 7]. The treatment of overshooting has been implemented following
Refs. [12] and [13]. To be precise, convection sets in when∇rad > ∇ad− δ , whereδ
depends on the ratioPrad/Pgasand on a free parameter that has been calibrated in order to
fit observations. UsingEVOLVE without overshooting we have computed the evolution
of Z = 10−5 stars of initial masses between 5 and 9M⊙. For the sake of comparison, we
have also computed the evolution of a 5M⊙ model star with overshooting. The tracks in
the Hertzsprung-Russell diagram of these model sequences are shown in figure 1.



FIGURE 2. Evolution in the Hertzsprung-Russell diagram of ourZ = 10−5 models computed using
LPCODE and several values off

LPCODE [14] includes diffusion and the treatment of overshooting follows the pre-
scription of Ref. [15]. That is, convective mixing is extended beyond the frontier of
stability according to the exponentially decaying law:

DOV = D0 exp

(

−2z
Hv

)

(1)

where the parametersD0 = v0HP, z =| redge− r | and Hv = f HP. The parameterf
adopts values between 0 and 0.032, although the value recommended lately is 0.008
[16]. Larger values off imply a more extended mixing. UnlikeEVOLVE, LPCODE does
not allow to compute the carbon burning phase.

We have analyzed the evolution of 5M⊙ and 6M⊙ stars, with compositionX = 0.755,
Y = 0.245 andZ = 10−5, and with different values off , ranging from 0.0 to 0.032. The
left panel of figure 2 shows the tracks in the Hertzsprung-Russell diagram of the models
computed withLPCODE and f between 0.0 and 0.008. The right panel of the same figure
shows the evolution in this diagram of the 5M⊙ model computed withEVOLVE — with
and without overshooting — and withLPCODE and values forf of 0.016 and 0.032. As
can be seen in the figure, the amount of extra mixing due to overshooting obtained using
EVOLVE corresponds to a fairly large value off , intermediate between 0.016 and 0.032.
On the other hand, the sequences computed with no overshooting show a fair agreement.

Evolution during the main central burning stages

Opposite to what happens in the case of primordial stars, stars with a metallicity of
Z = 10−5 develop core hydrogen burning (CHB) through the CNO cycle, as the initial
amount of metals is more than enough to allow the onset of these reactions. However,



TABLE 1. Masses of the CO cores and central
abundances of carbon and oxygen for the 6M⊙

model stars computed withEVOLVE and no over-
shooting and withLPCODE with several different
values off .

Code f MCO Xc(
12C) Xc(

16O)

EVOLVE — 0.96 0.31 0.69
LPCODE 0.000 0.85 0.41 0.59
LPCODE 0.002 0.87 0.32 0.68
LPCODE 0.004 0.88 0.26 0.74
LPCODE 0.008 0.92 0.36 0.64
LPCODE 0.016 0.98 0.34 0.66

the tracks of primordial andZ = 10−5 stars show some aspects in common. For instance,
they do not climb the red giant branch during hydrogen shell burning but instead, they do
it for the first time during the helium shell burning phase. The reason for such behavior
is that the cores are so hot and compact at the end of the CHB phase that the 3α reaction
sets in before the hydrogen-burning shell is able to induce the expansion and cooling
of the stellar envelope. Therefore both CHB and core helium-core burning (CHeB) take
place at the left hand side of the Hertzsprung-Russell diagram. This general behavior is
independent of the code used and of the value adopted forf .

As for the evolutionary timescales, theZ = 10−5 models computed withEVOLVE
yield values longer than those corresponding to primordialstars obtained with the same
code [7]. Also, the masses of the degenerate cores are largerand the central abundances
of carbon (oxygen) are smaller (larger) than those of the corresponding primordial cases.
When the sizes of the cores obtained with the two codes are compared, those resulting
from theLPCODE sequences andf = 0 are about 12% less massive than the cores
computed withEVOLVE — see Table 1. Asf increases and reaches values ranging
from 0.016 to 0.032, the CO core masses become similar for both codes. Finally, with
regard to the ratioX(C)/X(O), the 5M⊙ sequence computed withEVOLVE also yields
a value similar to that of the correspondingLPCODE model andf = 0.016.

Carbon burning in ourZ = 10−5 models develops in conditions of partial degeneracy
and, therefore, through a series of flashes in which the carbon luminosity, LC, can
reach values as large as∼ 108L⊙. This large release of energy causes a fast increase
in the temperature gradient and the development of associated convective shells. The
expansion and cooling of the layers just above causes the temporary switch-off of the
helium-burning shell (HeBS), that recovers as soon as the carbon flash finishes.

Figure 3 shows the temporal evolution of the carbon (LC) and helium (LHe) lumi-
nosities (upper panel) and the convective zones (lower panel) during the carbon-burning
phase. As can be seen, the burning flame reaches the centre of the star after the second
flash. The most interesting feature we have found in this caseis related to the evolution of
convection during the last phases of carbon burning: convection advances inwards in the
stellar envelope after the onset of the HeBS and stops its advance when carbon burning
begins at a mass point of 0.19M⊙. But when the last convective zone associated to car-
bon burning is about to disappear andLC < 104L⊙, the base of the convective envelope



FIGURE 3. Evolution of our 8M⊙ model during the carbon burning phase. The upper panel showsthe
evolution ofLH, LHe andLC and the lower panel shows the evolution of the convective zones.

TABLE 2. Mass of the CO and ONe
cores computed withEVOLVE and no
overshooting.

MZAMS/M⊙ MONe/M⊙ MCO/M⊙

5.0 — 0.91
6.0 — 0.97
7.0 1.02 1.05
8.0 1.21 1.22
9.0 1.39 1.40

resumes its advance inwards and is able to mix protons into the high temperature and
density regions of the stellar interior. This causes a fast ignition of the protons, the occur-
rence of a hydrogen flash and the extension inwards of convection that allows the mixing
of material processed during helium and carbon burning withthe stellar envelope. This
process was already observed and described in Ref. [17] and was later confirmed in Ref.
[18], and has been referred to as dredge–out.

TP-AGB EVOLUTION AND THE EFFECTS OF VARYING f

Table 2 shows the sizes of the degenerate cores of the models computed withEVOLVE
after the main central burning stages. The 7M⊙ model withZ = 10−5 is already able to
ignite carbon. For comparison, the minimum mass allowing carbon burning in the case



FIGURE 4. Left top panel: evolution ofLH and LHe during the early TP-AGB phase of the 5M⊙

star computed withEVOLVE. Left middle panel: position of the base of the convective envelope (BCE)
computed withEVOLVE. Left lower panel: BCE for the same model star computed withLPCODE and
f =0. Right upper panel: evolution ofLHe during the double flash events obtained withLPCODE. Right
lower panel: evolution ofLH during the double flash events obtained withLPCODE.

TABLE 3. Envelope CNO abundances and total metallicity of the 5M⊙

models computed withEVOLVE andLPCODE.

Code f Xenv(
12C) Xenv(

14N) Xenv(
16O) Zenv

EVOLVE — 5.8×10−7 3.2×10−6 3.3×10−6 1.10×10−5

LPCODE 0.000 1.2×10−6 1.4×10−6 1.2×10−6 1.02×10−5

LPCODE 0.002 1.4×10−6 1.7×10−6 3.9×10−6 1.06×10−5

LPCODE 0.004 0.6×10−6 1.5×10−6 0.8×10−6 1.83×10−5

LPCODE 0.008 3.2×10−6 3.0×10−6 3.2×10−6 1.32×10−5

LPCODE 0.016 5.8×10−5 1.1×10−5 1.5×10−5 1.10×10−5

of primordial stars is 7.8M⊙.
Once the main central burning stages finish, the hydrogen burning shell (HBS)

switches on again and the TP-AGB begins — see figure 4. On the left panels of this
figure we compare the advance and retreat of the convective envelope in the evolution-
ary sequences calculated withEVOLVE andLPCODE. The agreement is quite close, but
the importance of mixing induced by the third dredge-up (TDU) is much larger in the
tracks computed withLPCODE. By this time the stellar envelope material has already
been mixed with the products synthesized in the interior of the star.

We have followed the first thermal pulses of the 5M⊙ model star using both codes and
different values off . Table 3 shows the chemical composition of the envelope for this
case during the TP-AGB phase. The models computed withLPCODE show larger C/N
abundance ratios in the envelope. It must be stressed, however, that we have not followed
the same number of pulses for each value off , and hence the direct comparison of these



TABLE 4. Characteristic times (in years) needed
for the cores to reach the Chandrasekhar mass and
to remove the envelope using the mass-loss prescrip-
tion of Reimers (tR

env) and that of Blöcker (tB
env).

MZAMS/M⊙ tCh (yr) tR
env (yr) tB

env (yr)

5.0 1.6×106 5.6×108 7.9×106

6.0 1.5×106 5.2×108 6.5×106

7.0 1.3×106 1.9×108 3.1×106

7.5 9.8×105 1.2×108 2.0×106

8.0 7.8×105 5.3×107 1.1×106

8.5 5.4×105 6.0×107 1.4×106

results can be somewhat misleading.
As to the characteristics of the TP-AGB phase, we have found that for the model

computed withEVOLVE, after 15 pulses the effects of the TDU or hot bottom burning are
negligible and that the envelope abundances remain constant. For the models computed
with LPCODE, we have found that even for thef = 0 case TDU and hot bottom burning
play an important role. After the first 20 pulses the metallicity of the envelope changes
from Zenv = 1.00×10−5 — the second dredge-up was almost negligible for this model
— to Zenv = 2.33× 10−4. Another salient feature in theLPCODE sequences is the
existence of double flashes, in which protons are ingested into the He-burning shell,
thus producing a proton flash that quenches He shell burning.This can be seen on the
right panels of figure 4. Similar flashes have been found in Refs. [3] and [4], but a firm
observational test currently seems beyond of reach.

SUMMARY AND DISCUSSION

We have used two different evolutionary codes to compute theevolution of intermediate-
mass extremely metal-poor stars. The two codes yield very different envelope enrich-
ments during the TP-AGB and, therefore, point to very different possibilities for the final
fates of the stars we are considering. According to the results obtained usingEVOLVE,
the envelope enrichment due to the TDU is almost negligible and, therefore, one can not
assure that stellar winds will be powerful enough to remove the envelope before the de-
generate core reaches the Chandrasekhar mass. As it was donein Ref. [11], an estimate
of the final fate of these stars can be done. Using the prescription for stellar winds of
Reimers [19] or that of Blöcker [20] and the sizes of the envelopes obtained from our
sequences, we can estimate the time required by the stars to lose their envelopes (tenv).
Using the rates of core growth and the initial size of the cores, we can also estimate the
time required to reach the Chandrasekhar mass (tCh). These times are shown in table 4.
Even the values fortenv obtained with the prescription of Blöcker are larger than those
for tCh. Therefore one can not discard that these stars might end their lives as SNeI1/2.

We have assumed that for the models computed using the evolutionary codeEVOLVE
the envelope abundances are almost constant along the TP-AGB phase. But, as already
shown, this is not the case for the models computed withLPCODE. If, instead, this



assumption is dropped, as it stems from the calculations performed withLPCODE, the
fast increase in the metal content of the envelope seems enough to support stellar winds
similar to those of solar metallicity stars. Therefore, they will allow a standard evolution
for the 5M⊙ star and, therefore, it is foreseen that this model would lose its envelope
and evolve to the white dwarf cooling track.

The problem of the evolution and fate of extremely low metallicity stars remains open
and appears strongly dependent on the treatment of mixing inthe model stars. The
developement of thermonuclear flashes that alter the mixingof isotopes in ways that
do not occur in solar metallicity stars and the new observations make the subject of the
evolution of extremely low metallicity stars increasinglyinteresting and challenging.
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