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Abstract
In this paper a free boundary problem for solid avascular tumor growth in a periodic
external environment is studied. The periodic environment means that the supply of
nutrient and inhibitors is periodic. Sufficient conditions for the global stability of
tumor free equilibrium are given. We also prove that if external concentration of
nutrients is large, the tumor will not disappear. The conditions under which there
exists a unique periodic solution to the model are determined, and we also show that
the unique periodic solution is a global attractor of all other positive solutions.

Keywords: solid avascular tumor; periodic environment; stability; periodic solution

1 Introduction
The process of tumor growth and its dynamics has been one of the most intensively studied
processes in the recent years. There have appeared many papers devoted to developing
mathematical models to describe the process, cf. [–] and the references therein. Most
of those models are based on the reaction diffusion equations and mass conservation law.
Analysis of such mathematical models has drawn great interest, and many results have
been established, cf. [–] and the references therein.

In this paper we study the following problem:
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where R(t) denotes the external radius of tumor at time t; the term �σ in (.) is the
consumption rate of nutrient in a unit volume; �β in (.) is the consumption rate of
inhibitors in a unit volume; ϕ(t) denotes the external concentration of nutrients, which
is assumed to be a periodic function, the period of which is ω. φ(t) denotes the external
concentration of inhibitors, and it is also assumed to be a periodic function, the period
of which is ω. The external concentration of nutrients and inhibitors is assumed to be
periodic with the same period, which means that the tumor is in a periodic external envi-
ronment. The three terms on the right-hand side of (.) are explained as follows: the first
term is the total volume increase in a unit time interval induced by cell proliferation, the
proliferation rate is λσ ; the second term is the total volume decrease in a unit time inter-
val caused by natural death, and the natural death rate is ν ; the last term is total volume
shrinkage in a unit time interval caused by inhibitors, or cell death due to inhibitors, the
rate of cell apoptosis caused by inhibitors is μβ .

We will consider (.)-(.) together with the following initial condition:

R() = R. (.)

Equations (.)-(.) are from Byrne and Chaplain []. The modification is that we con-
sider the effect of the periodic supply of nutrients and inhibitors. In [] the supply of nu-
trients and inhibitors is assumed to be a constant, so instead of that Eq. (.) is employed
here, i.e., in [] ϕ(t) = σ∞, φ(t) ≡ β∞, where σ∞ and β∞ are two constants. In this paper, as
can be seen from Eq. (.), we assume that the supply of nutrient and inhibitors is periodic.
This assumption is clearly more reasonable. We mainly study how the periodic supply of
nutrient and inhibitors influences the growth of tumors. Note that in the original expres-
sions of these equations in [], besides some other terms reflecting the effect of vascular
network of the tumor, there is a linear term of β in the diffusion equation for σ , reflecting
the inhibitory action of the inhibitor to the nutrient. Here we remove such a term because
it does not conform to the biological principle: If we add a linear term of β with a minus
sign into the left-hand side of (.), then the solution of this equation may take negative
values in some points, which contradicts the fact that it must be a nonnegative function.
The effect of the vascular network in the tumor is neglected because here we only consider
the growth of avascular tumors. However, the method developed in this paper can be eas-
ily extended to treat similar tumor models with the effect of vascular network involved.
Equation (.) is based on ideas of Byrne [], Byrne and Chaplain [], and Cui [].

The idea of considering the periodic supply of external nutrients and inhibitors is moti-
vated by []. In [], through experiments, the authors observed that after an initial ex-
ponential growth phase leading to tumor expansion, growth saturation is observed even in
the presence of periodically applied nutrient supply. In this paper, we mainly discuss how
the periodic supply of external nutrients and inhibitors affects the growth of avascular
tumor growth.

The paper is arranged as follows. In Section  we prove global stability of tumor free
equilibrium to system (.)-(.). Section  is devoted to the existence, uniqueness and
stability of periodic solutions to system (.)-(.). In the last section we give some con-
clusion and discussion.
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2 Global stability of tumor free equilibrium
Denote θ =

√
�
�

. By re-scaling the space variable we may assume that � = . Accordingly,
the solution to (.)-(.) is

σ (r, t) =
ϕ(t)R(t)
sinh R(t)

sinh r
r

, β(r, t) =
φ(t)R(t)

sinh(θR(t))
sinh(θr)

r
. (.)

Substituting (.) to (.), one can get

dR
dt

= R(t)
[
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(
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)
–

ν


– μφ(t)p

(
θR(t)

)]
, (.)

where p(x) = x coth x–
x . Denote x = R. Then Eq. (.) takes the form

dx
dt

=
[
F(x) – ν

]
x(t) =: H(x, t), (.)

where F(x) = λϕ(t)p( √x) – μφ(t)p(θ √x). Accordingly, the initial condition takes the
form

x() = x = R
. (.)

Lemma . For the function p(x) = x coth x–
x , the following assertions hold:

() p(x) is monotone decreasing for all x >  and limt→+ p(x) = 
 , limt→+∞ p(x) = .

Therefore, if we define p() = 
 , then the function p(x) is continuous on [, +∞).

() The function xp(x) is monotone increasing for all x > .
() The function p′(θx)

p′(x) is strictly monotone increasing (respectively decreasing) if  < θ < 
(respectively θ > ), and

lim
t→+

p′(θx)
p′(x)

= θ , lim
t→+∞

p′(θx)
p′(x)

= θ–.

Proof For () please see [], (), see [], (), see []. This completes the proof. �

In what follows, we always denote

ϕ̄ =

ω

∫ ω


ϕ(t) dt, ϕ∗ = max

≤t≤ω
ϕ(t), ϕ∗ = min

≤t≤ω
ϕ(t) ≥ ,

φ̄ =

ω

∫ ω


φ(t) dt, φ∗ = max

≤t≤ω
φ(t), φ∗ = min

≤t≤ω
φ(t) ≥ .

Looking for (.), as  ≤ p(x) ≤ /, one can easily get if ν is sufficiently large (ν ≥ λϕ∗),
then the trivial steady state of (.) is globally asymptotically stable. Actually, since

dR
dt

≤ R(t)
[

λϕ∗


–

ν



]
,

and the solutions to dR
dt = R(t)[ λϕ∗

 – ν
 ] tend to zero as t → ∞ if ν ≥ λϕ∗, by the comparison

principle one can get that the trivial steady state of (.) is globally asymptotically stable.
Our main results of this section are the following three theorems.
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Theorem . If  < θ ≤ , the zero steady state of (.) is globally stable if φ̄ > 
μ

(λϕ̄ – ν)
and one of two conditions

• either λϕ(t) – μφ(t) ≥ 
• or λϕ(t) – μφ(t) ≤ 

holds for t ∈ [,ω].

Theorem . If θ > , assume that λϕ(t) – μφ(t) ≥  for t ∈ [,ω] holds. If the zero steady
state of (.) is globally stable, then φ̄ ≥ 

μ
(λϕ̄ – ν).

Theorem . (A) If  < θ ≤  and one of two conditions
• either φ∗ ≥ λϕ∗/(θμ)
• or φ∗ < λϕ∗/(θμ) and ν ≥ λϕ∗ – μφ∗

holds.
(A) If θ >  and one of two conditions
• either φ∗ ≥ λθϕ∗/μ
• or φ∗ ≤ λθϕ∗/μ and ν ≥ λϕ∗ – μφ∗

holds.
(A) If λϕ∗

μθ < φ∗ < θλϕ∗
μ

and ν > M hold, where M = g(x∗), g(x) = λϕ∗p( √x) –

μφ∗p(θ √x), and x∗ is the unique solution to p′(θ √x∗)
p′( √x∗)

= λϕ∗
μθφ∗ .

Then the zero steady state of (.) is globally stable, i.e.,

lim
t→∞ x(t) = . (.)

Remark A () Some sufficient conditions (Theorem ., Theorem .) and necessary con-
ditions (Theorem .) for tumor free are given. Obviously, the sufficient conditions for
tumor free of Theorem . and Theorem . do not contain each other except the case
that ϕ(t) = σ∞, φ(t) ≡ β∞, where σ∞ and β∞ are two constants.

() Since

(A) ⇔  < θ ≤ , φ∗ ≥ λϕ∗ – ν

μ
,

noticing φ̄ ≥ φ∗, λϕ∗–ν

μ
≥ λϕ̄–ν

μ
, then φ̄ ≥ φ∗ ≥ λϕ∗–ν

μ
≥ λϕ̄–ν

μ
. Thus Theorem . implies the

part of Theorem .(A) for the cases either λϕ(t) – μφ(t) ≥  or λϕ(t) – μφ(t) ≤ . For
example, the graph of R(t) for ϕ(t) = sin t + , φ(t) = cos t + , θ = ., ω = π , λ = μ = ,
ν =  in Figure  and ϕ(t) = sin t + , φ(t) = cos t + , θ = ., ω = π , λ = μ = , ν =  which
satisfy Theorem . but do not satisfy Theorem .(A).

The idea of the proof of Theorem . and Theorem . comes from [, ] where a
delay differential equation is studied.

Proof of Theorem . Since ϕ̄ = 
ω

∫ ω

 ϕ(t) dt, φ̄ = 
ω
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]
p
(
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)
dt –
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ξ

ν dt

=
∫ ξ+nω

ξ

[
λϕ(t) – μφ(t)

]
p
(
θR(t)

)
dt –

nων


.
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Figure 1 An example of the graph of R(t) for ϕ(t)
= sin t + 8, φ(t) = cos t + 6, θ = 0.5, ω = 2π , λ = μ
= 1, ν = 3 which satisfy Theorem 2.2.

Then one can get

R(ξ + nω) ≤ R(ξ )e
∫ ξ+nω
ξ [λϕ(t)–μφ(t)]p(θR(t)) dt– nω

 ν . (.)

Since p(x) is monotone decreasing for all x >  and p(x) < 
 , then one can get: If λϕ(t) –

μφ(t) ≥  (or λϕ(t) – μφ(t) ≤ ) for t ∈ [,ω], then

R(ξ + nω) ≤ max
{

R(ξ )e
nω
 (λϕ̄–μφ̄–ν), R(ξ )e– nων


} → , n → ∞ (.)

if φ̄ > 
μ

(λϕ̄ – ν). This completes the proof of Theorem .. �

Remark B If φ(t) ≡ , i.e., there is no supply of inhibitors, then φ̄ =  and the condition
λϕ(t) – μφ(t) ≥  is obviously satisfied since ϕ∗ = min≤t≤ω ϕ(t) ≥ . Thus, if  < θ ≤ , the
zero steady state of (.) is globally stable if  = φ̄ > 

μ
(λϕ̄ –ν) (⇔ ν > λϕ̄ –μφ̄ = λϕ̄). By the

similar method as that of the proof of Theorem ., one can also prove if the conditions
θ >  and φ(t) ≡  hold, the zero steady state of (.) is globally stable if  = φ̄ > 

μ
(λϕ̄ – ν)

(⇔ ν > λϕ̄ – μφ̄ = λϕ̄). Therefore, if φ(t) ≡ , the zero steady state of (.) is globally stable
if ν > λϕ̄.

Actually, φ(t) ≡  is not necessary. By (.), one can get

dR
dt

≤ R(t)
[
λϕ(t)p

(
R(t)

)
–

ν



]
, (.)

by the similar method as that of the proof of Theorem ., and by use of the comparison
principle, one can also prove that the zero steady state of (.) is globally stable if ν > λϕ̄.
We omit the details here.

Proof of Theorem . Since the zero steady state is globally stable, i.e., limt→∞ R(t) = ,
given ε > , there exists tε >  such that R(t) < ε for t ≥ tε . Then

dR
R

≥
[(

λϕ(t) – μφ(t)
)
p
(
R(t)

)
–

ν



]

≥ (
λϕ(t) – μφ(t)

)
p(ε) –

ν


, t ≥ tε ,
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where we have used the fact that p is monotone decreasing. Therefore

R(t + ω)
R(t)

≥ eω((λϕ̄–μφ̄)p(ε)– ν
 ).

We use the method of reduction to absurdity. If φ̄ < 
μ

(λϕ̄ – ν), choose ε sufficiently small
such that p(ε) > ν

(λϕ̄–μφ̄) , then

R(t + ω)
R(t)

≥ e((λϕ̄–μφ̄)p(ε)– 
 ν) > .

Therefore, we construct a sequence {R(tε + nω)}n that is strictly increasing, which is con-
tradicts the assumption that the zero steady state is globally stable. Thus φ̄ < 

μ
(λϕ̄ – ν)

does not hold. This completes the proof of Theorem .. �

Let f (x) = λap( √x) – μbp(θ √x) – ν . Then, by Lemma .(), one can get

lim
x→+

f (x) = λa – μb – ν, lim
x→+∞ f (x) = –ν. (.)

By direct computation,

f ′(x) =


√x

[
λap′( √x

)
– μθbp′(θ √x

)]
= –μθbp′( √x

)(p′(θ √x)
p′( √x)

–
λa
μθb

)
.

By Lemma .() and (.), one can easily get the following assertions (see []).

Lemma . Suppose first that  < θ < . Then the following assertions hold:
() If b ≥ λa

μθ , then f (x) <  for all x > .
() If b < λa

μθ , then in the case ν ≥ λa – μb we have f (x) <  for all x > ; and in the
opposite case there exists a unique xs such that f (xs) = , f (xs) >  for  < x < xs, and
f (xs) <  for x > xs.

Suppose next that θ > . Then the following assertions hold:
() If b ≥ θλa

μ
, then f (x) <  for all x > .

() If b < λa
μθ , then in the case ν ≥ λa – μb we have f (x) <  for all x > ; and in the

opposite case there exists a unique xs such that f (xs) = , f (xs) >  for  < x < xs, and
f (xs) <  for x > xs.

() If λa
μθ < b < θλa

μ
, then there exists a unique x∗ >  such that

p′(θ √x∗)
p′( √x∗)

=
λa
μθb

,

where x∗ is the maximum point of g(x). Denote M = g(x∗). If ν > M, then f (x) <  for
all x > . If  < ν ≤ λa – μb, there exists a unique xs such that f (xs) = , f (xs) >  for
 < x < xs, and f (xs) <  for x > xs. If λa – μb < ν < M, then there exist two positive
numbers x∗

 < x∗
 such that f (x∗

 ) = f (x∗
) = , f (x) <  for x < x∗

 and x > x∗
, f (x) >  for

x∗
 < x < x∗

.
Suppose last that θ = , the following assertions hold:
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() In the case ν ≥ λa – μb, f (x) <  for all x > ; and in the opposite case there exists a
unique xs such that f (xs) = , f (xs) >  for  < x < xs, and f (xs) <  for x > xs.

Proof of Theorem . By (.), we have

dx
dt

≤ [
g(x) – ν

]
x(t), (.)

where g(x) = λϕ∗p( √x) – μφ∗p(θ √x) as before. Consider the following initial problem:

dx
dt

=
[
g(x) – ν

]
x(t); x() = x = R

. (.)

Let a = ϕ∗, b = φ∗. Then, by Lemma ., one can get the following assertions: If one of
the assumptions (A), (A) and (A) holds, then g(x) – ν <  for all x > . By the well-
known results of ODEs, one can get if one of (A), (A) and (A) holds, the solution to
(.) denoted by x(t) tends to zero as t → +∞. By the comparison principle, we have
x(t) ≤ x(t) for all t ≥ . Then

 ≤ lim
t→+∞ x(t) ≤ lim

t→+∞ x(t) = .

This completes the proof of Theorem .. �

Remark C For θ = , by similar arguments as those for Theorem ., one can get that if
φ∗ ≥ λϕ∗/μ the solution to (.), (.) tends to  as t → ∞, i.e., limt→∞ x(t) = . Thus (A)
can be replaced by  < θ ≤  and φ∗ ≥ λϕ∗/(θμ).

3 Existence, uniqueness and stability of periodic solutions
In the following, we will give a result that Eq. (.) admits an oscillatory solution whose
period matches that of ϕ(t) and φ(t). The conditions under which there exists a unique
periodic solution to the model would be determined, and we also will show that the unique
periodic solution is a global attractor of all other positive solutions.

Lemma . (see Theorem . and Corollary . in []) Consider the following ODE:

dy
dt

= G(y, t), t ∈ R, (.)

where G : [a, c] × R → R is continuous and T-periodic with respect to t. If, for all t ∈ [, T],
G(a, t) ≥  and G(c, t) ≤ , then [a, c] is invariant under G; moreover, Eq. (.) admits a
T-periodic solution, y : R → [a, c].

Lemma . For  < θ < , the function

k(x) =
p(y)

p(θy)

is monotone decreasing for any y > . For θ > , the function k(x) is monotone increasing for
any y > .
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Figure 2 An example of the graph of R(t) for ϕ(t)
= sin t + 10, φ(t) = cos t + 4, θ = 0.5, ω = 2π , λ = μ
= 1, ν = 3 which satisfy Theorem 3.3.

Proof By direct computation,

(
p(y)

p(θy)

)′
=

(
yp′(y)
p(y)

–
θyp′(θy)

p(θy)

)
p(y)

yp(θy)
. (.)

From Lemma . in [], we know that the function p(y)
yp′(y) is monotone increasing for any

y > . Therefore h(x) := yp′(y)
p(y) is monotone decreasing for any y > . It follows that

yp′(y)
p(y)

–
θyp′(θy)

p(θy)
<  (> )

for  < θ <  (θ > ) since p(y)
yp(θy) > . This completes the proof. �

Our main result of this section is Theorem ..

Theorem . (Figure ) If the conditions  < θ < , φ∗ < λϕ∗
μθ and ν < λϕ∗ – μφ∗ hold, then

(I) there exists a unique ω-periodic positive solution x̄(t) to Eq. (.).
(II) For any other positive solution x(t) to Eq. (.), there holds

lim
t→∞

[
x(t) – x̄(t)

]
= . (.)

Proof Consider the following two problems:

dx
dt

=
[
g(x) – ν

]
x, (.)

and

dx
dt

=
[
g(x) – ν

]
x, (.)

where g(x) = λϕ∗p( √x) – μφ∗p(θ √x) as before and g(x) = λϕ∗p( √x) – μφ∗p(θ √x).
By Lemma ., we obtain that if (φ∗ ≤)φ∗ < λϕ∗

μθ and ν < λϕ∗ – μφ∗ (≤ λϕ∗ – μφ∗), there
exist two positive constants c, d such that g(c) – ν =  and g(d) – ν = . Obviously,

H(c, t) =
(
F(c) – ν

)
c ≤ (

g(c) – ν
)
c = , H(d, t) =

(
F(d) – ν

)
d ≥ (

g(d) – ν
)
d = .
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By Lemma . we have d < c since for  < θ < , the function k(x) = p(y)
p(θy) is monotone

decreasing and

p( √c)
p(θ √c)

=
μφ∗
λϕ∗ <

μφ∗

λϕ∗
=

p( √d)
p(θ √d)

.

Then by Lemma . we have [d, c] is invariant under H , moreover Eq. (.) admits a T-
periodic solution. This completes the proof of Theorem ..

Next we prove the uniqueness. Let Y = |x(t) – x(t)|, where x(t) and x(t) are two solu-
tions to Eq. (.), by the mean value theorem and noticing that every solution to Eq. (.)
x(t) and x(t) satisfies xe–(λφ∗+ν)t ≤ xi(t) ≤ xeλϕ∗t , i = , . By direct computation, one
can get

p′(x) =
 sinh x – x – x sinh x cosh x

x sinh x
,

then

∣∣p′( √x
)∣∣ ≤  sinh y + y + y sinh y cosh y

y sinh y

∣∣∣∣
y= √x

≤ sinh y + y
 + y sinh y cosh y

y
 sinh y

=: δ(T)

and

∣∣p′(θ √x
)∣∣ ≤  sinh y + y + y sinh y cosh y

y sinh y

∣∣∣∣
y=θ √x

≤  sinh(θy) + θy
 + θy sinh(θy) cosh(θy)

θy
 sinh(θy)

=: δ(T),

where y = 
√

xeλϕ∗T , y = 
√

xe–(λφ∗+ν)T . Since

Y ′(t) =
∣∣x′

(t) – x′
(t)

∣∣
=

∣∣[F(x) – ν
]
x – F(x) – ν]x

∣∣
=

∣∣F(x)(x – x) +
(
F(x) – F(x)

)
– ν(x – x)

∣∣
≤ ∣∣F(x) + ν

∣∣|x – x| + |x|
∣∣F ′(ξ )

∣∣|x – x|
≤ (

λϕ∗ + μφ∗ + ν
)
Y (t) + |x|

∣∣F ′(ξ )
∣∣Y (t)

≤ δ(T)Y (t),

where ξ is between x and x, F ′(x) = [λϕ(t)p′( √x)–θμφ(t)p′(θ √x)] 
√x

, and δ(T) = (λϕ∗ +
μφ∗ + ν) + e(λϕ∗+μφ∗+ν)T [λϕ∗δ(T) + θμφ∗δ(T)]. Since Y () = , by Gronwall’s lemma we
conclude that Y (t) ≡  for  ≤ t ≤ T . Hence x(t) = x(t).
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In the following we will prove (II). By the existence and uniqueness, assume that x(t) >
x̄(t) for all t (the proof when x(t) < x̄(t) for all t is similar and will be omitted). Set

x(t) = x̄(t)ey(t). (.)

Then y(t) >  for all t, and

y′(t) = λϕ
[
p
( √x̄ey

)
– p

( √x̄
)]

– μφ
[
p
( √

θ x̄ey
)

– p
( √

θ x̄
)]

. (.)

By simple computation, one can get

(
θp(θz) – p(z)

)′ >  ⇔ p′(θz)
p′(z)

<

θ . (.)

By Lemma .(), we know that p(x) is decreasing and for  < θ < , (θp(θz) – p(z))′ > .
Then we have

 > θp
(
θ

√x̄ey
)

– θp
(
θ

√x̄
)

> p
( √x̄ey

)
– p

( √x̄
)
.

For  < θ < , direct computation yields

y′(t) = λϕ
[
p
( √x̄ey

)
– p

( √x̄
)]

– μφ
[
p
(
θ

√x̄ey
)

– p
(
θ

√x̄
)]

≤ λϕ∗
[
p
( √x̄ey

)
– p

( √x̄
)]

– μφ∗[p
(
θ

√x̄ey
)

– p
(
θ

√x̄
)]

≤ λϕ∗
θ

[
p
( √x̄ey

)
– p

( √x̄
)]

–
μφ∗

θ

[
θp

(
θ

√x̄ey
)

– θp
(
θ

√x̄
)]

≤
(

λϕ∗
θ –

μφ∗

θ

)[
θp

(
θ

√x̄ey
)

– θp
(
θ

√x̄
)]

=
(

λϕ∗
θ – μφ∗

)[
p
(
θ

√x̄ey
)

– p
(
θ

√x̄
)]

< ,

where we have used the fact that p(x) is monotone decreasing for all x >  and in-
equality (.). Thus, y(t) is decreasing, and therefore the limit limt→∞ y(t) exists, denote
limt→∞ y(t) = α, then α ∈ [,∞). Now we shall prove that α = . If α > , for any ε > 
(ε < α), there exists Tε >  such that for t ≥ Tε ,  < α – ε < y(t) < α + ε. However, from
(.), one can get

y′(t) < λϕ
[
p
( 
√

x̄e(α–ε)
)

– p
( √x̄

)]
– μφ

[
p
( 
√

θ x̄e(α–ε)
)

– p
( √

θ x̄
)]

. (.)

Integrating (.) from Tε to ∞ immediately gives a contraction since λϕ[p( √x̄e(α–ε)) –
p( √x̄)] – μφ[p( √

θ x̄e(α–ε)) – p( √
θ x̄)] < . Hence α = , and therefore limt→∞ y(t) = .

Thus

lim
t→∞

[
x(t) – x̄(t)

]
= lim

t→∞ x̄(t)
[
ey(t) – 

]
= .

This completes the proof of (II). �
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4 Conclusion and discussion
In this paper a free boundary problem for solid avascular tumor growth in a periodic en-
vironment is studied. The periodic environment means that the supply of nutrient and
inhibitors is periodic with the same period, and the periodic supply of inhibitors can be
interpreted as a periodic treatment and φ(t) describes the external concentration of in-
hibitors. We mainly study how the periodic supply of inhibitors affects the growth of tu-
mors. We have derived sufficient conditions (Theorem ., Theorem .) and necessary
conditions (Theorem .) for tumor free and proved the existence, uniqueness and stabil-
ity of periodic solutions under some conditions (Theorem .). Hence, in biology sense,
the results of Theorem . and Theorem . have practical significance in terms of deter-
mining the amount of drug required to eliminate the tumor. From Theorem ., we know
that if external concentration of nutrients is large, the tumor will not disappear, and the
conditions under which there exists a unique periodic solution to the model are deter-
mined. The result of Theorem . also shows that the unique periodic solution is a global
attractor of all other positive solutions.

The periodic environment means that the supply of nutrient and inhibitors is periodic
with the same period. As being pointed out by a referee, and I agree, the model used here
can be extended to a more general one that the periods of the supply of nutrient and in-
hibitors are assumed to be different. If the periods of the supply of nutrient and inhibitors
are assumed to be different, do these results remain true or not? This is an interesting but
may be a challenging problem.

Competing interests
The author declares that they have no competing interests.

Acknowledgements
This work is supported by NSF of China (11301474, 11171295), Foundation for Distinguished Young Teachers in Higher
Education of Guangdong, China (Yq2013163) and Foundation for Distinguished Young Talents in Higher Education of
Guangdong, China (2014KQNCX223). The author expresses his thanks to the two anonymous referees for their careful
comments and valuable suggestions which have improved the paper.

Received: 23 February 2015 Accepted: 24 July 2015

References
1. Araujo, RP, McElwain, DLS: A history of the study of solid tumour growth: the contribution of mathematical

modelling. Bull. Math. Biol. 66, 1039-1091 (2004)
2. Borges, FS, Iarosz, KC, Ren, HP, Batista, AM, et al.: Model for tumour growth with treatment by continuous and pulsed

chemotherapy. Biosystems 116, 43-48 (2014)
3. Byrne, H: The effect of time delays on the dynamics of avascular tumor growth. Math. Biosci. 144, 83-117 (1997)
4. Byrne, H, Chaplain, M: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130,

151-181 (1995)
5. Byrne, H, Chaplain, M: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135,

187-216 (1996)
6. Byrne, HM, et al.: Modelling aspects of cancer dynamics: a review. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 364,

1563-1578 (2006)
7. Dorie, M, Kallman, R, Rapacchietta, D, et al.: Migration and internalization of cells and polystrene microspheres in

tumor cell sphereoids. Exp. Cell Res. 141, 201-209 (1982)
8. Eftimie, R, Bramson, JL, Earn, DJD: Interactions between the immune system and cancer: a brief review of non-spatial

mathematical models. Bull. Math. Biol. 73, 2-32 (2011)
9. Greenspan, H: Models for the growth of solid tumor by diffusion. Stud. Appl. Math. 51, 317-340 (1972)
10. Greenspan, H: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229-242 (1976)
11. Nagy, J: The ecology and evolutionary biology of cancer: a review of mathematical models of necrosis and tumor cell

diversity. Math. Biosci. Eng. 2, 381-418 (2005)
12. Piotrowska, MJ: Hopf bifurcation in a solid avascular tumor growth model with two discrete delays. Math. Comput.

Model. 47, 597-603 (2008)
13. Sarkar, RR, Banerjee, S: A time delay model for control of malignant tumor growth. In: National Conference on

Nonlinear Systems and Dynamics, pp. 1-4 (2006)
14. Thompson, K, Byrne, H: Modelling the internalisation of labelled cells in tumor spheroids. Bull. Math. Biol. 61, 601-623

(1999)



Xu Boundary Value Problems  (2015) 2015:140 Page 12 of 12

15. Ward, J, King, J: Mathematical modelling of avascular-tumor growth II: modelling growth saturation. IMA J. Math.
Appl. Med. Biol. 15, 1-42 (1998)

16. Forys, U, Mokwa-Borkowska, A: Solid tumour growth analysis of necrotic core formation. Math. Comput. Model. 42,
593-600 (2005)

17. Bodnar, M, Forys, U: Time delay in necrotic core formation. Math. Biosci. Eng. 2, 461-472 (2005)
18. Cui, S: Analysis of a mathematical model for the growth of tumors under the action of external inhibitors. J. Math.

Biol. 44, 395-426 (2002)
19. Cui, S, Friedman, A: Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math.

Biosci. 164, 103-137 (2000)
20. Cui, S: Analysis of a free boundary problem modeling tumor growth. Acta Math. Sin. 21, 1071-1082 (2005)
21. Cui, S, Xu, S: Analysis of mathematical models for the growth of tumors with time delays in cell proliferation. J. Math.

Anal. Appl. 336, 523-541 (2007)
22. Forys, U, Bodnar, M: Time delays in proliferation process for solid avascular tumour. Math. Comput. Model. 37,

1201-1209 (2003)
23. Forys, U, Bodnar, M: Time delays in regulatory apoptosis for solid avascular tumour. Math. Comput. Model. 37,

1211-1220 (2003)
24. Forys, U, Kolev, M: Time delays in proliferation and apoptosis for solid avascular tumour. In: Mathematical Modelling

of Population Dynamics, vol. 63, pp. 187-196 (2004)
25. Wei, X, Cui, S: Existence and uniqueness of global solutions of a free boundary problem modeling tumor growth.

Acta Math. Sci. Ser. A Chin. Ed. 26, 1-8 (2006) (in Chinese)
26. Wu, J, Zhou, F: Asymptotic behavior of solutions of a free boundary problem modeling the growth of tumors with

fluid-like tissue under the action of inhibitors. Trans. Am. Math. Soc. 365, 4181-4207 (2013)
27. Xu, S, Feng, Z: Analysis of a mathematical model for tumor growth under indirect effect of inhibitors with time delay

in proliferation. J. Math. Anal. Appl. 374, 178-186 (2011)
28. Folkman, J: Self-regulation of growth in three dimensions. J. Exp. Med. 138, 262-284 (1973)
29. Friedman, A, Reitich, F: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 262-284 (1999)
30. Bodnar, M, Forys, U, Piotrowska, MJ: Logistic type equations with discrete delay and quasi-periodic suppression rate.

Appl. Math. Lett. 26, 607-611 (2013)
31. Jain, HV, Byrne, HM: Qualitative analysis of an integro-differential equation model of periodic chemotherapy. Appl.

Math. Lett. 25, 2132-2136 (2012)
32. Teixeira, J, Borges, M: Existence of periodic solutions of ordinary differential equations. J. Math. Anal. Appl. 385,

414-422 (2012)


	Analysis of a free boundary problem for tumor growth in a periodic external environment
	Abstract
	Keywords

	Introduction
	Global stability of tumor free equilibrium
	Existence, uniqueness and stability of periodic solutions
	Conclusion and discussion
	Competing interests
	Acknowledgements
	References


