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Abstract
In order to understand the dynamics of a second order delay differential equation
with a piecewise constant argument, we investigate invariant curves of the derived
planar mapping from the equation. All invariant curves are given in this paper.
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1 Introduction
The study of differential equations with piecewise constant argument (EPCA) initiated in
[, ]. These equations represent a hybrid of continuous and discrete dynamical systems
and combine the properties of both differential and difference equations, hence, they are
of importance in control theory and in certain biomedical models []. In this paper the
second order delay differential equation with a piecewise constant argument

x′′(t) + g
(
x
(
[t]

))
= , t ∈R, x ∈ R, ()

where x′′(t) denotes the second order derivative of x(t), [t] denotes the greatest integer less
than or equal to t, and g : R →R is a continuous or at least piecewise continuous function,
is considered. In , Aftabizadeh et al. discussed the oscillatory and periodic properties
of the solutions of () in []. In , Gyori and Ladas investigated linearized oscillations of
the solutions of () in []. Later, Wiener and Cooke considered oscillations of the solutions
of systems of two differential equations with piecewise constant arguments in [].

The invariant curve [–] is another interesting problem in the study of dynamics be-
cause it can be used to reduce a system to a -dimensional one. The problem of invariant
curves is actually a part of the research on invariant manifolds. In , Ng and Zhang
studied the nonlinear C invariant curve of planar mapping G : R →R

,

G(x, y) =
(

y, y – x –


(
g(y) + g(x)

))
, ()

derived from () in [] when g is nonlinear and gave the conditions that G has linear
invariant curves when g is linear. In , Yang et al. investigated nonlinear C invariant
curves of () when g is nonlinear in []. So far, nonlinear invariant curves of () when g is
linear have not been studied. So it is very interesting to look for nonlinear invariant curves
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of () when g is linear. In this paper all the invariant curves of the planar mapping G are
given including the linear and nonlinear ones when g is linear.

2 Main results
We discuss invariant curves of the form y = f (x) for the planar mapping (). Its invariant
curves of the form y = f (x) satisfy f (y) = y – x – 

 (g(y) + g(x)), which leads to the iterative
functional equation

f
(
f (x)

)
= f (x) – x –



(
g
(
f (x)

)
+ g(x)

)
, ∀x ∈ R. ()

Considering linear g and g(x) = ax + b, we compute that

f
(
f (x)

)
–

(
 –

a


)
f (x) +

(
 +

a


)
x = –b, ∀x ∈R. ()

Thus, the invariant curves of planar mapping G with g(x) = ax + b can be obtained by
solving functional (). We mainly discuss the generic cases a /∈ {–, }, but leave the special
cases a = – and a =  to the last part of this section. For generic a /∈ {–, }, () with b = 
is of the form discussed in [, ]. In order to apply the results of [], we let

r :=
( – a) – (a – a) 




, r :=

( – a) + (a – a) 



, ()

which are the roots of the characteristic polynomial P(r) := r – ( – a
 )r +  + a

 .
From () we see that the characteristic roots r, r of () have the following possibilities:
(C)  < r <  < r, if and only if – < a < .
(C) r = r = , if and only if a = .
(C) r <  < r �=  and r �= –r, if and only if a < –.
(C) r = r < , if and only if a = .
(C) r < r < –, if and only if a > .
Note that the case r > r >  is not listed because the case r > r >  implies

(–a)–(a–a)



 > , i.e., –a > (a –a) 
 , which does not hold, and that the case  < r < r < 

is not listed because  < r < r <  implies  < (–a)+(a–a)



 < , i.e.,  < a < , which con-
tradicts the requirement that � = a – a ≥ , and that the case  < a <  is not listed
because in this case () with b =  has no continuous solutions, neither r nor r is real,
by []. Since we consider a /∈ {–, }, none of the case r = , the case r = , and the case
r = –r �=  is listed. Corresponding to the above list, we have the following results.

Theorem . (i) If – < a < , then a continuous solutions φ of () with b =  is either of
the piecewise linear form that f (x) := rix for x > , or :=  for x = , or := rjx for x < , where
i, j = , , or given by

f (x) :=

{
fn(x), x ∈ [xn, xn+), n = , , , . . . ,
f –
–n (x), x ∈ [x–n, x–n+), n = , , . . . ,

where xn = rn


r–r
(x – rx) + rn


r–r

(–x + rx), n ∈ Z, with an arbitrarily chosen x ∈
(–∞, +∞) and x ∈ [rx, rx], and fn(x) = (r + r)x – rrf –

n–(x) for all x ∈ [xn, xn+),
n = , , . . . , f–n–(x) = ( 

r
+ 

r
)x – 

rr
f –
–n (x) for all x ∈ [x–n, x–n+), n = , , . . . , and f–(x) =
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( 
r

+ 
r

)x– 
rr

f(x), x ∈ [x, x), with the arbitrarily chosen functions f such that f(x) = x,
f(x) = x, and r ≤ f(x)–f(y)

x–y ≤ r for all x, y ∈ [x, x). (ii) If a = , then () with b =  has
a unique continuous solution f and f (x) = x + β , where β ∈R is an arbitrary constant.

Proof The proof is a simple application of well-known results in []. The result (i) is given
by Theorem  of [], where the characteristic roots r, r satisfy r >  > r >  as shown
in (C). We can deduce the result (ii) from Theorem  of [], where r = r =  as shown
in (C). The proof is completed. �

Theorem . (i) If a < –, then () with b =  only has two continuous solutions f and
f (x) = rx or rx. (ii) If a = , () with b =  just has a continuous solution f (x) = –x. (iii) If
a > , all continuous solutions f of () with b =  are given by

f (x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fn(x), x ∈ [x–n, x–n+), n = , , , . . . ,
fn+(x), x ∈ [x–n+, x–n+), n = , , , . . . ,
, x = ,
f –
–n(x), x ∈ [xn, xn+), n = , , . . . ,

f –
–n+(x), x ∈ [xn+, xn+), n = , , . . . ,

where the sequence {xn} is defined by xn = rn


r–r
(x – rx) + rn


r–r

(–x + rx), n ∈ Z, with an
arbitrarily chosen x ∈ (, +∞) and x ∈ [rx, rx], and fn–(x) = (r + r)x – rrf –

n–(x),
x ∈ [x–n+, x–n+), n = , , . . . , fn(x) = (r + r)x – rrf –

n–(x), x ∈ [x–n, x–n+), n = , , . . . ,
f–n(x) = ( 

r
+ 

r
)x – 

rr
f –
–n+(x), x ∈ [xn+, xn+), n = , , . . . , f–n–(x) = ( 

r
+ 

r
)x –


rr

f –
–n(x), x ∈ [xn, xn+), n = , , . . . , and f–(x) = ( 

r
+ 

r
)x – 

rr
f(x), x ∈ [x, x), with an

arbitrarily chosen continuous function f on [x, x) such that f(x) = x, f(x) = x, and
r ≤ f(x)–f(y)

x–y ≤ r, ∀x, y ∈ [x, x).

Proof Firstly, we consider (i). By Theorem  in [], () with b =  only has two continuous
solutions f and f (x) = rx or rx, where the characteristic roots r, r satisfy r <  < r �= 
and r �= –r as shown in (C). Next, we consider (ii). By Theorem  in [], () with b =
 just has a continuous solution f (x) = –x, where the characteristic roots r, r satisfy
r = r = – as shown in (C). Finally, we consider (iii). In order to piecewise construct all
solutions of () with b =  we need a partition for the interval (–∞,∞). For this purpose
we consider a homogeneous linear difference equation

xn+ –
(

 –
a


)
xn+ +

(
 +

a


)
xn = , ()

which has the same coefficients as () with b =  correspondingly. Its characteristic equa-
tion is

r –
(

 –
a


)
r +  +

a


= , ()

which has two characteristic roots r and r satisfying r < r < – as shown in (C). Thus,
() and () can be, respectively, rewritten as

f
(
f (x)

)
– (r + r)f (x) + rrx = , ()

xn+ – (r + r)xn+ + rrxn = , n = , , , . . . . ()
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If f is a solution of () with b = , we easily see that f is invertible. In fact, if f (x) = f (x),
then f (f (x)) = f (f (x)). Thus, x = x by () because a �= –, which implies that f is one to
one. Next we only need to show that f (x) → –∞ as x → +∞ and f (x) → +∞ as x → –∞
because f (x) → ±∞ as x → ±∞, then the left-hand side of () with b =  tends to ±∞ by
a > , but the right-hand side is equal to . Otherwise, f (x) has a finite limit as x → ∞,
then f (f (x)) – ( – a

 )f (x) converges to a finite limit by the continuity of f on the whole
of R, but ( + a

 )x does not, which contradicts the requirement that f (f (x)) – ( – a
 )f (x) =

–( + a
 )x. Thus, we rewrite () in the following equivalent form:

f –(f –(x)
)

–
(

 –
a


)
f –(x) +

a


x = , ()

which is called the dual equation to () with b = . Solving the homogeneous linear differ-
ence () with arbitrarily chosen real initial values x and x, we obtain

xn =
rn


r – r

(x – rx) +
rn


r – r

(–x + rx), n ∈ Z. ()

Let x = x and xn+ = f (xn) in (), we have

f n(x) =
rn


r – r

(
f (x) – rx

)
+

rn


r – r

(
–f (x) + rx

)
, n ∈ Z.

Furthermore, we can obtain

�f n(x, y) =
rn


r – r

(
�f (x, y) – r

)
+

rn


r – r

(
–�f (x, y) + r

)
, ()

f n+(x) – f n(x) = rn


r – 
r – r

(
f (x) – rx

)
+ rn


r – 
r – r

(
–f (x) + rx

)
, ()

where �f n(x, y) = f n(x)–f n(y)
x–y for any x �= y and n ∈ Z. From () we can see that

lim
n→+∞

�f n(x, y)
rn


=

(�f (x, y) – r)
r – r

,

lim
n→–∞

�f n(x, y)
rn


=

(–�f (x, y) + r)
r – r

.

Since f is strictly monotonic, �f n(x, y) >  for even n, which implies �f (x, y) – r ≥  and
–�f (x, y) + r ≥ , that is,

r ≤ �f (x, y) ≤ r. ()

Moreover, we can see that f () =  from (). In what follows, we arbitrarily choose x ∈
(, +∞) and x ∈ [rx, rx] and define a sequence {xn}, n ∈ Z, by (). The sequences {xn},
{xn+}, {x–n} and {x–n+}, where n = , , , . . . , are strictly monotone such that xn →
+∞, xn+ → –∞, x–n → , and x–n+ →  as n → ∞. Thus, the sequence {xn}, n ∈ Z,
is a partition of the interval (–∞,∞). Next we arbitrarily choose a continuous function
defined in the interval [x, x), satisfying f(x) = x, f(x) = x, and condition (). We can
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recursively define the homeomorphisms fn– : [x–n+, x–n+) → [x–n, x–n+), n = , , . . . ,
and fn : [x–n, x–n+) → [x–n+, x–n+), n = , , . . . , such that

fn–(x–n+) = x–n+, fn–(x–n+) = x–n, ()

fn(x–n) = x–n+, fn(x–n+) = x–n+, ()

r ≤ �fn–(x, y) ≤ r, ∀x, y ∈ [x–n+, x–n+), ()

r ≤ �fn(x, y) ≤ r, ∀x, y ∈ [x–n, x–n+). ()

In fact, for fn defined satisfying () and (), we let

fn+(x) = (r + r)x – rrf –
n (x), ∀x ∈ [x–n+, x–n+).

Obviously, fn+(x–n+) = x–n and fn+(x–n+) = x–n–. Making use of (), we have 
r

≤
f –
n (x)–f –

n (y)
x–y ≤ 

r
for x, y ∈ [x–n, x–n+). It is easy to deduce that

r ≤ �fn+(x, y) ≤ r, ∀x, y ∈ [x–n+, x–n+).

Furthermore, we again let

fn+(x) = (r + r)x – rrf –
n+(x), ∀x ∈ [x–n–, x–n).

By the same argument we can see that

fn+(x–n–) = x–n–, fn+(x–n) = x–n+, ()

r ≤ �fn+(x, y) ≤ r, ∀x, y ∈ [x–n–, x–n). ()

By induction both fn– and fn are well defined. Similarly, we can also recursively de-
fine the homeomorphisms f–n+ : [xn–, xn) → [xn+, xn+), n = , , . . . , and f–n :
[xn+, xn+) → [xn, xn+), n = , , . . . . By the properties of the dual () we can obtain

f–n+(xn–) = xn+, f–n+(xn) = xn+,

f–n(xn+) = xn+, f–n(xn+) = xn,


r

≤ �f–n+(x, y) ≤ 
r

, ∀x, y ∈ [xn–, xn),


r

≤ �f–n(x, y) ≤ 
r

, ∀x, y ∈ [xn+, xn+).

Therefore,

f –
–n+(xn+) = xn–, f –

–n+(xn+) = xn,

f –
–n(xn+) = xn+, f –

–n(xn) = xn+,

r ≤ �f –
–n+(x, y) ≤ r, ∀x, y ∈ [xn+, xn+),

r ≤ �f –
–n(x, y) ≤ r, ∀x, y ∈ [xn, xn+).
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Thus, we can define

f (x) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fn(x), x ∈ [x–n, x–n+), n = , , , . . . ,
fn+(x), x ∈ [x–n+, x–n+), n = , , , . . . ,
, x = ,
f –
–n(x), x ∈ [xn, xn+), n = , , . . . ,

f –
–n+(x), x ∈ [xn+, xn+), n = , , . . . .

f is continuous on R because fn(x–n) = x–n+ = fn+(x–n), fn+(x–n+) = x–n– =
fn+(x–n+), where n = , , , . . . , f –

 (x) = f–(x), f –
–n(xn+) = xn+ = f –

–n–(xn+), and
f –
–n+(xn+) = xn+ = f –

–n–(xn+), where n = , , , . . . . we can easily check that f defined
in Theorem . satisfies () with b =  in R. In fact, if x ∈ [x–n, x–n+), n = , , , . . . ,
f (x) = fn+(fn(x)) = (r + r)fn(x) – rrx = (r + r)f (x) – rrx, i.e., f (x) – (r + r)f (x) –
rrx = . Similarly, we can also check that f satisfies () with b =  for x ∈ [x–n+, x–n+),
x ∈ [xn+, xn+), x ∈ [xn, xn+) and x = , where n = , , , . . . . The proof is completed.

�

Remark In the case that b �= , as indicated in [] for () therein, () can be reduced
equivalently to the equation

f̃
(
f̃ (x)

)
–

(
 –

a


)
f̃ (x) +

(
 +

a


)
x = , ()

the same type of equation as the one considered in Theorems . and . with vanishing
b, by the replacement f̃ (x) = f (x + ξ ) – ξ , where ξ = –b

(–r)(–r) , if its characteristic roots
r, r are both real but neither of them is equal to . In this case solutions can be found
from Theorems . and .. So () with b �=  can be reduced to () except for the case
a = . For the case of a =  and b �= , () has no real continuous solutions. In fact, by
induction and () we can obtain f n(x) = nf (x) – (n – )x – n(n+)

 b, n ∈ Z. Furthermore, we
have f n+(x) – f n(x) = f (x) – x – (n + )b, n ∈ Z. For an arbitrary x ∈R, f n+(x) – f n(x) has the
same sign when n takes the values N and –N , where N is a large positive integer, because
f is strictly monotonic. But f (x) – x – (n + )b has not, which contradicts the requirement
f n+(x) – f n(x) = f (x) – x – (n + )b, n ∈ Z.

In what follows, we consider the case that either a = – or a = , which is not generic.
For a = –, () is of the form f (x) – f (x) = –b, from which we get with the replacement

y = f (x): f (x) = x – b.
For a = , () is of the form

f (x) = –x – b, ()

which is the problem of iterative roots of the linear function F(x) := –x – b. By the theory
of iterative roots, as shown in [], we know () has no real continuous solutions.
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