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Abstract
This paper provides a method of finding periodical solutions of the second-order
neutral delay differential equations with piecewise constant arguments of the form
x′′(t) + px′′(t – 1) = qx(2[ t+12 ]) + f (t), where [·] denotes the greatest integer function, p
and q are nonzero constants, and f is a periodic function of t. This reduces the
2n-periodic solvable problem to a system of n + 1 linear equations. Furthermore, by
applying the well-known properties of a linear system in the algebra, all existence
conditions are described for 2n-periodical solutions that render explicit formula for
these solutions.
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1 Introduction
Certain functional differential equation of neutral delay type with piecewise constant ar-
guments exists in the form of

(
x(t) + px(t – )

)′′ = qx
(


[

t + 


])
+ f (t), ()

where [·] denotes the greatest integer function, p and q are nonzero constants, and f (t) is
a periodic function with positive integer period of n.

In the past, many useful methods such as Hale [], Fink [] and [] were developed to
study the almost periodic differential equations. Such equations have diversified applica-
tion in the field of biology, neural networks, physics, chemistry, engineering, and so on
[–]. Besides, these equations have combined properties of both differential and differ-
ence type. The solutions of these equations are continuous with the continuous dynamical
systems structure. Certain biomedical and disease dynamics models exploited these equa-
tions due to their resemblance with sequential continuous models [].

The natural occurrence of these equations in approximating the partial differential equa-
tions via piecewise constant arguments has already been demonstrated []. Meanwhile,
the uniqueness of almost periodic solutions to the second order neutral delay differential
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equations of the form () was studied in depth [, ]. Despite these studies, the uniqueness
of the solution on such equation remains debatable.

In this view, this paper reports all conditions for the uniqueness, infiniteness and empti-
ness of n-periodic solutions of () for f with n-periodicity. Thus, the works of [–]
are revisited for further improvement to achieve the correct uniqueness conditions. Fur-
thermore, an explicit formula for the exact periodic solutions of the equation is provided.
The equivalence of equation () to the system of n +  linear equations is also demon-
strated. The existence condition for the periodic solution of () is described easily using
the properties of a linear algebraic system. Some equations having a unique and infinite
number of periodic solutions are emphasized as examples to authenticate the incorrect-
ness of uniqueness results that were provided with other studies.

Throughout this paper, we use the following notations: R as the set of reals; Z as the set
of integers and C as the set of complex numbers.

2 Definition of solution. Example
A function x is said to be a solution of () if the following conditions are satisfied:

(i) x is differentiable on R;
(ii) the second order derivative of x(t) + px(t – ) exists on R except possibly at the

points t = k + , k ∈ Z, where one-sided second order derivatives of x(t) + px(t – )
exist;

(iii) x satisfies () on each interval (k – , k + ) with integer k ∈ Z.

Example  Let p = . and q = . One can easily check, that in (), when f (t) = cosπ t, the
-periodic continuous function

xα(t) =

π –

 + t


α –

 cosπ t
π , t ∈ [–, ],

satisfies () on each interval (k – , k + ) with integer k ∈ Z for any number α. Note that
this function is not differentiable at the points t = k – , k ∈ Z for any α �=  (see Figure ).
To be differentiable, x should satisfy the equality x′(k – ) = x′(k + ), k ∈ Z, which is
equivalent to α = . In this case

x(t) =

π –

 cosπ t
π

is the solution of ().

Figure 1 The graph of xα (t) with α = 3.
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Example  shows that for the uniqueness of solution, it is natural for the solution to be
differentiable. This condition is omitted in many works (see [] and its references), where
the uniqueness of solution does not hold. A similar comment was first given in [].

3 2- and 4-periodic solutions
In this section we give the uniqueness conditions of periodic solutions of equation () for
the cases when f are - and -periodic functions.

The case n = . Let f be a -periodic continuous function and x be a -periodic solution
of (). Then by the definition of solution

x′(t) = x′(t + ) for all t ∈ R,

x′′(t) = x′′(t + ) on each interval (k – , k + ) with integer k ∈ Z.
()

It follows from here and () that

(
x(t) + px(t – )

)′′ = qx
(


[

t + 


])
+ f (t),

(
x(t + ) + px(t)

)′′ = qx
(


[

t + 


])
+ f (t + )

()

or

(
 – p)x′′(t) = qx

(

[

t + 


])
– pqx

(

[

t + 


])
+ f (t) – pf (t + ). ()

Since [ t+
 ] =  as t ∈ [–, ) and [ t+

 ] =  as t ∈ (, ], taking into account the periodicity
of x, from () we have

x′′(t) =
q

 + p
x() +


 – p

(
f (t) – pf (t + )

)
. ()

Integrating () on [–, t), t ≤ , we obtain

x(t) = x(–) + x′(–)(t + ) +
q

 + p
x()

(t + )


+ F(p; t), ()

where

F(p; t) =


 – p

∫ t

–

∫ t

–

(
f (s) – pf (s + )

)
ds dt.

To find the unknown numbers x(), x(–) and x′(–), from () we have

x() = x(–) + x′(–) +



q
 + p

x() + F(p; ),

x() = x(–) + x′(–) +
q

 + p
x() + F(p; ),

x′() = x′(–) +
q

 + p
x() + F ′

(p; ).

()
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It follows from the periodicity of x and the continuity of x′ that x(–) = x() and x′(–) =
x′(). Then the system of equations () has a unique solution (x(), x(), x′(–)) if and only
if

D(p, q) :=

∣
∣∣
∣∣∣
∣∣




q
+p –   

q
+p  
q

+p  

∣
∣∣
∣∣∣
∣∣

=
q

 + p
�= .

Conversely, if (x, x, x) is the solution of (), then the function

x(t) = x + x(t + ) +
q

 + p
x

(t + )


+ F(p; t), t ∈ [–, ],

is a -periodic solution of () with x() = x, x(–) = x, x′(–) = x.
Summarizing, we have the following.

Theorem  Let f be a -periodic continuous function and p �= . Then equation () has a
unique -periodic solution x having the form (), where (x(), x(), x′(–)) is the solution of
().

The case n = . Let f be a continuous -periodic function and x be a -periodic solution
of (). It follows from () and -periodicity of x(t) that

x′′(t) + px′′(t – ) = qx
(


[

t + 


])
+ f (t),

x′′(t + ) + px′′(t) = qx
(


[

t + 


])
+ f (t + ),

x′′(t + ) + px′′(t + ) = qx
(


[

t + 


])
+ f (t + ),

x′′(t – ) + px′′(t + ) = qx
(


[

t + 


])
+ f (t + ).

()

This system of equations with respect to x′′(t – ), x′′(t), x′′(t + ), x′′(t + ) is solvable if and
only if

�(p) :=

∣∣∣
∣∣
∣∣
∣∣

p   
 p  
  p 
   p

∣∣∣
∣∣
∣∣
∣∣

= p –  �= .

Then

x′′(t) =
�(p, q)
�(p)

,
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where

�(p, q) :=

∣
∣∣
∣∣
∣∣∣
∣

p Q  
 Q  
 Q p 
 Q  p

∣
∣∣
∣∣
∣∣∣
∣

, Qk = qx
(


[

t + k + 


])
+ f (t + k), k = , , , .

Simple calculations give

�(p, q) =
∑

k=

(–)k+p–kQk

=
q

�(p)

∑

k=

(–)k+p–kx
(


[

t + k + 


])
+


�(p)

∑

k=

(–)k+p–kf (t + k).

Thus, when f is a -periodic function, equation () is equivalent to the equation

x(t) = x(–) + x′(–)(t + ) +
q

�(p)
�(p; t) + F(p; t), ()

where

�(p; t) =
∑

k=

(–)k+p–k
∫ t

–

∫ t

–
x
(


[

s + k + 


])
ds dt,

F(p; t) =


�(p)

∑

k=

(–)k+p–k
∫ t

–

∫ t

–
f (s + k) ds dt.

We set

X[s] =
∑

k=

(–)k+p–kx
(


[

s + k + 


])
.

Then

X[s] = X[–] as –  ≤ s < –,

X[s] = X[–] as –  ≤ s < ,

X[s] = X[] as  ≤ s < ,

X[s] = X[] as  ≤ s < .

Therefore

�(p; t) =
∫ t

–

∫ t

–
X[s] ds dt = X[–]

(t + )


for –  ≤ t < –,

�(p; t) =
∫ –

–

∫ t

–
X[s] ds dt +

∫ t

–

∫ –

–
X[s] ds dt +

∫ t

–

∫ t

–
X[s] ds dt

= �(p; – – ) + X[–](t + ) + X[–]
(t + )


for –  ≤ t < ,
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�(p; t) =
∫ 

–

∫ t

–
X[s] ds dt +

∫ t



(∫ –

–
+

∫ 

–

)
X[s] ds dt +

∫ t



∫ t


X[s] ds dt

= �(p;  – ) +
(
X[–] + X[–]

)
t + X[]

t


for  ≤ t < ,

�(p; t) =
∫ 

–

∫ t

–
X[s] ds dt +

∫ t



(∫ –

–
+

∫ 

–
+

∫ 



)
X[s] ds dt +

∫ t



∫ t


X[s] ds dt

= �(p;  – ) +
(
X[–] + X[–] + X[]

)
(t – ) + X[]

(t – )


for  ≤ t < .

The value of the function X[s] depends on x(–), x(), x′(–). Therefore the right-hand
side of () depends on unknowns x(–), x(), x′(–). To find these unknown numbers, we
use the periodicity property of the continuous and differentiable function x, i.e., x(–) =
x( + ) and x′(–) = x′( + ).

From () we get a system of linear equations with respect to x(–), x(), x′(–), i.e.,

x() = x(–) + x′(–) +
q

�(p)
�(p; ) + F(p; ),

x() = x(–) + x′(–) +
q

�(p)
�(p; ) + F(p; ),

x′() = x′(–) +
q

�(p)
�′

(p; ) + F ′
(p; ).

()

The values of �(p; t) at the points –, ,  and  have the form

�(p; –) =


(
px() – px() + px() – x(–)

)
,

�(p; ) =


(
px() – px() + px() – x(–)

)
+



(
px() – px() + px() – x()

)
,

�(p; ) =


(
px() – px() + px() – x(–)

)

+


(
px() – px() + px() – x()

)
+



(
px() – px() + px() – x()

)
,

�(p; ) =


(
px() – px() + px() – x(–)

)
+



(
px() – px() + px() – x()

)

+


(
px() – px() + px() – x()

)
+



(
px() – px() + px() – x()

)
.

Hence equation () can be rewritten as

(
q

�(p)

(
p –




p –



)
– 

)
x() +

(
q

�(p)

(
p –




p –



)
+ 

)
x(–)

+ x′(–) = –F(p; ),
q

�(p)
(
p – p + p – 

)
x() +

q
�(p)

(
p – p + p – 

)
x(–) ()

+ x′(–) = –F(p; ),

q
�(p)

(
p – p + p – 

)
x() +

q
�(p)

(
p – p + p – 

)
x(–) = –F ′

(p; ).
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We denote by D(p, q) a determinant of the matrix M(p, q), where

M(p, q) :=

⎛

⎜⎜
⎝

q
�(p) (p – 

 p – 
 ) –  q

�(p) (p – 
 p – 

 ) +  
q

�(p) (p – p + p – ) q
�(p) (p – p + p – ) 

q
�(p) (p – p + p – ) q

�(p) (p – p + p – ) 

⎞

⎟⎟
⎠ .

One can check that

D(p, q) =
q( + p + q)
( + p)(p + )

.

Now we are able to describe existence conditions of the -periodic solutions of (), which
are different from the result of Theorem .

Theorem  Let f be a -periodic function and p �= . Then
(i) Equation () has a unique -periodic solution x if and only if D(p, q) �= . The

-periodic solution x has the form (), where (x(), x(–), x′(–)) is the solution of
().

(ii) If D(p, q) =  and (F(p; ), F(p; ), F ′
(p; )) = (, , ), then equation () has an

infinite number of -periodic solutions having the form

xα(t) = α

(
x(–) + x′(–)(t + ) +

q
�(p)

�(p; t)
)

+ F(p; t), as t ∈ [–, ), ()

where (x(), x(–), x′(–)) is an eigenfunction of M(p, q) corresponding to , α is
any number.

(iii) If D(p, q) =  and (F(p; ), F(p; ), F ′
(p; )) �= (, , ), then equation () has no

-periodic solution.

Proof (i) Let x be a -periodic solution of (). Then x can be presented by (), where
(x(), x(–), x′(–)) is the solution of (). The linear system () is solvable if and only
if D(p, q) �= . Hence D(p, q) �= . Conversely, if D(p, q) �= , equation () has a unique
solution (x(), x(–), x′(–)). One can check that the function x having the form () is the
solution of ().

The uniqueness of solution of () is trivial.
(ii) Let F(p; ) = F(p; ) = F ′

(p; ) = . Then equation () reduces to a non-homoge-
neous equation. This equation has a non-trivial solution if and only if D(p, q) = . This
non-trivial solution (x(), x(–), x′(–)) is an eigenvector of M(p, q) =  corresponding to
the number . Then the -periodic function

xα(t) = α

(
x(–) + x′(–)(t + ) +

q
�(p)

�(p; t)
)

+ F(p; t)

is a solution of (), where α is any number.
(iii) If D(p, q) =  and (F(p; ), F(p; ), F ′

(p; )) �= (, , ), then equation () has no
solution. Therefore () has no -periodic solution.

This completes the proof. �
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4 Remarks and examples
We remark that (iii) of Theorem  says only non-existence of -periodic solutions. For ex-
ample, it does not give non-existence for -periodic solutions of (), when f is -periodic.

We give an example for (ii) of Theorem .

Example  Let p =  and q = –. In this case

M(p, q) =

⎛

⎜
⎜
⎝

– 



 

– 
 – 

 

– 
 – 

 

⎞

⎟
⎟
⎠ ,

and D(p, q) = . The eigenfunction of M(p, q) corresponding to the eigenvalue  is
(, –, ).

Let

f (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sinπ t for t ∈ [–, –),

– sinπ t for t ∈ [–, ),

 sinπ t for t ∈ [, ),

 sinπ t for t ∈ [, ].

Then

F(; t) =

⎧
⎪⎪⎨

⎪⎪⎩

– π (+t)+sinπ t
π for t ∈ [–, –),

π t+ sinπ t
π for t ∈ [–, ),

π–π t+sinπ t
π for t ∈ [, ].

Direct calculations show that F(, ) = F(; ) = F ′
(; ) = . The solution of the corre-

sponding equation () is -periodic function xα , α ∈ C, defined on [–, ] as

xα =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α( – t) + –π (+t)+sinπ t
π for t ∈ [–, –),

α( – t – t) + π t+ sinπ t
π for t ∈ [–, ),

α( – t + t) + π t+ sinπ t
π for t ∈ [, ),

α( – t + t) + π (–t)+sinπ t
π for t ∈ [, ].

The graphs of xα(t) as α =  and α = – are shown in Figures  and , respectively.

Figure 2 The graph of the 4-periodic solution
xα (t) with α = 1.
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Figure 3 The graph of the 4-periodic solution
xα (t) with α = –2.

Note that in this example the parameters of the equation satisfy the conditions of the
main results of the papers [, , ]. Example  shows incorrectness of the results Theo-
rem  in [], Theorem . in [] and Theorem . in [], that claim the uniqueness of
the almost periodic solutions of ().

Since any -periodic function can be considered as a -periodic function, a question
arises:

Do -periodic solutions of () exist in the case when f is a -periodic function?
The answers of this question, by Theorem , can be given via three cases:

(i) The case D(p, q) �= . For this case, by (i) of Theorem , equation () has the unique
-periodic solution x(t). But by Theorem , equation () has the unique -periodic
solution x(t). Hence, we must have x(t) = x(t) (see Example ).

(ii) An interesting case is when D(p, q) =  and a -periodic function f satisfies the
equality (F(p; ), F(p; ), F ′

(p; )) = (, , ). For this case, by (ii) of Theorem ,
equation () has an infinite number of -periodic solutions. Moreover, there exists a
-periodic function f such that () has unique -periodic solutions and an infinite
number of -periodic solutions (see Example ).

(iii) In the case when the parameters of () satisfy the conditions in (iii) of Theorem ,
then equation (), with -periodic function f , has no -periodic solutions.

Example  Let p = , q =  and a -periodic function be given as

f (t) =

⎧
⎨

⎩
t +  for t ∈ [–, ),

 – t for t ∈ [, ].

For this case D(, ) = /. By using MATHEMATICA, we applied both Theorems  and
 and obtained x(t) = x(t), where the -periodic solution x(t) of () is

x(t) =

⎧
⎨

⎩


 (– – t – t) for t ∈ [–, ),


 (– – t + t) for t ∈ [, ].

Example  Let p =  and q = – and f be a -periodic function as

f (t) =

⎧
⎨

⎩
sinπ t +  sin π t for t ∈ [–, ),

sinπ t + sin π t for t ∈ [, ].
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For this case, D(, –) = . Then

F(; t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π (+t)+ sinπ t– sin π t
π for t ∈ [–, –),

–π t+ sinπ t+ sin π t
π for t ∈ [–, ),

π t+ sinπ t– sin π t
π for t ∈ [–, ),

–π (–+t)+ sinπ t+ sin π t
π for t ∈ [, ].

Direct calculations show that F(, ) = F(; ) = F ′
(; ) = . The solution of the corre-

sponding equation () is a -periodic function xα , α ∈ C, defined on [–, ] as

xα =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α( – t) + π (+t)+ sinπ t– sin π t
π for t ∈ [–, –),

α( – t – t) + –π t+ sinπ t+ sin π t
π for t ∈ [–, ),

α( – t + t) + π t+ sinπ t– sin π t
π for t ∈ [, ),

α( – t + t) + π (–t)+ sinπ t+ sin π t
π for t ∈ [, ].

5 The case n ∈ N
Let f be a n-periodic continuous function and x be a n-periodic solution of (). We
describe the function x on [–n, n]. Without loss of generality, we can assume n is a positive
even number. Otherwise, if n is an odd number, we seek a function x on [–n + , n + ].

Using the definition of solution from (), we write the following system of n equations:

x′′(t) + px′′(t – ) = qx
(


[

t + 


])
+ f (t),

x′′(t + ) + px′′(t) = qx
(


[

t + 


])
+ f (t + ),

...
...

...

x′′(t + n – ) + px′′(t + n – ) = qx
(


[

t + n


])
+ f (t + n – ),

x′′(t – ) + px′′(t + n – ) = qx
(


[

t + n + 


])
+ f (t + n–).

()

Assuming the right-hand sides of () are known, we consider this system of equations
with respect to

x′′(t – ), x′′(t), . . . , x′′(t + n – ).

It is solvable if and only if �(p) �= , where �(p) = det P, P is n × n matrix

P =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

p   . . .  
 p  . . .  
...

...
... . . .

...
...

   . . . p 
   . . .  p

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.
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Observe that

�(p) = pn – .

Assuming pn �= , we find x′′(t) from ()

x′′(t) =
�(p; t)
�(p)

, ()

where �(p; t) = det Q, Q is n × n matrix

Q =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

p Qn  . . .  
 Q  . . .  
...

...
... . . .

...
...

 Qn–  . . . p 
 Qn–  . . .  p

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

,

Qk = qx
(


[

t + k + 


])
+ f (t + k), k = , , . . . , n.

Using the properties of determinant, we have

det Q = –Qn

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

   . . .  
 p  . . .  
...

...
... . . .

...
...

   . . . p 
   . . .  p

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

+ Q

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

p   . . .  
 p  . . .  
...

...
... . . .

...
...

   . . . p 
   . . .  p

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

+ · · ·

– Qn–

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

p   . . .  
   . . .  
...

...
... . . .

...
...

   . . .  
   . . .  p

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

+ Qn–

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

p   . . .  
   . . .  
...

...
... . . .

...
...

   . . .  
   . . .  

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

=
n∑

k=

(–)k+Qkpn–k

or

�(p, q) =
q

�(p)

n∑

k=

(–)k+pn–kx
(


[

t + k + 


])
+


�(p)

n∑

k=

(–)k+pn–kf (t + k).

Since f is a n-periodic function, equation () is equivalent to the equation

x(t) = x(–n) + x′(–n)(t + n) +
q

�(p)
�n(p; t) + Fn(p; t), ()
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where

�n(p; t) =
n∑

k=

(–)k+pn–k
∫ t

–n

∫ t

–n
x
(


[

s + k + 


])
ds dt,

Fn(p; t) =


�(p)

n∑

k=

(–)k+pn–k
∫ t

–n

∫ t

–n
f (s + k) ds dt.

We set

X[s] =
n∑

k=

(–)k+pn–kx
(


[

s + k + 


])
.

Since [ t+
 ] = k for t ∈ [k, k + ), k ∈ Z,

X[s] = X[k] for k ≤ s < k + , k = –n, . . . , n – .

Therefore �n(p; t) can be represented as

�n(p; t) =
∫ t

–n

∫ t

–n
X[s] ds dt = X[–n]

(t + n)


for – n ≤ t < –n + ,

�n(p; t) =
∫ –n+

–n

∫ t

–n
X[s] ds dt +

∫ t

–n+

∫ –n+

–n
X[s] ds dt +

∫ t

–n+

∫ t

–n+
X[s] ds dt

= �n(p; –n +  – ) + X[–n](t + n – ) + X[–n + ]
(t + n – )



for – n +  ≤ t < –n + ,

. . . . . . . . . . . .

�n(p; t) =
∫ n–

–n

∫ t

–n
X[s] ds dt +

∫ t

n–

∫ n–

–n
X[s] ds dt +

∫ t

n–

∫ t

n–
X[s] ds dt

= �n(p; n –  – ) +
n–∑

k=

∫ t

n–

∫ –n+k+

–n+k
X[s] ds dt +

∫ t

n–

∫ t

n–
X[s] ds dt

= �n(p; n – ) +
n–∑

k=

X[–n + k](t – n + ) + X[n – ]
(t – n + )



for n –  ≤ t < n – ,

�n(p; t) = �n(p; n –  – ) +
n–∑

k=

∫ t

n–

∫ –n+k+

–n+k
X[s] ds dt +

∫ t

n–

∫ t

n–
X[s] ds dt

= �n(p; n – ) +
n–∑

k=

X[–n + k](t – n + ) + X[n – ]
(t – n + )



for n –  ≤ t < n.

These equations show that the right-hand side of () depends on n +  unknowns x(–n +
), x(–n + ), . . . , x(n), x′(–n), where n is an even number. Hence equation () is equivalent
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to the following system of n+ equations with respect to x(–n+), x(–n+), . . . , x(n), x′(–n)
(see Lemma ):

x(–n + ) = x(–n) + x′(–n) +
q

�(p)

n∑

k=

Pk(p)x(–n + k) + Fn(p; –n + ),

x(–n + ) = x(–n) + x′(–n) +
q

�(p)

n∑

k=

Pk(p)x(–n + k) + Fn(p; –n + ),

. . . . . . . . .

x(n) = x(–n) + nx′(–n) +
q

�(p)

n∑

k=

Pnk(p)x(–n + k) + Fn(p; n),

x′(n) = x′(–n) +
q

�(p)

n∑

k=

Pn+,k(p)x(–n + k) + F ′
n(p; n),

()

where the polynomials Pij(p) are defined by ().
We denote by D(p, q) the determinant of the matrix

B =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

q
�(p) P(p) –  q

�(p) P(p) . . . q
�(p) P,n(p) +  

q
�(p) P(p) q

�(p) P(p) –  . . . q
�(p) P,n–(p) +  

...
... . . .

...
...

q
�(p) Pn(p) q

�(p) Pn(p) . . . q
�(p) Pn,n(p) n

q
�(p) Pn+,(p) q

�(p) Pn+,(p) . . . q
�(p) Pn+,n(p) 

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

. ()

The main result of this section is the following theorem.

Theorem  Let pn �=  and f be a n-periodic continuous function. Then
(i) if D(p, q) �= , equation () has a unique n-periodic solution having the form (),

where (x(–n + ), x(–n + ), . . . x(n), x′(–n)) is the unique solution of ();
(ii) if D(p, q) =  and Fn(p; –n + ) = · · · = Fn(p; n) = F ′

n(p; n) = , then equation () has
an infinite number of n-periodic solutions having the form

xα(t) = α

(
x(–n) + x′(–n)(t + n) +

q
�(p)

�n(p; t)
)

+ Fn(p; t),

where (x(–n + ), . . . , x(n), x′(–n)) is an eigenfunction of B corresponding to the
eigenvalue , α is any number;

(iii) if D(p, q) =  and (Fn(p; –n + ), . . . , Fn(p; n), F ′
n(p; n)) �= (, . . . , ), then equation ()

does not have any n-periodic solution.

Proof The proof of the theorem is similar to the proof of Theorem . �

Lemma  Equation () is equivalent to the system of equations ().

Proof Since x is a n periodic solution of (), it satisfies equations x(–n) = x(n) and x′(–n) =
x′(n). From () we can describe the values of x(–n+), x(–n+), . . . , x(n), x′(–n). Therefore
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we get the n +  linear system of equations

x(–n + ) = x(–n) + x′(–n) +
q

�(p)
�n(p; –n + ) + Fn(p; –n + ),

x(–n + ) = x(–n) + x′(–n) +
q

�(p)
�n(p; –n + ) + Fn(p; –n + ),

. . . . . . . . .

x(n) = x(–n) + nx′(–n) +
q

�(p)
�n(p; n) + Fn(p; n),

x′(n) = x′(–n) +
q

�(p)
�′

n(p; n) + F ′
n(p; n).

()

Note that

X[r] =
n∑

k=

(
pn–k+ – pn–k)x(r + k) =

n∑

k=

p
k x(r + k) for even |r|,

X[r] =
(
pn– – 

)
x(r + ) +

n–∑

k=

(
–pn–k + pn–k–)x(r + k + )

=
n∑

k=

p
kx(r + k + ) for odd |r|,

where

p
k = pn–k+ – pn–k , p

k = –pn–k + pn–k– and p
n = pn– – .

The values of �n(p; ·) at the points –n + , –n + , . . . , n are given by

�n(p; –n + ) =



X[–n] +



X[–n + ] =



n∑

k=

p
k x(–n + k) +




n∑

k=

p
kx(–n +  + k),

�n(p; –n + ) =



X[–n] +



X[–n + ] +



X[–n + ] +



X[–n + ]

=



n∑

k=

p
k x(–n + k) +




n∑

k=

p
kx(–n +  + k)

+



n∑

k=

p
k x(–n +  + k) +




n∑

k=

p
kx(–n +  + k),

. . . . . . . . .

�n(p; n) =
(

n –



)
X[–n] +

(
n –




)
X[–n + ] + · · · +




X[n – ] +



X[n – ]

=
(

n –



) n∑

k=

p
k x(–n + k) +

(
n –




) n∑

k=

p
kx(–n +  + k)

+ · · · +



n∑

k=

p
k x(n –  + k) +




n∑

k=

p
kx(n + k),
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�′
n(p; n) =

n–∑

r=

X[–n + r] =
n∑

k=

p
k x(–n + k) +

n∑

k=

p
kx(–n +  + k)

+
n∑

k=

p
k x(–n +  + k) + · · · +

n∑

k=

p
k x(n –  + k) +

n∑

k=

p
kx(n + k),

or, equivalently,

�n(p; –n + ) =
(




p
 +




p
n

)
x(–n + ) +

n∑

k=

(



p
k +




p
k–

)
x(–n + k),

�n(p; –n + ) =
(




p
 +




p
n +




p
n +




p
n–

)
x(–n + )

+
(




p
 +




p
 +




p
 +




p
n

)
x(–n + )

+
n∑

k=

(



p
k +




p
k– +




p
k– +




p
k–

)
x(–n + k),

�n(p; –n + ) =
(




p
 +




p
n +




p
n +




p
n– +




p
n– +




p
n–

)
x(–n + )

+
(




p
 +




p
 +




p
 +




p
n +




p
n +




p
n–

)
x(–n + )

+
(




p
 +




p
 +




p
 +




p
 +




p
 +




p
n

)
x(–n + )

+
n∑

k=

(



p
k +




p
k– +




p
k– +




p
k– +




p
k– +




p
k–

)
x(–n + k),

. . . . . . . . .

�n(p; n) =
((

n –



)
p

 +
(

n –



)
p

n +
(

n –



)
p

n + · · ·

+



p
 +




p
 +




p


)
x(–n + )

+
((

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

n

+
(

n –



)
p

 + · · · +



p
 +




p
 +




p


)
x(–n + )

+ · · · +
((

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

 + · · ·

+



p
n +




p
n +




p
n–

)
x(n – )

+
((

n –



)
p

n +
(

n –



)
p

n– +
(

n –



)
p

n– + · · ·

+



p
 +




p
 +




p
n

)
x(n),

�′
n(p; n) =

(
p

 + p
n + p

n + · · · + p
 + p

 + p

)
x(–n + )

+
(
p

 + p
 + p

 + p
n + p

n + · · · + p
 + p

 + p

)
x(–n + )

+ · · · +
(
p

n + p
n– + p

n– + · · · + p
 + p

 + p
n
)
x(n).
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We denote

P(p) =



p
 +




p
n,

Pk(p) =



p
k +




p
k–, k = , . . . , n,

P(p) =



p
 +




p
n +




p
n +




p
n–,

P(p) =



p
 +




p
 +




p
 +




p
n,

Pk(p) =



p
k +




p
k– +




p
k– +




p
k–, k = , . . . , n,

P(p) =



p
 +




p
n +




p
n +




p
n– +




p
n– +




p
n–,

P(p) =



p
 +




p
 +




p
 +




p
n +




p
n +




p
n–,

P(p) =



p
 +




p
 +




p
 +




p
 +




p
 +




p
n,

Pk(p) =



p
k +




p
k– +




p
k– +




p
k– +




p
k– +




p
k–, k = , . . . , n,

. . . . . . . . .

Pn(p) =
(

n –



)
p

 +
(

n –



)
p

n +
(

n –



)
p

n + · · · +



p
 +




p
 +




p
,

Pn(p) =
(

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

n +
(

n –



)
p



+ · · · +



p
 +




p
 +




p
,

. . . . . . . . .

Pn,n–(p) =
(

n –



)
p

 +
(

n –



)
p

 +
(

n –



)
p

 + · · · +



p
n +




p
n +




p
n–,

Pnn(p) =
(

n –



)
p

n +
(

n –



)
p

n– +
(

n –



)
p

n– + · · · +



p
 +




p
 +




p
n,

Pn+,k(p) =
n∑

r=

(
p

r + p
r
)
, k = , . . . , n.

()

From these notations we obtain equivalence of the system of equations () to the system
of equations ().

This completes the proof. �
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