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611 37, The Czech Republic
Full list of author information is
available at the end of the article

Abstract
We solve a nonlocal boundary value problem on the half-close interval [1,∞)
associated to the differential equation (a(t)|x′|α sgn x′)′ + b(t)|x|β sgn x = 0, in the
superlinear case α < β . By using a new approach, based on a special energy-type
function E, the existence of slowly decaying solutions is examined too.
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1 Introduction
Consider the Emden-Fowler type differential equation

(
tα

∣
∣x′∣∣α sgn x′)′ + b(t)|x|β sgn x = , ()

where  < α < β and b is a positive continuous function on [,∞) satisfying

Jb =
∫ ∞


b(s) ds = ∞. ()

Jointly with () consider also the more general equation

(
a(t)

∣
∣x′∣∣α sgn x′)′ + b(t)|x|β sgn x = , ()

where a is a positive continuous function on [,∞) such that

Ja =
∫ ∞


a–/α(s) ds < ∞. ()

Equations () and () arise in the study of radially symmetric solutions of elliptic differ-
ential equations with phi-Laplacian operator in R

; see, e.g., [, ].
By a solution of () we mean a differentiable function x on an interval Ix ⊆ [,∞), such

that a(·)|x′(·)|α is continuously differentiable and satisfies () on Ix. In addition, x is called
local solution if Ix is bounded and proper solution if Ix is unbounded and sup{|x(t)| : t ≥
T} >  for any large T ≥ . As usual, a proper solution of () is said to be oscillatory if it has
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a sequence of zeros tending to infinity, otherwise it is said to be nonoscillatory. Equation
() is said to be oscillatory if any its proper solution is oscillatory.

Define

A(t) =
∫ ∞

t
a–/α(s) ds.

Let P be the class of eventually positive proper solutions x of (). In view of (), the class P
can be divided into three subclasses, according to the asymptotic behavior of x as t → ∞,
see, e.g., [], Lemma .. More precisely, any proper solution x ∈ P satisfies one of the
following asymptotic properties:

lim
t→∞ x(t) = �x,  < �x < ∞, ()

lim
t→∞ x(t) = , lim

t→∞
x(t)
A(t)

= ∞, ()

lim
t→∞

x(t)
A(t)

= �x,  < �x < ∞, ()

where �x is a positive constant depending on x.
Let x, y ∈ P satisfy (), (), respectively. Then x, y tend to zero as t → ∞ and  < y(t) < x(t)

for large t. Hence, proper solutions of () satisfying () are called slowly decaying solutions,
and proper solutions satisfying () strongly decaying solutions.

Here, we consider the nonlocal BVP on the half-line [,∞)

⎧
⎪⎪⎨

⎪⎪⎩

(a(t)|x′|α sgn x′)′ + b(t)|x|β sgn x =  α < β ,

x(t) > , x′(t) < ,

limt→∞ x(t) = , limt→∞ x(t)/A(t) = ∞.

()

Using a suitable change of variable and certain monotonicity properties of a energy-
type function E, we prove that () has infinitely many solutions. Consequently, we get also
a global multiplicity existence result for slowly decaying solutions of (), which are posi-
tive decreasing on the whole interval [,∞). We recall that in the superlinear case α < β ,
sufficient conditions for existence of slowly decaying solutions are difficult to establish,
due to the problem to find sharp upper and lower bounds; see, e.g., [], p., [], p..

Observe that necessary and sufficient conditions for existence of solutions of (), which
satisfy () or (), can easily be produced; see, e.g., [, ] or [], Section . Moreover, the
same is true for slowly decaying solutions in the sublinear case α > β ; see, e.g., [, ]. In
the opposite situation, that is, in the superlinear case α < β , in spite of many examples of
equations of type () having solutions of type (), which can be easily produced, until now
no general sufficient conditions for their existence are known.

The paper is completed by the solvability of a special BVP, in which also the initial start-
ing point is fixed. Moreover, some examples and suggestions for future research complete
the paper.

Our results are also motivated by the papers [, ], in which the special case α = β is
considered. More precisely in [, ] necessary and sufficient conditions for existence of
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slowly decaying solutions for the half-linear equation

(
a(t)

∣∣y′∣∣α sgn y′)′ + b(t)|y|α sgn y = , ()

are established, according to α <  or α > , respectively.
Recently, BVPs on infinite intervals, associated to equations with phi-Laplacian have

been considered in [, ]. The case of nonlocal BVPs for the generalized Laplacian, has
been studied, e.g., in [, ]. Finally, we refer the reader to [, ] for other references on
this topic.

2 Preliminaries
We start with a change of the independent variable in (), which will be useful.

Lemma  Consider the transformation

s(t) =
(∫ ∞

t


a/α(τ )

dτ

)–

, u(s) = x
(
t(s)

)
, ()

where t(s) is the inverse of the function s(t). Then x is a solution of the BVP () if and only
if u is a solution of

d
ds

(
sα

∣
∣ ·
u(s)

∣
∣α sgn

·
u
)

+
a/α(s)b(s)

s |u|β sgn u =  ()

on [s,∞), s = s() > , and satisfies for s ≥ s

u(s) > ,
·
u(s) < , lim

s→∞ u(s) = , lim
s→∞ su(s) = ∞,

where · denotes the derivative with respect to s.
Moreover, condition () is satisfied for ().

Proof Using (), we have

x′(t) =
·
u

ds
dt

=
s

a/α(t)
·
u(s) ()

and () is transformed into the equation

d
ds

(∣∣ ·
u(s)

∣∣α sgn
·
u
)

+
α

s
∣∣ ·
u(s)

∣∣α sgn
·
u +

a/α(s)b(s)
s(α+) |u|β sgn u = , ()

see also [], p., with minor changes. Multiplying () by sα , we obtain (). Moreover,
for () assumptions () and () are satisfied because

Ja =
∫ ∞

s


s ds < ∞,

and
∫ ∞

s

a/α(s)b(s)
s ds =

∫ ∞


b(t) dt = ∞. �
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Thus, in view of Lemma , in the sequel we will study the existence of solutions x of ()
which satisfy on [,∞) the boundary conditions

x(t) > , x′(t) < ,

lim
t→∞ x(t) = , lim

t→∞ x(t)/A(t) = lim
t→∞ tx(t) = ∞.

If x is a solution of (), then denote by x[] its quasiderivative, that is,

x[](t) = tα
∣∣x′(t)

∣∣α sgn x′(t). ()

Moreover, set

Z =
∫ ∞


s–

(∫ s


b(r) dr

)/α

ds, Y =
∫ ∞


s–βb(s) ds,

and

B(t) =
∫ t


b(s) ds + c, ()

where c is an arbitrary positive constant. Hence B(t) >  for t ≥ .
The following result is needed in the following.

Lemma 
(i) Equation () has solutions x ∈ P which satisfy (), if and only if Z < ∞.

(ii) Equation () has solutions x ∈ P which satisfy limt→∞ tx(t) = �x,  < �x < ∞ if and
only if Y < ∞. Moreover, for any �x,  < �x < ∞, there exists x ∈ P such that
limt→∞ tx(t) = �x.

(iii) Equation () is oscillatory if and only if Y = ∞.

Proof Claims (i) and (ii) follow from [], Theorems ., ., with minor changes. Claim (iii)
follows from [], Theorem .. �

3 The main result
Our main result deals with the solvability of the nonlocal BVP

⎧
⎪⎪⎨

⎪⎪⎩

(tα|x′|α sgn x′)′ + b(t)|x|β sgn x = , t ≥ ,α < β ,

x(t) > , x′(t) < ,

limt→∞ x(t) = , limt→∞ tx(t) = ∞,

(BVP)

under the additional assumption

b ∈ C[,∞). ()

Remark  In the superlinear case α < β , in virtue of (), any local solution of () is a
solution, i.e. it is continuable to infinity and is proper; see, e.g., [], Theorem ., or [],
Appendix A. Notice also that, under the weaker assumption b(t) ≥ , sup{b(t) : t ≥ T} > 
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for any T ≥ , there may exist equations of type () with uncontinuable solutions; see, e.g.,
[], p..

The following holds.

Theorem  Assume Z = ∞. If () is satisfied and the function

G(t) =


tb(t)
Bγ (t) is nonincreasing for t ≥ , ()

where

γ =
 + αβ + α

α(β + )
, ()

then (BVP) has infinitely many solutions.

To prove this result, several auxiliary results are needed. Define for any solution x of ()
the energy-type function

Ex(t) = B(t)
∣∣x(t)

∣∣β+ + x(t)x[](t) + k
tα

b(t)
B(t)

∣∣x′(t)
∣∣α+, ()

where the quasiderivate x[] is defined in () and

k =
α(β + )
α + 

. ()

Lemma  For any solution x of () we have

∣
∣x′(t)

∣
∣αx′′(t) =


α

|x′(t)|
tα

d
dt

x[](t) – t–∣∣x′(t)
∣
∣α+

sgn x′(t). ()

Proof Since x[] is continuously differentiable on [tx,∞), tx ≥ , and t–αx[](t) = |x′(t)|α ×
sgn x′(t), the function x′ is continuously differentiable on [tx,∞) as well. If x′(t) = , then
the identity () is valid. Now, assume x′(t) �= . We have

∣
∣x′(t)

∣
∣ d
dt

x[](t) =
∣
∣x′(t)

∣
∣(αtα–∣∣x′(t)

∣
∣α sgn x′(t) + αtα

∣
∣x′(t)

∣
∣α–x′′(t)

)

= αtα–∣∣x′(t)
∣
∣α+

sgn x′(t) + αtα
∣
∣x′(t)

∣
∣αx′′(t),

from which the assertion follows. �

Lemma  Assume () and (). Then for any solution x of () we have for t ≥ 

d
dt

Ex(t) ≤ .

Proof Let ϕ be a continuously differentiable function on [,∞). Then for any positive con-
stant σ the function |ϕ(t)|σ+ is continuously differentiable and

d
dt

∣
∣ϕ(t)

∣
∣σ+ = (σ + )

∣
∣ϕ(t)

∣
∣σ ϕ′(t) sgnϕ(t).
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Using this equality, we have for t ≥ 

d
dt

(
tα

b(t)
B(t)

∣
∣x′(t)

∣
∣α+

)
=

d
dt

(


tb(t)
B(t)tα+∣∣x′(t)

∣
∣α+

)

= B(t)tα+∣∣x′(t)
∣
∣α+ d

dt

(


tb(t)

)
+


t tα+∣∣x′(t)

∣
∣α+

+ (α + )
B(t)

tb(t)
(
tα+∣∣x′(t)

∣∣α+ + tα+∣∣x′(t)
∣∣αx′′(t) sgn x′(t)

)
.

Hence we get

d
dt

Ex(t) = (β + )
∣
∣x(t)

∣
∣βx′(t)B(t) sgn x(t) + tα

∣
∣x′(t)

∣
∣αx′(t) sgn x′(t)

+ kB(t)tα+∣∣x′(t)
∣∣α+ d

dt

(


tb(t)

)
+ k


t tα+∣∣x′(t)

∣∣α+

+ k(α + )
B(t)

tb(t)
(
tα+∣∣x′(t)

∣
∣α+ + tα+∣∣x′(t)

∣
∣αx′′(t) sgn x′(t)

)

or

d
dt

Ex(t) = tα+g(t) + h(t),

where

g(t) = ( + k)

t

∣
∣x′(t)

∣
∣α+ + kB(t)

∣
∣x′(t)

∣
∣α+ d

dt

(


tb(t)

)

and

h(t) = (β + )
∣
∣x(t)

∣
∣βx′(t)B(t) sgn x(t)

+ k(α + )
B(t)

tb(t)
(
tα+∣∣x′(t)

∣
∣α+ + tα+∣∣x′(t)

∣
∣αx′′(t) sgn x′(t)

)
.

From () we obtain

 + k = γ k, k(α + ) = α(β + ).

Thus, we get

g(t) = k
(

γ

t

∣
∣x′(t)

∣
∣α+ + B(t)

∣
∣x′(t)

∣
∣α+ d

dt

(


tb(t)

))
()

and

h(t)
(β + )B(t)

=
∣
∣x(t)

∣
∣βx′(t) sgn x(t) +

α

b(t)
tα–∣∣x′(t)

∣
∣α+

+
α

b(t)
tα

∣∣x′(t)
∣∣αx′′(t) sgn x′(t).
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In view of (), we have

B–γ +(t)
∣
∣x′(t)

∣
∣α+ d

dt

(


tb(t)
Bγ (t)

)

= B(t)
∣∣x′(t)

∣∣α+ d
dt

(


tb(t)

)
+ γ


t

∣∣x′(t)
∣∣α+ ≤ ,

and so, from () we obtain

g(t) ≤ .

In order to complete the proof, it is sufficient to show that h(t) = . Using Lemma , we
have

h(t)
(β + )B(t)

=
∣∣x(t)

∣∣βx′(t) sgn x(t) +
α

b(t)
tα–∣∣x′(t)

∣∣α+

– x′(t)
∣∣x(t)

∣∣β sgn x(t) –
α

b(t)
tα–∣∣x′(t)

∣∣α+ = ,

thus the assertion follows. �

Lemma  Assume (). Then () has proper solutions x for which Ex() < .

Proof Consider on [,∞) the scalar function

φ(u) = cuα+ – muα + cmβ+, ()

where

c =
α(β + )
α + 

c
b()

()

and m is a positive parameter. A standard calculation shows that when m is sufficiently
small, then φ attains negative values in a neighborhood of the point

u =
αm

(α + )c
. ()

Indeed, consider the local solution x of () with the initial condition

x() = m, x′() = –u. ()

In view of Remark , x is continuable to infinity and proper. From () we obtain

Ex() = cmβ+ – m
(

αm
(α + )c

)α

+ k
c

b()

(
αm

(α + )c

)α+

,

or, in view of (),

Ex() = φ(u).
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Using (), we get

Ex() = φ(u) = cmβ+ –
(

α

(α + )c

)α

mα+ + c

(
α

(α + )c
m

)α+

= mα+
[

cmβ–α +
(


(α + )c

)α(
– +

α

α + 

)]

= mα+
[

cmβ–α –


α + 

(


(α + )c

)α]
.

From this and β > α, choosing m sufficiently small such that

 < mβ–α <

c


α + 

(


(α + )c

)α

, ()

we get φ(u) < , which is the assertion. �

Proof of Theorem  From Lemma , the function Ex is nonincreasing on [,∞) for any
solution x of ().

Fixed m satisfying (), consider the local solution x of () with the initial condition
(), where u is given by (). In view of Remark , this solution is also continuable to in-
finity and proper. Moreover, it is uniquely determined, because in the superlinear case the
uniqueness of solutions with respect to the initial conditions holds; see, e.g., []. Moreover,
in virtue of the proof of Lemma , we have Ex() < , and so, from Lemma , we obtain

Ex(t) ≤ Ex() <  on [,∞). ()

Let us show that x and x′ cannot have zeros for t ≥ . By contradiction, if there exists
t >  such that x(t) = , then, in virtue of the uniqueness with respect to the initial data,
we have x′(t) �= . Hence E(t) > , which contradicts (). Similarly, if there exists t ≥ 
such that x′(t) = , we obtain E(t) > , which is again a contradiction.

Thus, x is nonoscillatory. Moreover, in view of Lemma , we have

lim
t→∞ x(t) = .

Hence, x is positive decreasing in the half-line [,∞), that is,

x(t) > , x′(t) <  for t ≥ .

From (), the quasiderivative x[] is negative decreasing, i.e.

lim
t→∞ –x[](t) = �x,  < �x ≤ ∞.

If �x < ∞, we get limt→∞ x(t)x[](t) = , and from () we obtain lim inft→∞ Ex(t) ≥ , that
is, a contradiction with (). Hence �x = ∞, i.e.

lim
t→∞ tx′(t) = –∞.
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Using the l’Hospital rule we get

lim
t→∞ tx(t) = ∞.

Hence, x is a solution of (BVP). Since there are infinitely many solutions which satisfy
() with the choice of m taken with (), the proof is now complete. �

From Theorem  and its proof, we get the following.

Corollary  Under assumptions of Theorem , () has infinitely many slowly decaying so-
lutions, which are positive decreasing on the whole interval [,∞). Moreover, () has also
infinitely many strongly decaying solutions and every nonoscillatory solution of () tends
to zero as t → ∞.

Proof In virtue of Theorem  and its proof, the boundary value problem (BVP) is solv-
able by every solution x which satisfies () and (). Clearly, these solutions are slowly
decaying solutions.

Consequently, () has nonoscillatory solutions and, in view of Lemma (iii) we get
Y < ∞. Then the existence of infinitely many strongly decaying solutions follows from
Lemma (ii). �

When the monotonicity condition () is valid only for large t, reasoning as in the proof
of Theorem , we obtain the following.

Corollary  Assume Z = ∞. If () is satisfied and the function G, given in () is nonin-
creasing for any large t, then () has infinitely many slowly decaying solutions, which are
eventually positive decreasing. Moreover, () has also infinitely many strongly decaying so-
lutions and every nonoscillatory solution of () tends to zero as t → ∞.

Finally, when also the initial starting point is fixed, we have the following.

Corollary  Assume Z = ∞. If () and () are satisfied, then the BVP

⎧
⎪⎪⎨

⎪⎪⎩

(tα|x′|α sgn x′)′ + b(t)|x|β sgn x = , t ≥ ,α < β ,

x() = x, x(t) > , x′(t) < ,

limt→∞ x(t) = , limt→∞ tx(t) = ∞,

has infinitely many solutions for every initial data x such that

 < (x)β–α <
(


c

)α+ 
α + 

(
b()

α(β + )

)α

. ()

Proof The assertion follows by a reasoning as in the proof of Theorem  and choosing
m = x in (). Taking into account that m satisfies () and c is given by (), we get ().
The details are left to the reader. �

Remark  It is worth to note that the condition () may depend on the choice of the
constant c in (), i.e. on the choice of a primitive to b.
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If () is satisfied for a fixed B, then () remains to hold for B(t) + c, where c > . Indeed,
setting 
(t) = t–b–(t), from G′(t) ≤  we get

 ≥ 
 ′(t) + γ
(t)b(t)


B(t)
= 
 ′(t) + γ
(t)b(t)


B(t) + c

B(t) + c
B(t)

or

 ≥ 
 ′(t) + γ
(t)b(t)


B(t) + c

i.e. () is satisfied also for B(t) + c with c > . However, if () is valid for B given by (),
then it is possible that () is not valid for B̃(t) = B(t) + c̃, where  < c̃ < c. This fact is
illustrated below in Example .

4 Oscillation and nonoscillation
In this section we discuss assumptions of Theorem , jointly with some consequences to
the oscillation. Assumption () guarantees the continuability at infinity of any solution of
() and its role is discussed in Remark . Concerning the condition Z = ∞, a consequence
of a result in [] shows that it is a necessary condition for the solvability of (BVP). The
following holds.

Theorem  If Z < ∞, then () does not have solutions x ∈ P such that

lim
t→∞ x(t) = , lim

t→∞ tx(t) = ∞.

Proof Let x be a solution of () and set

y(t) = –tα
∣
∣x′(t)

∣
∣α sgn x′(t). ()

A standard calculation shows that y is a solution of equation

(


b/β(t)
∣∣y′∣∣/β

sgn y′
)′

+

t |y|/α sgn y = , ()

where /β < /α. From [], Theorem , () does not admit eventually positive solutions
y such that

lim
t→∞ y(t) = ∞, lim

t→∞
y′(t)
b(t)

= ,

that is, in view of (), () does not have solutions x ∈ P such that

lim
t→∞ x(t) = , lim

t→∞ tx′(t) = –∞.

Since the l’Hospital rule gives

lim
t→∞ tx(t) = – lim

t→∞ tx′(t),

the assertion follows. �
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Now, we discuss the monotonicity condition (). We start by recalling the following
nonoscillation result, which is an extension of a well-known Kiguradze criterion [], The-
orem ..

Theorem  ([], Theorem .) If there exists a positive number ε such that the function

Ḡ(t) =


tb(t)

(∫ t


b(s) ds

)γ +ε

is nonincreasing for large t, ()

where γ is given in (), then all solutions of () are nonoscillatory.

A standard calculation shows that if () holds for t ≥ t ≥ , then () is valid on the
same interval [t,∞) as well. Thus, in view of Corollary , we can obtain an existence result
for slowly decaying solutions x of (). Nevertheless, condition () can be valid in a larger
interval than [t,∞). The next example illustrates this fact.

Example  Consider the equation

(
t
∣
∣x′(t)

∣
∣/

sgn x′)′ + x = . ()

We have Z = ∞ and γ = /. Moreover, choosing c =  in (), for the function G given
in () we have G(t) = t–/. Then () is satisfied for t ≥  and Theorem  is applicable.
Analogously, () is verified for any large t and  < ε < /, because

Ḡ(t) = t–(t – )/(t – )ε .

On the other hand, we have

Ḡ′(t) = t–(t – )/(t – )ε
(
/ + ε – t(t – )

)

and so () is not valid in a right neighborhood of t = . By Theorem , all solutions of
() are nonoscillatory and by Lemma  tend to zero as t → ∞. Moreover, in view of The-
orem , () has both slowly decaying solutions and strongly decaying solutions. Finally,
slowly decaying solutions are globally positive on the whole interval [,∞).

Example  Consider the equation

(
t/∣∣x′(t)

∣
∣/

sgn x′)′ + x(t) = . ()

We have Z = ∞ and γ = . Choosing c =  in (), we obtain G(t) =  and Theorem  can
be applied. Indeed, as it is easy to verify, the function x(t) = –t–/ is a slowly decaying
solution of (). Moreover, () has both slowly decaying solutions and strongly decaying
solutions and slowly decaying solutions are globally positive on the whole interval [, ∞).
Observe that if we choose c = / in (), then the corresponding function G is increasing
and () is not satisfied.

Furthermore, the function Ḡ given in () is increasing for large t and any ε > . Hence,
Theorem  cannot be used. Then it is a question whether () admits or does not admit
oscillatory solutions.
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When α = , the coexistence between oscillatory solutions and nonoscillatory solutions
can be obtained by using Lemma  and a result from [], Theorem . The following holds.

Theorem  Consider the equation

(
tx′)′ + b(t)|x|β sgn x = , ()

where β >  and b(t) >  for t ≥ . Assume Y < ∞. If the function

H(t) = t(–β)/b(t)

is nondecreasing for large t and limt→∞ H(t) = ∞, then () has infinitely many oscillatory
solutions and infinitely many strongly decaying solutions. Moreover, every nonoscillatory
solution of () tends to zero as t → ∞.

Proof In view of [], Theorem , any solution x of () which satisfies x(t)x′(t) >  at
some t ≥ , is oscillatory. The remaining part of the statement follows from Lemma . �

The following example shows that both types of nonoscillatory decaying solutions can
coexist with oscillatory solutions.

Example  Consider the equation

(
tx′(t)

)′ + t/x = . ()

The assumptions in Theorem  are satisfied. Hence, () has oscillatory solutions and
infinitely many strongly decaying solutions. Moreover, every nonoscillatory solution tends
to zero as t → ∞, according to Lemma , because Z = ∞. Furthermore, it is easy to verify
that the function

x(t) =
√




t–/

is a slowly decaying solution of (). Thus, for () slowly decaying solutions and strongly
decaying solutions coexist with oscillatory solutions. Observe that for the function G given
in () we have

G(t) = t–/
(




t/ + k
)/

,

where k is a suitable constant such that k > –/. A standard calculation shows that ()
is not satisfied and Theorem  cannot be applied. A similar argument shows that also ()
fails.

Open problems Example  suggests that for the existence of at least one slowly decaying
solution, the assumption on monotonicity in () could be relaxed. Moreover, Example 
(and Theorem ) deal with the case α = , that is, when the differential operator is the
Sturm-Liouville disconjugate operator. Does the coexistence between oscillatory solutions
and decaying solutions, illustrated in Example , occur also when α �=  (and β > α)?
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