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Cross-fostering immediately after birth induces a
permanent microbiota shift that is shaped by the
nursing mother
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Abstract

Background: Current research has led to the appreciation that there are differences in the commensal microbiota
between healthy individuals and individuals that are predisposed to disease. Treatments to reverse disease pathogenesis
through the manipulation of the gastrointestinal (GI) microbiota are now being explored. Normalizing microbiota
between different strains of mice in the same study is also needed to better understand disease pathogenesis.
Current approaches require repeated delivery of bacteria and large numbers of animals and vary in treatment
start time. A method is needed that can shift the microbiota of predisposed individuals to a healthy microbiota
at an early age and sustain this shift through the lifetime of the individual.

Results: We tested cross-fostering of pups within 48 h of birth as a means to permanently shift the microbiota
from birth. Taxonomical analysis revealed that the nursing mother was the critical factor in determining bacterial
colonization, instead of the birth mother. Data was evaluated using bacterial 16S rDNA sequences from fecal pellets and
sequencing was performed on an Illumina Miseq using a 251 bp paired-end library.

Conclusions: The results show that cross-fostering is an effective means to induce an early and maintained shift in the
commensal microbiota. This will allow for the evaluation of a prolonged microbial shift and its effects on disease
pathogenesis. Cross-fostering will also eliminate variation within control models by normalizing the commensal
microbiota between different strains of mice.
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Background
In recent years, it has been appreciated in both animal
models and human patients that there are healthy and
disease-promoting microbiota [1-3]. This can be seen in
diseases such as inflammatory bowel disease (IBD) and type
1 diabetes (T1D) [4-8]. In order to study the effects of the
microbiota in healthy and diseased subjects, research has
focused on replacing or shifting disease-promoting micro-
biota to healthy microbiota, thus potentially reversing the
diseased state. This has proven to be quite challenging be-
cause within healthy individuals there is considerable vari-
ation in the microbiota. For example, mice of the same
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strain, housed in different cages, have a diverse microbiota
that can account for up to 30% of the variance seen in
microbiome studies [9]. In an attempt to properly control
the microbiota in animal models, antibiotics, gavage of
fecal content, co-housing, or cross-fostering have all been
used [10-14]. However, these experiments have multiple
drawbacks, including the fact that they require repeated
delivery of bacteria and a large number of animals because
the microbiota already present is not easily displaced. Fur-
ther confounding the field is the wide variance in micro-
biota between the same strains at different facilities. A
well-published example is the presence of segmented fila-
mentous bacteria (SFB) in C57BL/6 mice ordered from
Jackson Labs that are absent in C57BL/6 mice ordered
from Taconic Labs [15]. Differences can even be seen in
colonies within the same facility [16,17].
Recent data has revealed the importance of maternal

transmission of microbiota in the colonization of their
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offspring. Experiments with toll-like receptor (TLR) knock-
outs and wild-type mice born to TLR knockout mothers
via a heterozygous breeding reveal an identical microbiota
between all pups regardless of TLR status [18]. This finding
contradicts the previous conclusion that TLR signaling
plays a role in dictating the microbiota as shown by Wen et
al. who showed a difference in the microbiota between
MyD88KO/+ and MyD88KO mice [19]. One potential reason
for these differing results could be that these mice were
derived from germfree mothers and bacteria were then
introduced. Therefore, mice were not initially colonized
by the maternal microbiota because mothers were
germfree. This emphasizes that variation in microbiota
maybe due to differences in the microbiota of the nurs-
ing mothers, not due to the knockout state of the pups.
Controlling for colonization of maternal microbiota by
using the same mother for all pups allows for proper
controls when comparing different genotypes on the
same genetic background. However, it does not address
the proper way to compare microbiota between com-
pletely different strains that by definition have to be
born to strain-specific mothers.
A second method to normalize bacterial colonization

is co-housing. Co-housing can induce a change in the
gut microbiota but requires one recipient (receiving new
microbiota) to be housed with three donors (giving
microbiota), requiring a large number of animals and a
high experimental cost [10]. Another method that has
been effectively used in mice to shift microbiota is the
addition of fecal bacteria from diabetic-resistant MyD88-
deficient mice to drinking water [11]. The administration
of this fecal water for a period of 3 weeks to non-obese
diabetic (NOD) mice causes an increase in Lachnospira-
ceae and Clostridiaceae, while leading to a decrease in
Lactobacillaceae. This shift in microbiota correlates with
a reduction in the incidence of diabetes, but this treat-
ment cannot be started until mice are approximately
4 weeks of age [11]. Therefore, a better model is needed
that is cost effective and that can manipulate the
colonization of microbiota at birth.
In humans, microbiota shifts are being induced by diet or

in the case of patients with Clostridium difficile, by fecal
transplants. Dietary studies in humans have revealed that
you can induce a shift in microbial diversity with a plant-
based and animal-based diet. However, as soon as subjects
are taken off of their respective diet, microbial diversity
returns to pre-diet levels within days [12]. It is hypothesized
that fecal transplants lead to colonization by bacteria that
occupy the niche of C. difficile preventing it from coloniz-
ing the gut; however, the exact mechanism and long-term
effects are still unknown [20-22].
Two problems that exist with current protocols are

that the microbial shifts are not permanent and that
shifts are not introduced prior to the development of the
rest of the gastrointestinal (GI) ecosystem. To properly
study the sustained efficacy of shifting the GI micro-
biota, a method must exist that induces a long-term shift
early in life. Currently, it is hard to accurately determine
the benefits of altering the composition of an individual’s
microbiota if these shifts are not stable or if they are not
introduced until later in life.
Methods currently used to induce microbial shifts in the

GI system are often inefficient and ineffective. A method is
therefore needed to induce a sustained microbial shift. We
propose cross-fostering as a means of efficiently and effect-
ively inducing a sustained microbial shift. To test this
hypothesis, we designed an experiment that we believed
would allow early colonization of mouse pups with ma-
ternal microbiota and we postulated that this micro-
biota would remain stable for the entire lifespan of the
test subjects. The NOD and non-obese diabetic-resistant
(NOR) strains of mice were used to explore whether it was
possible to induce an early and permanent shift between
different strains of mice. To induce a change in the micro-
biota as early as possible, newborn pups from NOD and
NOR mothers were cross-fostered unto the opposing
strains. Cross-fostering is the switching of newly born pups
to non-birth mothers who themselves have recently had
pups or are ready to nurse (Figure 1). The pups were
nursed by mothers of the opposite NOD and NOR strains
until weaning. At weaning, pups were separated based on
sex, but not strain, and feces was collected from pups and
mothers for microbiome analysis by sequencing of the 16S
rDNA gene using next-generation sequencing (Illumina
MiSeq; Illumina, San Diego, CA, USA). When the study
ended at 32 weeks, feces were again collected from the pre-
viously cross-fostered mice for microbiome analysis. Com-
parison of bacterial phyla was then made between mice at
weaning and the end of the study. This analysis of micro-
biota at 4 weeks and 32 weeks will determine if cross-
fostering causes a microbial shift to resemble the nursing
mother, and it will also determine if this shift is temporary
or permanent.

Results and discussion
Nursing mother, not birth mother, determines fecal
microbiota composition
The relationships between microbial communities in NOD
and NOR mice that had been nursed by either NOD or
NOR mothers were visualized by phylogenetic analysis
using principal component of analysis (PCoA) plots using
the unweighted unifrac distance matrices (Figure 2). Four
distinct groupings were seen based on nursing mother (not
birth mother) and age. This was replicated in two separate
experiments (experiment 1 and experiment 2) using unique
parents in each experiment. The grouping is also clear
when visualizing the distance matrix of the samples (which
was used to generate the PCoA plots) as a phylogenetic tree
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Figure 1 Experimental design of cross-fostering between mice of opposite strains. Breeding pairs of NOD and NOR mice are set up simultaneously. Pups
that are born within 48 h of each other to their respective parent are switched to a nursing mother of a different strain. Only half of the litters are switched,
leaving half of each original litter with their birth mother. As is standard for the weaning protocols in our animal facility, weaning pups are separated based
on sex and nursing mother. Resulting cages will then contain mice of the same sex, but of mixed strains.
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(Figure 3). Both the PCoA plots and phylogenetic tree are
visualizations of β-diversity, which was significantly differ-
ent between all four clusters (P < 0.001 for clustering by age
and by nursing mother). Clustering by nursing mother and
by age was also significant when using the weighted unifrac
distance matrix (P = 0.002 for both nursing mother and
age, PCoA plot shown in Additional file 1). Significant stat-
istical differences based on caging or in α-diversity between
NOR pups

NOD pups

NOR NOD

4w
k

32w
k

A B

Figure 2 Grouping of fecal bacterial groups from mice nursed by a NOD or NO
mother. PCoA plots were generated from bacterial DNA that was isolated
gene was amplified from fecal pellets from mice nursed by NOD and NOR mot
nursed by NOD or NOR mothers. (A, B) Experiment 1 included NOD (n= 8) and
mice. Significant differences (P< 0.05) in beta diversity were calculated using co
mice nursed by NOR or NOD mothers were not seen
(P > 0.05, Additional files 2, 3). Feces from 4-week-old
NOD and NOR pups nursed by a NOR mother have
microbiota resembling that of NOR mice, while feces from
4-week-old NOD and NOR mice nursed by a NOD
mother have microbiota resembling that of NOD mice.
This is seen at weaning and at 32 weeks when the study
ended. It is important to note that the groupings shift
NOD parent NOR parent

NOR pups NOR pups

4w
k

32w
k

NODNOR

R mother, each quadrant is labeled with NOD or NOR, indicating nursing
from mouse fecal material and the V4 segment of the 16S rRNA

hers. Group clustering represents a difference in β-diversity between mice
NOR (n= 8) mice, and experiment 2 had NOD (n= 12) and NOR (n= 16)
mpare_categories.py using the PERMANOVA test.



Figure 3 Phylogenetic tree of fecal bacteria from nice nursed by a NOD or NOR mother. Banding similarity analysis of the samples from NOD and NOR
mice reveal that the highest degree of similarity exists between mice that were nursed by the same mother regardless of pup strain. (A, B) A high degree
of similarity also exists between groups based on age with groupings at 4 and 32 weeks. The mice are identified with the following naming convention:
Nursing Mother-Pup Strain (where R =NOR and D=NOD).
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between 4 and 32 weeks, but even at 32 weeks, mice are
still grouping based on nursing mother and not birth
mother.

Mice nursed by NOD and NOR mothers have different
fecal microbiota
To compare the fecal microbiota of NOD- and NOR-
fostered mice, we first examined the relative proportions of
bacterial phyla in these mice (Figure 4). Because the sam-
ples showed significant differences in clustering by age,
analyses were stratified by age. At 4 weeks, the average pro-
portions of Bacteroidetes, Firmicutes, Tenericutes, Verruco-
microbia, and candidate division TM7 were significantly
different in NOD- and NOR-nursed mice and at 32 weeks,
the average proportions of Tenericutes and TM7 were sig-
nificantly different. At both time points, Tenericutes and
TM7 were higher in NOR-nursed mice, while at 4 weeks,
Firmicutes were higher in NOR-nursed mice and Bacteroi-
detes were higher in NOD-nursed mice.
The quality of our sequencing allowed us to further re-

solve the differences in composition of fecal microbiota of
NOD and NOR mice nursed by NOD mothers at the genus
level. Genera with a statically significant difference by either
ANOVA (difference in quantity) or G-test (difference in
presence/absence) after false discovery rate (FDR) correc-
tion were selected. Like analyses at the phylum level, these
analyses were stratified by age. At 4 weeks of age, NOR-
nursed mice had higher proportions of Prevotella, Parabac-
teroides, Sutterella, Lysobacter, and Anaeroplasma, while
NOD-nursed mice had higher proportions of Odoribacter,
Bacteroides, Prevotella, Clostridium, Stenotrophomonas,
and Akkermansia (Figure 5A). At 32 weeks of age,
NOR-nursed mice had higher proportions of Prevotella,
Parabacteroides, Christenella, and Anaeroplasma, while
NOD-nursed mice had higher proportions of Odoribac-
ter, Allobaculum, and Clostridium (Figure 5B). Note that
[Prevotella], in both Figure 5A,B, is a provisional taxonom-
ical assignment by Greengenes of operational taxonomic
units (OTUs) different from canonical Prevotella.

Changes of the fecal microbiota due to age differ by
nursing mother
Because samples also clustered by age, differences in fecal
microbiota by age were resolved. The largest differences
between the two time points were visible at the phylum
level, so statistical tests were run at the phylum and genus
levels. Because samples clustered by nursing mother,
analyses were stratified by nursing mother. From 4 weeks
to 32 weeks of age, NOR-nursed mice had increases in
the phylum Tenericutes and decreases in the phyla Bac-
teroidetes and Firmicutes and in the genus Candidatus
Arthromitus. During the same period, NOD-fostered
mice had increases in the phyla Firmicutes and Teneri-
cutes and in the genus Coprococcus, and decreases in
the phyla Bacteroidetes and Verrucomicrobia and in the
genera Bacterioides, C. Arthromitus, Clostridium, and
Stenotrophomonas (Figure 6).

NOD mice fostered by NOR parents have a decreased
incidence of T1D
In order to demonstrate that cross-fostering not only can
impact the composition of fecal microbiota of the cross-
fostered pups but can also have a functional impact on the
animals, we followed all cross-fostered mice until 32 weeks
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Figure 4 Phyla proportions in mice fostered by NOR and NOD mothers. These are stacked bar charts showing the cumulative proportions of bacterial
phyla from NOR- and NOD-fostered mice. The mice are identified on the x axis with the following naming convention: Nursing Mother-Pup Strain (where
R =NOR and D =NOD). (A) Proportions at 4 weeks of age. (B) Proportions at 32 weeks of age.
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of age to determine the incidence of diabetes. Mice were
considered to have diabetes when they had a positive urine
glucose test followed by blood glucose test of 200 mg/dL or
greater. Cross-fostering of male NOD mice onto NOR par-
ents was protective against the development of T1D, with
no development of diabetes in NOD male mice nursed by a
NOR mother, compared to approximately 80% disease inci-
dence in male NOD mice nursed by NOD mothers
(Figure 7). Interestingly, it has been shown that transfer
of microbiota from male NOD mice, which have a
higher resistance to disease development than do fe-
male mice, can lower disease incidence [23]. Although
a similar trend towards decreased disease onset was
seen in female NOD mice nursed by a NOR mother
(Figure 7), this difference was not statistically signifi-
cant (P = 0.16).

Conclusions
Grouping based on bacterial sequences from fecal pellets of
NOR and NOD mice revealed that the nursing mother, not
the birth mother, dictates the composition of fecal micro-
biota. Not only are these groupings present at weaning
(approximately 4 weeks) but remain throughout the life-
time of the mice (32 weeks). Our experimental approach
included caging the mice after weaning in groups of four to
five based on gender, as that is our standard experimental
housing for our T1D experiments. This does introduce the
concern that there could be an impact of caging on the
fecal microbiota of these pups as they age. Our analysis did
not indicate a significant impact of caging on the microbial
content; however, we did not confirm our data through any
experiments on individually caged pups. All significant
alterations in the fecal microbiota that we observed were at-
tributable to the nursing parent microbiota. Altering the
microbiota to improve disease incidence has been previ-
ously achieved in the NOD mouse through the gavage of
cecal contents from male mice into female mice. In these
studies, the gavage of cecal contents was not started until
weaning and changes in microbiota were measured at 14
and 34 weeks of age [23]. These results do not indicate the
effects of inducing a microbiota shift earlier in life or to
what extent the initial cecal gavage at 6 weeks is altering
the microbiota. Ubeda et al. have previously shown that the
composition of microbiota in mice is largely determined by
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maternal transfer to pups regardless of genetic background,
although they did not look at the cross-fostering of two
different strains [18]. Cross-fostering experiments after
Cesarean section indicate the importance of the ability of
the nursing mother to dictate the microbial composition
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Figure 7 NOD mice fostered by NOR parents have a decreased incidence of T1D. Incidence of T1D in NOD male (left) and female (right) mice nursed by
NOD (filled circle) or NOR (filled square) mothers. Data combined from two separate groups of cross-fostered pups. Significance was determined by the
Mantel-Cox Text. *P= 0.0013 at 32 weeks of age.
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to Bacteroidetes ratio was significantly lower when
compared to age-matched healthy children [25]. During
cross-fostering, mice nursed by a NOD mother and
mice nursed by NOR mothers had a similar ratio of Fir-
micutes and Bacteroidetes as that seen in diabetic com-
pared to healthy control in both mice and humans,
with a higher ratio of Firmicutes to Bacteroidetes seen
in mice nursed by a diabetic-resistant NOR mother [5].
The role of the other bacterial phylum (Verrucomicro-
bia, TM7, and Tenericutes) that are significantly differ-
ent between mice nursed by NOD or NOR mothers in
the context of T1D is not yet known. Looking beyond
the phylum level, mice nursed by a NOD mother were
positive for Clostridium, while mice nursed by a NOR
mother were negative. This data mirrors what is seen in
human subjects in which Clostridium levels are higher
in diabetic children compared to healthy children [25].
In our analyses, there were two taxonomical groups iden-

tified as Prevotella: one having the canonical Prevotella
sequence, and one having a non-canonical sequence provi-
sionally assigned to Prevotella by Greengenes (indicated as
[Prevotella]). In mice nursed by NOR mothers, there is a
higher proportion of [Prevotella] at 4 weeks and 32 weeks
when compared to mice nursed by NOD mothers. How-
ever, NOD-fostered mice have a higher proportion of
canonical Prevotella at 4 weeks. Differences in Prevotella
proportions in microbial communities are seen in children,
with healthy children having a higher ration of Prevotella
compared to children with T1D [25]. Interestingly, Pre-
votella is found at a higher level in colorectal cancer
patients and patients with Crohn’s disease (CD) compared
to healthy controls, indicating that the role of Prevotella
varies between diseases [26,27]. Through cross-fostering,
we have removed some diabetogenic bacteria, while adding
bacteria that are associated with diabetic resistance into
NOD mice by having them nursed by NOR mothers. We
also observed that in mice nursed by NOD or NOR
mothers, there was a decrease in C. Arthromitus between 4
and 32 weeks. C. Arthromitus was identified as a SFB in the
gut of arthropods and has recently been shown to play an
important role in the maturation of the immune system in
the mouse gut [28,29]. This warrants additional investiga-
tion because Kriegel et al. showed the presence of SFB in
female NOD mice correlated with a decrease in the inci-
dence of T1D [30]. It may be possible in the future to use
cross-fostering to manipulate levels of C. Arthromitus to
alter disease incidence. Further research will be required to
determine if the higher frequencies of Firmicutes, TM7,
Tenericutes, and Verrucomicrobia, as seen in mice nursed
by a NOR mother, were critical in the reduction of the inci-
dence of diabetes seen in the male NOD mice nursed by
NOR mothers. This data indicates that cross-fostering ap-
pears to be a viable method to switch microbiota between
strains and potentially protect mice from specific diseases;
however, it is also clear that bacteria that are protective
from one disease may be promoting a different disease. So,
simply cross-fostering to shift microbiota to what is
thought to be a healthy state most likely will not protect
from all disease and could possibly increase susceptibility to
other diseases.
For future microbiota studies, cross-fostering starting

at birth appears to be a viable method to induce a shift
in microbiota that remains for the entire lifespan of the
mice. We are confident that this method could be used
for other strains of mice and is not exclusive to the
NOD and NOR strains of mice.

Methods
Animals
NOD/ShiLtJ mice and NOR/LtJ mice originally obtained
from Jackson Laboratory (Bar Harbor, ME, USA) were bred
and maintained under specific pathogen-free (SPF) condi-
tions. NOD (n = 8) and NOR (n = 8) mice were used for
experiment 1, and the experiment was repeated with NOD
(n = 12) and NOR (n = 16) mice (experiment 2). All animals
were housed in Thoren Isolator ventilated racks (Hazelton,
PA, USA). All caging, bedding, and food were sterilized
prior to use. Both NOD and NOR mice were put on acid-
ified water within a pH range of 3 to 3.5. Water was acid-
ified using 1 N HCl. Mice were fed autoclaved NIH-31
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rodent diet (Harlan Teklan, Madison, WI, USA) ad libi-
tum. The Institutional Care and Use Committee of the
University of Alabama at Birmingham approved all exper-
iments. A detailed list of our facility’s SPF conditions can
be accessed at http://www.uab.edu/research/administra-
tion/offices/ARP/ComparativePathology/SupportServices/
Pages/HealthSurveillance.aspx.

Cross-fostering
Breeding pairs of NOD and NOR mice were simultaneously
set up when individual mice reached approximately 6 weeks
of age. Only pups born to NOD and NOR breeding pairs
within 48 h of each other were used for cross-fostering.
After the birth of both NOD and NOR litters, half of each
litter was removed and put with the mother of the opposite
strain. The other half of each litter remained with the birth
mother. Litters then contained pups born both to that
nursing mother and pups from the opposite NOD or NOR
strain (Figure 1). Fostered pups were marked daily with a
sharpie on the back of the neck until their ears were able to
be clipped (approximately 7 days) for identification pur-
poses. The pups were nursed by their respective mothers
until weaning. At weaning, pups were separated based on
sex, but not strain, and feces was collected from pups and
mothers and stored at −20°C until analysis. When the study
ended at 32 weeks, feces was again collected from the pre-
viously cross-fostered and control mice, and microbial
DNA was isolated from mouse fecal material.

Sample preparation, sequencing, and analysis
Fecal DNA was isolated using a ZR Fecal DNA MiniPrep™
kit (Zymo Research Corporation, Irvine, CA, USA) as pre-
viously described [31]. The oligonucleotide primers used
for the PCR amplification of the V4 region of the 16S rRNA
gene were as follows (Eurofind Genomics, Inc., Huntsville,
AL, USA):
Forward V4:
5′AATGATACGGCGACCACCGAGATCTACACTAT

GGTAATTGTGTGCCAGCMGCCGCGGTAA 3′; and
Reverse V4:
5′CAAGAGAAGACGGCATACGAGATNNNNNNA

GTCAGTCAGCCGGACTACHVGGGTWTCTAAT3′.
For PCR reactions, the conditions were as follows:

10 μL of 5× Reaction Buffer; 1.5 μL (200 μM) of each of
the dNTPs; 2 μL (1.5 μM) of each of the primers; 1.5 μL
(5 U) of the ‘LongAmp’ enzyme kit (cat # E5200S; New
England Biolabs, Ipswich, MA, USA); 30 μL 2 to 5 ng/
μL of the Template DNA prepared using the Fecal DNA
Isolation kit with the concentration of DNA; 3 μL of
H2O to a total reaction volume of 50 μL. The PCR cyc-
ling parameters were initial denaturation 94°C 1 min;
32 cycles of amplification in which each cycle consisted
of 94°C 30 s, 50°C 1 min, 65°C 1 min; followed by an ex-
tension step at 65°C for 3 min and a hold at 4°C.
Following PCR, the entire PCR reaction was electropho-
resed on a 1.0% (w/v) agarose/Tris-borate-EDTA agarose
gel. The PCR product (approximately 380 bp predicted
product size) was visualized by UV illumination. The DNA
band was excised with a sterile scalpel and purified from
the agarose using QIAquick Gel Extraction Kit according
to manufacturer’s instructions (#28704; Qiagen, Valencia,
CA, USA). The samples were quantitated using Pico Green
and adjusted to a concentration of 4 nM [31].
The 16S rDNAV4 region analysis of fecal microbiota was

performed as described by Kumar et al [31]. Two hundred
fifty-one base paired-end sequencing of the amplicons was
done using an Illumina MiSeq instrument. FASTQ conver-
sion of the raw data files was performed following de-
multiplexing using MiSeq Reporter. Quality assessment of
the FASTQ files was performed using FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), and
then quality filtering was done using the FASTX toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). Due to low qual-
ity of single base at 3′ ends of the read, the last base
was trimmed from the 3′ end of all reads before merging
using ‘fastq_mergepairs’ command of USEARCH [32]. Any
merged read with an average base quality Q score of <20
was discarded.
Sequencing was performed at the UAB Heflin Center

for Genomic Sciences, with an average of 83,354 reads
per sample. Microbiome amplicon libraries were ana-
lyzed using the Quantitative Insight into Microbial Ecol-
ogy (QIIME) suite version 1.7 [33,34]. For analysis, we
used a wrapper for QIIME called QWRAP. Analysis with
QWRAP was performed as previously described [31].
Prior to analysis with QWRAP, we merged the overlap-
ping forward and reverse reads using the fastq_merge-
pairs tool from the USEARCH package [32]. Read pairs
with more than 5% mismatches were discarded. This QC
method handled the issue of low-quality read tails and
replaced the QC metrics found in [21]. Version 13.8 of
the Greengenes 16S rRNA database was used for taxa-
nomical assignment of OTUs at an 80% confidence
threshold. Proportion levels of the top 50 OTUs at the
genus levels can be found in Additional file 4. Output
for QWRAP includes taxa summary tables (frequency of
all given taxa by sample, by taxanomic level), alpha di-
versity measurements (chao1, PD whole tree, Shannon,
Simpson), and distance matrices and principle coordin-
ate analysis plots for beta diversity.
Diabetes incidence
Mice were monitored weekly by measuring urine glucose
using Diastix® (Bayer, Leverkusen, Germany) starting at
8 weeks of age. Following a positive urine test, a blood glu-
cose test was performed the next day using the OneTouch®
Blood Glucose Meter (OneTouch, Greenwood Village, CO,

http://www.uab.edu/research/administration/offices/ARP/ComparativePathology/SupportServices/Pages/HealthSurveillance.aspx
http://www.uab.edu/research/administration/offices/ARP/ComparativePathology/SupportServices/Pages/HealthSurveillance.aspx
http://www.uab.edu/research/administration/offices/ARP/ComparativePathology/SupportServices/Pages/HealthSurveillance.aspx
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
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USA). Diabetes was defined as a positive urine test followed
by blood glucose test of 200 mg/dL or greater.

Statistical analysis
Statistical analyses of differences between groups were per-
formed using QIIME’s built-in stats packages. To determine
overall differences between the microbiomes of different
groups, we tested for significant differences (P < 0.05) in
beta diversity using compare_categories.py using the PER-
MANOVA test. The distance matrices used for this test
were the same used earlier in the pipeline for PCoA plots,
generated by beta_diversity.py using both the weighted and
unweighted unifrac metrics. To identify differences between
groups at the taxanomical level, we tested for significant
differences between groups in the average proportion for
each taxon and in the presence/absence of each taxon using
otu_category_significance.py with ANOVA and g_test, re-
spectively. The paired T test was used for comparisons of
taxa proportions between two different time points. Due to
the large number of tests (one per taxon), a P value was
considered significant if it was <0.05 after FDR correction.
The taxa summary tables used for these analyses, generated
by summarize_taxa.py, were filtered for OTUs with a fre-
quency of less than 0.0005%.

Availability of supporting data
The data sets supporting the results of this article are avail-
able in the NCBI Sequence Read Archive, BioProject is
PRJNA277975 (accession # SRP056122) (http://www.ncbi.
nlm.nih.gov/bioproject/?term=PRJNA277975).

Additional files

Additional file 1: Weighted unifrac distance matrix showing
significance during clustering. Clustering by nursing mother was also
significant when using the weighted unifrac distance matrix (P = 0.002 for
both nursing mother and age).

Additional file 2: Top 50 OTUs. Top 50 OTUs at the genus level in
mice nursed by a NOD or NOR mothers at 4 weeks and 32 weeks of age.

Additional file 3: Grouping of fecal bacterial groups from mice
nursed by a NOD or NOR mother. Grouping of fecal bacterial groups
from mice nursed by a NOD or NOR mother, based on caging after
weaning. PCoA plots were generated from bacterial DNA that was
isolated from mouse fecal material, and the V4 segment of the 16S rRNA
gene was amplified from fecal pellets from mice nursed by NOD and
NOR mothers (as indicated at the top of the PCoA plot). There was no
significant difference in β-diversity between cages nursed by NOD
mothers or between cages nursed by NOR mothers.

Additional file 4: Alpha diversity. Alpha diversity within samples from
mice nursed by a NOD or NOR mother at 4 weeks and 32 weeks of age.
There was no significance within samples.
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