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Abstract
This paper deals with the critical quasilinear elliptic problem

–�pu =μ |u|p–2u
|x|p + Q(x) |u|

p∗ (s)–2u
|x|s + h(x)|u|q–2u in R

N , where �pu = div(|∇u|p–2u) is the
p-Laplacian, 1 < p < N, 0≤ μ <μ with μ = (N–pp )p, 0≤ s < p < q < p∗(s), p∗(s) = (N–s)p

N–p ,
and Q and h are measurable functions satisfying some symmetry conditions with
respect to a closed subgroup G of O(N). By variational methods and the symmetric
criticality principle of Palais, we establish several existence and multiplicity results of
positive G-symmetric solutions under certain appropriate hypotheses on Q, h, and q.
MSC: 35J25; 35J60; 35J65
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1 Introduction
In recent years, considerable attention has been paid to the following nonlinear elliptic
problem with singular potential and critical Sobolev exponent:

⎧
⎨

⎩

–�u = μ u
|x| + |u|∗–u + f (x,u), in �,

u = , on ∂�,
(.)

where � ⊂ R
N (N ≥ ) is a smooth domain (bounded or unbounded) containing the ori-

gin,  ≤ μ < (N–
 ), ∗ � N

N– is the critical Sobolev exponent, and f : � × R �→ R is a
measurable function with subcritical growth. The main reason of interest in singular po-
tentials relies in their criticality: they have the same homogeneity as the Laplacian and
the critical Sobolev exponent and do not belong to the Kato class, hence they cannot be
regarded as the lower order perturbation terms. We also mention that (.) is related to
applications in many physical contexts: fluid mechanics, glaciology, molecular physics,
quantum cosmology and linearization of combustion models (see [] for example). So for
this reason, many existence, nonexistence, and multiplicity results for equations like (.)
have been obtained with various hypotheses on the measurable function f (x,u); we re-
fer the readers to [–] and the references therein. Moreover, for other results on this
aspect, see [] for boundary singularities, [] for high-order nonlinearity, [] for non-
autonomous Schrödinger-Poisson systems in R

, [] for singular elliptic systems in R
,

and [] for large singular sensitivity etc.
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Recently, Deng and Jin [] studied the existence of nontrivial solutions of the following
singular semilinear elliptic problem:

–�u = μ
u

|x| + k(x)
u∗(s)–

|x|s , and u >  in R
N , (.)

where μ ∈ [, (N–
 )), s ∈ [, ), are constants, N > , ∗(s) = (N–s)

N– , and k fulfills cer-
tain symmetry conditions with respect to a subgroup G of O(N). By the concentration-
compactness principle in Refs. [, ] and variational methods, the authors obtained the
existence and multiplicity of G-symmetric solutions under some assumptions on k. Very
recently, Deng andHuang [–] extended the results in Ref. [] to nonlinear singular el-
liptic problems in a bounded G-symmetric domain. We also mention that when μ = s = 
and the right-hand side term |x|–su∗(s)– is replaced by ur– ( < r < N

N– or r = N
N– ) in

(.), the existence and multiplicity of G-symmetric solutions of (.) were obtained in
Refs. [–]. Finally, when G = O(N), we remark that Su and Wang [] established the
existence of nontrivial radial solutions for a class of quasilinear singular equations such as
(.) by proving several new embedding theorems.
Motivated by Deng and Jin [], Bianchi et al. [], and Su and Wang [], in this work

we investigate the following critical quasilinear problem with singular potential:

–�pu = μ
|u|p–u

|x|p +Q(x)
|u|p∗(s)–u

|x|s + h(x)|u|q–u in R
N , (.)

where �pu = div(|∇u|p–u) is the p-Laplacian,  < p <N ,  ≤ μ < μ, with μ � (N–p
p )p,  ≤

s < p < q < p∗(s), p∗(s)� (N–s)p
N–p is the critical Hardy-Sobolev exponent and p∗() = p∗ � Np

N–p
is the critical Sobolev exponent;Q and h areG-symmetric functions (see Section  for de-
tails) satisfying some appropriate conditions which will be specified later. Problem (.) is
in fact a continuation of (.). However, due to the nonlinear perturbation h(x)|u|q–u and
the singularities caused by the terms 

|x|p and 
|x|s , compared with the semilinear equation

(.), the critical quasilinear equation (.) becomes more complicated to deal with and
we have to overcomemore difficulties in the study of G-symmetric solutions. As far as we
know, there are few results on the existence of G-symmetric solutions for (.) as μ 
= ,
p 
= , and h 
≡ . Hence, it makes sense for us to investigate problem (.) thoroughly. Let
Q >  be a constant. Note that here we will try to treat both the cases of h = , Q(x) 
≡ Q,
and h 
= , Q(x)≡ Q.
This paper is organized as follows. In Section , wewill establish the appropriate Sobolev

space which is applicable to the study of problem (.), and we will state themain results of
this paper. In Section , we detail the proofs of some existence and multiplicity results for
the cases h =  and Q(x) 
≡ Q in (.). In Section , we give the proofs of existence results
for the cases h 
=  andQ(x)≡Q in (.). Ourmethods in this paper aremainly based upon
the symmetric criticality principle of Palais (see []) and variational arguments.

2 Preliminaries andmain results
LetO(N) be the group of orthogonal linear transformations ofRN with natural action and
let G ⊂ O(N) be a closed subgroup. For x 
=  we denote the cardinality of Gx = {gx; g ∈
G} by |Gx| and set |G| = inf
=x∈RN |Gx|. Note that here |G| may be +∞. For any function
f : RN → R, We call f (x) a G-symmetric function if for all g ∈ G and x ∈ R

N , f (gx) = f (x)

http://www.boundaryvalueproblems.com/content/2014/1/154
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holds. In particular, if f is radially symmetric, then the corresponding groupG isO(N) and
|G| = +∞. Other further examples of G-symmetric functions can be found in Ref. [].
Let D ,p(RN ) denote the closure of C∞

 (RN ) functions with respect to the norm
(
∫

RN |∇u|p dx)/p. We recall that the well-known Hardy-Sobolev inequality (see [, ])
asserts that for all u ∈ D ,p(RN ), there is a constant C = C(N ,p, s) >  such that

(∫

RN

|u|p∗(s)

|x|s dx
)p/p∗(s)

≤ C
∫

RN
|∇u|p dx, (.)

where  < p < N ,  ≤ s ≤ p, and p∗(s) = (N–s)p
N–p . If s = p, then p∗(s) = p and the following

Hardy inequality holds (see [, ]):

∫

RN

|u|p
|x|p dx ≤ 

μ

∫

RN
|∇u|p dx, ∀u ∈ D ,p(

R
N)

, (.)

where μ = (N–p
p )p. Now we employ the following norm in D ,p(RN ):

‖u‖μ �
[∫

RN

(

|∇u|p –μ
|u|p
|x|p

)

dx
]/p

,  ≤ μ < μ.

By the Hardy inequality (.), we easily see that the above norm is equivalent to the usual
norm (

∫

RN |∇u|p dx)/p.
The natural functional space to study problem (.) is the Banach space D ,p

G (RN ) which
is the subspace of D ,p(RN ) consisting of allG-symmetric functions. In this paper we con-
sider the following problems:

(
PQ

h
)

⎧
⎨

⎩

–�pu = μ
|u|p–u

|x|p +Q(x) |u|p∗(s)–u
|x|s + h(x)|u|q–u, in R

N ,

u ∈ D ,p
G (RN ), and u > , in R

N .

Tomention ourmain results, we need to introduce two notationsAμ and yε(x), which are,
respectively, defined by

Aμ � inf
u∈D,p(RN )\{}

∫

RN (|∇u|p –μ
|u|p
|x|p )dx

(
∫

RN |x|–s|u|p∗(s) dx)
p

p∗(s)
(.)

and

yε(x) = Cε
–N–p

p Uμ

( |x|
ε

)

, (.)

where ε > , and the constant C = C(N ,p,μ, s) > , depending only onN , p, μ, and s. From
Kang [], we see that yε(x) satisfies the equations

∫

RN

(|∇yε |p –μ|x|–p|yε |p
)
dx =  (.)

and

∫

RN
|x|–syp∗(s)–

ε ν dx =A
– p∗(s)

p
μ

∫

RN

(|∇yε |p–∇yε∇ν –μ|x|–p|yε |p–yεν
)
dx

http://www.boundaryvalueproblems.com/content/2014/1/154
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for all ν ∈ D ,p(RN ). In particular, we have (let ν = yε )

∫

RN
|x|–syp∗(s)

ε dx =A
– N–s
N–p

μ . (.)

The functionUμ(x) =Uμ(|x|) in (.) is the unique radial solution of the following limiting
problem (see [, Lemma .]):

⎧
⎨

⎩

–�pu = μ up–
|x|p + up

∗(s)–
|x|s , in R

N\{},
u ∈ D ,p(RN ), and u > , in R

N\{},

satisfying

Uμ() =
(
(N – s)(μ –μ)

N – p

) 
p∗(s)–p

.

Moreover, the following asymptotic properties at the origin and infinity for Uμ(r) and
U ′

μ(r) hold []:

lim
r→

rηUμ(r) = C > , lim
r→

rη+
∣
∣U ′

μ(r)
∣
∣ = Cη > , (.)

lim
r→+∞ rηUμ(r) = C > , lim

r→+∞ rη+
∣
∣U ′

μ(r)
∣
∣ = Cη > , (.)

where C, C are positive constants and η = η(N ,p,μ), η = η(N ,p,μ) are the zeros of
the function

η(t) = (p – )tp – (N – p)tp– +μ, t ≥ , ≤ μ < μ,

which satisfy

 ≤ η <
N – p
p

< η ≤ N – p
p – 

. (.)

We suppose that Q(x) and h(x) fulfill the following conditions.
(q.) Q ∈ C(RN )∩ L∞(RN ), and Q(x) is G-symmetric.
(q.) Q+ 
≡ , where Q+ = max{,Q}.
(h.) h(x) is G-symmetric.
(h.) h(x) is nonnegative and locally bounded in R

N\{}, h(x) =O(|x|–s) in the bounded
neighborhood O of the origin, h(x) =O(|x|–ϑ ) as |x| → ∞,  ≤ s < ϑ < p,
p∗(ϑ) < q < p∗(s), where p∗(ϑ) = (N–ϑ)p

N–p .
The main results of this paper are the following.

Theorem . Suppose that (q.) and (q.) hold. If

∫

RN
Q(x)

yp
∗(s)

ε

|x|s dx ≥ max

{
Q+()

A
N–s
N–p

μ

,
Q+(∞)

A
N–s
N–p

μ

,
‖Q+‖∞

|G| p–s
N–p A

N–s
N–p



}

>  (.)

for some ε > , where Q+(∞) = lim sup|x|→∞ Q+(x), then problem (PQ
 ) has at least one

positive solution in D ,p
G (RN ).

http://www.boundaryvalueproblems.com/content/2014/1/154
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Corollary . Suppose that (q.) and (q.) hold. Then we have the following statements.
() Problem (PQ

 ) has a positive solution if

Q() > , Q()≥ max
{
Q+(∞), (Aμ/A)

N–s
N–p |G| s–p

N–p ‖Q+‖∞
}

and either (i) Q(x)≥ Q() + σ |x|–N+s+ηp∗(s) for some σ >  and |x| small or
(ii) |Q(x) –Q()| ≤ C|x|α for some constant C > , α > –N + s+ ηp∗(s), |x| small, and

∫

RN

(
Q(x) –Q()

)|x|–s–ηp∗(s) dx > . (.)

() Problem (PQ
 ) admits at least one positive solution if lim|x|→∞ Q(x) =Q(∞) exists

and is positive,

Q(∞)≥ max
{
Q+(), (Aμ/A)

N–s
N–p |G| s–p

N–p ‖Q+‖∞
}

and either (i) Q(x)≥ Q(∞) + σ |x|–N+s+ηp∗(s) for some σ >  and large |x| or
(ii) |Q(x) –Q(∞)| ≤ C|x|–α for some constants C > , α >N – s – ηp∗(s), large |x|,
and

∫

RN

(
Q(x) –Q(∞)

)|x|–s–ηp∗(s) dx > . (.)

() If Q(x)≥ Q(∞) =Q() >  on R
N and

Q(∞) =Q()≥ (Aμ/A)
N–s
N–p |G| s–p

N–p ‖Q+‖∞,

then problem (PQ
 ) has at least one positive solution.

Theorem . Suppose that Q+() = Q+(∞) =  and |G| = +∞. Then problem (PQ
 ) has

infinitely many G-symmetric solutions.

Theorem . Let Q >  be a constant. Suppose that Q(x)≡ Q and (h.) and (h.) hold. If

q > max

{

p∗(ϑ),
N – s
η

,
(N – p – s – pη)p

N – p

}

, (.)

then problem (PQ
h ) possesses at least one positive solution in D ,p

G (RN ).

Throughout this paper, we denote by D ,p
G (RN ) the subspace of D ,p(RN ) consisting of

all G-symmetric functions. The dual space of D ,p
G (RN ) (D ,p(RN ), resp.) is denoted by

D–,p′
G (RN ) (D–,p′ (RN ), resp.), where 

p + 
p′ = . In a similar manner, we define D ,p

G (�)
for an open and G-symmetric subset of RN , that is, if x ∈ �, then gx ∈ � for all g ∈ G. In
the case where � is bounded, we set W ,p

,G(�) = D ,p
G (�). The ball of center x and radius r

is denoted by B(x, r). We employ C, Ci (i = , , . . .) to denote the positive constants, and
denote by ‘→’ convergence in norm in a given Banach space X and by ‘⇀’ weak conver-
gence. A functional J ∈ C(X,R) is said to satisfy the (PS)c condition if each sequence {un}
in X satisfying J(un) → c, J ′(un) →  in X∗ has a subsequence which strongly converges

http://www.boundaryvalueproblems.com/content/2014/1/154
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to some element in X. Hereafter, Lr(�, |x|–ς ) denotes the weighted Lr(�) space with the
norm (

∫

�
|x|–ς |u|r dx)/r . Also, for nonnegative measurable function k(x), we denote by

Lr(RN ,k(x)) the space of measurable functions u satisfying (
∫

RN k(x)|u|r dx)/r <∞.

3 Existence andmultiplicity results for problem (PQ
0 )

We associate with problem (PQ
 ) a functional F :D ,p

G (RN )→R given by

F (u) =

p

∫

RN

(

|∇u|p –μ
|u|p
|x|p

)

dx –


p∗(s)

∫

RN
Q(x)

|u|p∗(s)

|x|s dx. (.)

By (q.) and (.), we easily see that the functional F ∈ C(D ,p
G (RN ),R). Now it is well

known that there exists a one-to-one correspondence between theweak solutions of prob-
lem (PQ

 ) and the critical points of F . More precisely, the weak solutions of (PQ
 ) are

exactly the critical points of F by the principle of symmetric criticality of Palais (see
Lemma .), namely u ∈ D ,p

G (RN ) satisfies (PQ
 ) if and only if for all ν ∈ D ,p(RN ), there

holds

∫

RN

(

|∇u|p–∇u∇ν –μ
|u|p–uν

|x|p
)

dx –
∫

RN
Q(x)

|u|p∗(s)–uν

|x|s dx = . (.)

Lemma . Let Q(x) be a G-symmetric function; F ′(u) =  in D–,p′
G (RN ) implies F ′(u) =

 in D–,p′ (RN ).

Proof Similar to the proof of [, Lemma ] (see also [, Lemma .]). �

Lemma . Let {un} be a weakly convergent sequence to u inD ,p
G (RN ) such that |∇un|p ⇀

ς , |x|–s|un|p∗(s) ⇀ ν , and |x|–p|un|p ⇀ ν̃ in the sense of measures. Then there exists some at
most countable set J , {ςj ≥ }j∈J ∪{}, {νj ≥ }j∈J ∪{}, ν̃ ≥ , {xj}j∈J ⊂ R

N\{} such
that
(a) ς ≥ |∇u|p +∑

j∈J ςjδxj + ςδ,
(b) ν = |x|–s|u|p∗(s) +

∑
j∈J νjδxj + νδ,

(c) ν̃ = |x|–p|u|p + ν̃δ,
(d) Aν

p/p∗(s)
j ≤ ςj ,

(e) Aμν
p/p∗(s)
 ≤ ς – μ̃ν,

where δxj , j ∈ J ∪ {}, is the Dirac mass of  concentrated at xj ∈R
N .

Proof The proof is similar to that of the concentration-compactness principle in Refs. [,
] and is omitted here. �

To find critical points of F we need the following local (PS)c condition which is crucial
for the proof of Theorem ..

Lemma . Suppose that (q.) and (q.) hold. Then the (PS)c condition in D ,p
G (RN ) holds

for F (u) if

c < c∗ �
p – s

(N – s)p
min

{
A

N–s
p–s

μ

Q+()
N–p
p–s

,
A

N–s
p–s

μ

Q+(∞)
N–p
p–s

,
|G|A

N–s
p–s



‖Q+‖
N–p
p–s∞

}

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/154
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Proof The proof is similar to that in [, Proposition ]. We sketch the argument here
for completeness. Let {un} be a (PS)c sequence for F with c < c∗. Then we easily deduce
from (.) and (.) that {un} is bounded in D ,p

G (RN ) and we may assume that un ⇀ u in
D ,p

G (RN ). By Lemma . there exist measures ς , ν , and ν̃ such that relations (a)-(e) of this
lemmahold. Let xj 
=  be a singular point ofmeasures ς and ν . As in paper [], we define a
function φε ∈ C(RN ) such that φε =  in B(xj, ε/), φε =  on R

N\B(xj, ε) and |∇φε | ≤ /ε.
By Lemma ., limn→∞〈F ′(un),unφε〉 = , hence, using (.), the Hölder inequality, and
the fact that p∗() = p∗, we get

∫

RN
φε dς –

∫

RN
μφε d̃ν –

∫

RN
Q(x)φε dν

≤ lim sup
n→∞

∣
∣
∣
∣

∫

RN
un|∇un|p–∇un∇φε dx

∣
∣
∣
∣

≤ sup
n≥

(∫

RN
|∇un|p dx

) p–
p

lim sup
n→∞

(∫

RN
|un|p|∇φε |p dx

) 
p

≤ C
(∫

RN
|u|p|∇φε |p dx

) 
p

≤ C
(∫

B(xj ,ε)
|u|p∗

dx
) 

p∗ (∫

RN
|∇φε |N dx

) 
N

≤ C
(∫

B(xj ,ε)
|∇u|p dx

) 
p
. (.)

Passing to the limit as ε → , we deduce from (.) and Lemma . that

Q(xj)νj ≥ ςj. (.)

The above inequality says that the concentration of the measure ν cannot occur at points
whereQ(xj)≤ , that is, ifQ(xj) ≤  then ςj = νj = . Combining (.) and (d) of Lemma .
we find that either (i) νj =  or (ii) νj ≥ (A/‖Q+‖∞)

N–s
p–s . For the point x = , similarly to

the case xj 
= , we have ς – μ̃ν – Q()ν ≤ . This, combined with (e) of Lemma .,
implies that either (iii) ν =  or (iv) ν ≥ (Aμ/Q+())

N–s
p–s . To study the concentration of

the sequence {un} at infinity we need to consider the following quantities:

ς∞ = lim
R→∞ lim sup

n→∞

∫

|x|>R

(|∇un|p –μ|x|–p|un|p
)
dx,

ν∞ = lim
R→∞ lim sup

n→∞

∫

|x|>R
|x|–s|un|p∗(s) dx.

Obviously, ς∞ and ν∞ both exist and are finite. For R > , let ψR be a regular function such
that  ≤ ψR ≤ , ψR(x) =  for |x| > R + , ψR(x) =  for |x| < R and |∇ψR| ≤ /R. Then we
deduce from the definition of Aμ that

∫

RN

(

|ψR∇un + un∇ψR|p –μ
|unψR|p

|x|p
)

dx ≥ Aμ

(∫

RN

|unψR|p∗(s)

|x|s dx
) p

p∗(s)
. (.)

We now claim that

lim
R→∞ lim sup

n→∞

∫

RN

(|ψR∇un + un∇ψR|p –ψ
p
R |∇un|p

)
dx = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/154
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In fact, using the elementary inequality ||z+w|p– |z|p| ≤ C(|z|p–|w|+ |w|p) for all z,w ∈ R
N

and p > , we get
∫

RN

(|ψR∇un + un∇ψR|p –ψ
p
R |∇un|p

) ≤ C
∫

RN

(|ψR∇un|p–|un∇ψR| + |un∇ψR|p
)
.

On the other hand, by the Hölder inequality and the Sobolev inequality, we have

lim
R→∞ lim sup

n→∞

∫

RN
|ψR∇un|p–|un∇ψR|dx

≤ lim
R→∞ lim sup

n→∞

(∫

R<|x|<R+
|un|p|∇ψR|p dx

) 
p
(∫

RN
|∇un|p dx

) p–
p

≤ C lim
R→∞

(∫

R<|x|<R+
|u|p|∇ψR|p dx

) 
p

≤ C lim
R→∞

(∫

R<|x|<R+
|u|p∗

dx
) 

p∗ (∫

RN
|∇ψR|N dx

) 
N

≤ C lim
R→∞

(∫

R<|x|<R+
|∇u|p dx

) 
p
= .

Similarly, we have limR→∞ lim supn→∞
∫

RN |un|p|∇ψR|p dx = . The claim (.) is
thereby proved. From (.) and (.), we derive ς∞ ≥ Aμν

p/p∗(s)
∞ . Moreover, since

limR→∞ lim supn→∞〈F ′(un),unψR〉 = , we get Q+(∞)ν∞ ≥ ς∞. Therefore we conclude
that either (v) ν∞ =  or (vi) ν∞ ≥ (Aμ/Q+(∞))

N–s
p–s . We now rule out the cases (ii), (iv),

and (vi). For every continuous nonnegative function ψ such that  ≤ ψ(x) ≤  on R
N , we

obtain from (.) and (.) that

c = lim
n→∞

(

F (un) –


p∗(s)
〈
F ′(un),un

〉
)

=
(

p
–


p∗(s)

)

lim
n→∞

∫

RN

(

|∇un|p –μ
|un|p
|x|p

)

dx

≥ p – s
(N – s)p

lim sup
n→∞

∫

RN
ψ(x)

(

|∇un|p –μ
|un|p
|x|p

)

dx.

If (ii) occurs, then the set J must be finite because the measure ν is bounded. Since
functions un are G-symmetric, the measure ν must be G-invariant. This means that if
xj 
=  is a singular point of ν , so is gxj for each g ∈ G, and the mass of ν concentrated at
gxj is the same for each g ∈ G. If we assume the existence of j ∈ J with xj 
=  such that
(ii) holds, then we choose ψ with compact support so that ψ(gxj) =  for each g ∈ G and
we obtain

c≥ p – s
(N – s)p

|G|ςj ≥ p – s
(N – s)p

|G|Aν

p
p∗(s)
j ≥ p – s

(N – s)p
|G|A

N–s
p–s

 ‖Q+‖
p–N
p–s∞ ,

a contradiction with (.). Similarly, if (iv) holds for x = , we choose ψ with compact
support, so that ψ() = , and we obtain

c≥ p – s
(N – s)p

(ς – μ̃ν) ≥ p – s
(N – s)p

Aμν

p
p∗(s)
 ≥ p – s

(N – s)p
A

N–s
p–s

μ Q+()
p–N
p–s ,
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which contradicts (.). Finally, if (vi) holds we take ψ = ψR to get

c≥ p – s
(N – s)p

ς∞ ≥ p – s
(N – s)p

Aμν

p
p∗(s)∞ ≥ p – s

(N – s)p
A

N–s
p–s

μ Q+(∞)
p–N
p–s ,

which is impossible. Hence νj =  for all j ∈ J ∪ {,∞}, and consequently we have
un → u in Lp∗(s)(RN , |x|–s). Finally, observe that F ′(u) =  and, thus by limn→∞〈F ′(un) –
F ′(u),un – u〉 =  we obtain un → u in D ,p(RN ). �

As an easy consequence of Lemma . we obtain the following result.

Corollary . If Q+() =  and |G| = +∞, then the functional F satisfies (PS)c condition
for every c ∈R.

Proof of Theorem . Let yε be the extremal function satisfying (.)-(.). We choose
ε >  such that the assumption (.) holds. It is easy to check that there exist constants
α >  and ρ >  such that F (u) ≥ α for all ‖u‖μ = ρ . Simple arithmetic shows that there
exists t >  such that

max
t≥

F (tyε) =F (tyε) =
p – s

(N – s)p

(∫

RN
Q(x)

yp
∗(s)

ε

|x|s dx
) p–N

p–s
. (.)

We now choose t >  such that F (tyε) <  and ‖tyε‖μ > ρ and set

c = inf
γ∈�

max
t∈[,]

F
(
γ (t)

)
, (.)

where � = {γ ∈ C([, ],D ,p
G (RN ));γ () = ,F (γ ()) < ,‖γ ()‖μ > ρ}. From (.), (.),

(.), and the definition of c∗, we deduce that

c ≤ F (tyε) =
p – s

(N – s)p

(∫

RN
Q(x)

yp
∗(s)

ε

|x|s dx
) p–N

p–s

≤ p – s
(N – s)p

(

max

{
Q+()

A
N–s
N–p

μ

,
Q+(∞)

A
N–s
N–p

μ

,
‖Q+‖∞

|G| p–s
N–p A

N–s
N–p



}) p–N
p–s

=
p – s

(N – s)p
min

{
A

N–s
p–s

μ

Q+()
N–p
p–s

,
A

N–s
p–s

μ

Q+(∞)
N–p
p–s

,
|G|A

N–s
p–s



‖Q+‖
N–p
p–s∞

}

= c∗.

If c < c∗, then by Lemma ., the (PS)c condition holds and the conclusion follows from
the mountain pass theorem in Ref. [] (see also []). If c = c∗, then γ (t) = ttyε , with
 ≤ t ≤ , is a path in � such that maxt∈[,] F (γ (t)) = c. Consequently, either F ′(tyε) = 
and we are done, or γ can be deformed to a path γ̃ ∈ � with maxt∈[,] F (γ̃ (t)) < c and we
get a contradiction. This part of the proof shows that a nontrivial solution u ∈ D ,p

G (RN )
of (PQ

 ) exists. We now show that the solution u can be chosen to be positive on R
N .

Since F (u) = F (|u|) and  = 〈F ′(u),u〉 = ‖u‖pμ –
∫

RN Q(x)|x|–s|u|p∗(s) dx, we ob-
tain

∫

RN Q(x)|x|–s|u|p∗(s) dx = ‖u‖pμ > , which implies c = F (|u|) = maxt≥ F (t|u|).
Hence, either |u| is a critical point of F or γ (t) = tt|u|, with F (t|u|) < , can be

http://www.boundaryvalueproblems.com/content/2014/1/154
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deformed, as above of the proof, to a path γ̃ (t) with maxt∈[,] F (γ̃ (t)) < c, which is im-
possible. Therefore, we may assume that u is nonnegative on R

N and the fact that u > 
on R

N follows by the strong maximum principle. �

Proof of Corollary . First of all, we observe that due to the identity (.), inequality (.)
is equivalent to

∫

RN (Q(x) – Q̃)|x|–syp∗(s)
ε dx≥  for some ε > , or equivalently

ε
–N–p

p ·p∗(s)
∫

RN

(
Q(x) – Q̃

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx≥  (.)

for some ε > , where

Q̃ = max
{
Q+(),Q+(∞), (Aμ/A)

N–s
N–p |G| s–p

N–p ‖Q+‖∞
}
.

Part (), case (i). According to (.), we need to show that

ε–ηp∗(s)
∫

RN

(
Q(x) –Q()

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx≥  (.)

for some ε > . We choose δ >  so that Q(x) ≥ Q() + σ |x|–N+s+ηp∗(s) for |x| ≤ δ. This,
combined with (.), implies that

ε–ηp∗(s)
∫

|x|≤δ

(
Q(x) –Q()

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx

=
∫

|x|≤δ

Q(x) –Q()
|x|s+ηp∗(s)

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx

≥ σ

∫

|x|≤δ

|x|–N
[( |x|

ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx→ ∞ (.)

as ε → . On the other hand, for all ε > , we obtain from (.) and the fact s+ ηp∗(s) >N
that

∣
∣
∣
∣ε

–ηp∗(s)
∫

|x|>δ

(
Q(x) –Q()

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx
∣
∣
∣
∣

≤
∫

|x|>δ

|Q(x) –Q()|
|x|s+ηp∗(s)

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx ≤ C (.)

for some constant C >  independent of ε. Combining (.) and (.), we get (.) for
ε sufficiently small.
Part (), case (ii). We choose δ >  so that |Q(x) – Q()| ≤ C|x|α for |x| ≤ δ. Since α >

–N + s + ηp∗(s) > , we deduce from (.) and the fact –s – ηp∗(s) < –N that

ε–ηp∗(s)
∫

RN

|Q(x) –Q()|
|x|s Up∗(s)

μ

( |x|
ε

)

dx

=
∫

RN

|Q(x) –Q()|
|x|s+ηp∗(s)

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx ≤ C

∫

RN

|Q(x) –Q()|
|x|s+ηp∗(s) dx

≤ C
(∫

|x|≤δ

|x|α–s–ηp∗(s) dx +
∫

|x|>δ

∣
∣Q(x) –Q()

∣
∣|x|–s–ηp∗(s) dx

)

≤ C.

http://www.boundaryvalueproblems.com/content/2014/1/154


Deng and Huang Boundary Value Problems 2014, 2014:154 Page 11 of 18
http://www.boundaryvalueproblems.com/content/2014/1/154

So by (.), (.), and the Lebesgue dominated convergence theorem we obtain

lim
ε→

ε–ηp∗(s)
∫

RN

Q(x) –Q()
|x|s Up∗(s)

μ

( |x|
ε

)

dx = C
∫

RN

Q(x) –Q()
|x|s+ηp∗(s) dx > .

Thus (.) holds for ε sufficiently small.
Part (), case (i). From (.) it is sufficient to show that

ε–ηp∗(s)
∫

RN

(
Q(x) –Q(∞)

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx ≥  (.)

for some ε > . We choose R >  such that Q(x) ≥ Q(∞) + σ |x|–N+s+ηp∗(s) for all |x| ≥ R.
This, combined with (.), implies that

ε–ηp∗(s)
∫

|x|≥R

(
Q(x) –Q(∞)

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx

=
∫

|x|≥R

Q(x) –Q(∞)
|x|s+ηp∗(s)

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx

≥ σ

∫

|x|≥R
|x|–N

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx → ∞

as ε → ∞. Moreover, for all ε > , we get from (.) and the fact that –s – ηp∗(s) > –N

ε–ηp∗(s)
∫

|x|≤R

(
Q(x) –Q(∞)

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx

=
∫

|x|≤R

Q(x) –Q(∞)
|x|s+ηp∗(s)

[( |x|
ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx

≤ C
∫

|x|≤R

(
Q(x) –Q(∞)

)|x|–s–ηp∗(s) dx ≤ C

for some constant C >  independent of ε > . These two estimates combined together
give (.) for ε >  large.
Part (), case (ii). We choose R >  such that |Q(x) –Q(∞)| ≤ C|x|–α for all |x| ≥ R. Since

α >N – s – ηp∗(s) > , we have
∫

RN

∣
∣Q(x) –Q(∞)

∣
∣|x|–s–ηp∗(s) dx

≤ C
∫

|x|≥R
|x|–α–s–ηp∗(s) dx +

∫

|x|≤R

∣
∣Q(x) –Q(∞)

∣
∣|x|–s–ηp∗(s) dx <∞.

Thus by (.), (.), and the Lebesgue dominated convergence theorem, we obtain

lim
ε→∞ ε–ηp∗(s)

∫

RN

(
Q(x) –Q(∞)

)|x|–sUp∗(s)
μ

( |x|
ε

)

dx

= lim
ε→∞

∫

RN

(
Q(x) –Q(∞)

)|x|–s–ηp∗(s)
[( |x|

ε

)η

Uμ

( |x|
ε

)]p∗(s)
dx

= C
∫

RN

(
Q(x) –Q(∞)

)|x|–s–ηp∗(s) dx > 

and (.) holds for ε >  large. Similarly to above, we find that part () holds. �
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To prove Theorem . we need the following version of the symmetric mountain pass
theorem (cf. [, Theorem .]).

Lemma. Let E be an infinite dimensional Banach space and letF ∈ C(E,R) be an even
functional satisfying (PS)c condition for each c and F () = . Further, we suppose that:

(i) there exist constants α >  and ρ >  such that F (u) ≥ α for all ‖u‖ = ρ ;
(ii) there exists an increasing sequence of subspaces {Em} of E, with dimEm =m, such

that for every m one can find a constant Rm >  such that F (u) ≤  for all u ∈ Em

with ‖u‖ ≥ Rm.
Then F possesses a sequence of critical values {cm} tending to ∞ as m → ∞.

Proof of Theorem . Applying Lemma . with E =D ,p
G (RN ), we deduce from (q.), (.),

and (.) that

F (u) ≥ 
p
‖u‖pμ –

‖Q‖∞
p∗(s)

A
– p∗(s)

p
μ ‖u‖p∗(s)

μ .

Since p∗(s) > p > , there exists α >  and ρ >  such that F (u) ≥ α for all u with
‖u‖μ = ρ . To find a suitable sequence of finite dimensional subspaces of D ,p

G (RN ), we set
� = {x ∈R

N ;Q(x) > }. Since the set� isG-symmetric, we can defineD ,p
G (�), which is the

subspace of G-symmetric functions of D ,p(�) (see Section ). By extending functions in
D ,p

G (�) by  outside � we can assume that D ,p
G (�) ⊂ D ,p

G (RN ). Let {Em} be an increasing
sequence of subspaces ofD ,p

G (�) with dimEm =m for eachm. Then there exists a constant
ξ (m) >  such that


p∗(s)

∫

�

Q(x)
|ν|p∗(s)

|x|s dx≥ ξ (m) for all ν ∈ Em, with ‖ν‖μ = .

Consequently, if u ∈ Em, with u 
= , then we write u = tν , with t = ‖u‖μ and ‖ν‖μ = .
Therefore we obtain

F (u) =

p
tp –


p∗(s)

tp
∗(s)

∫

�

Q(x)
|ν|p∗(s)

|x|s dx ≤ 
p
tp – ξ (m)tp

∗(s) ≤ 

for t large enough. By Corollary . and Lemma . we conclude that there exists a se-
quence of critical values cm → ∞ asm→ ∞ and the result follows. �

4 Existence results for problem (PQ
h )

The aim of this section is to discuss problem (PQ
h ) and prove Theorem .; here Q(x) ≡

Q >  is a constant. First, we give the following compact embedding result which is indis-
pensable for the proof of Theorem ..

Lemma . Suppose that (h.) holds. Then D ,p(RN ) is compactly embedded in Lq(RN ,
h(x)). Furthermore, if h satisfies (h.) and (h.) and G ⊂ O(N) is closed, then the inclusion
of D ,p

G (RN ) in Lq(RN ,h(x)) is compact.

http://www.boundaryvalueproblems.com/content/2014/1/154
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Proof We follow the argument of [, Lemma .]. Let R >  and R >  such that  <
R < R. By (h.), we can define the following integrals:

I(u) =
∫

RN
h(x)|u|q dx, I(u) =

∫

|x|<R
h(x)|u|q dx,

I(u) =
∫

|x|>R
h(x)|u|q dx, I(u) =

∫

R≤|x|≤R
h(x)|u|q dx.

For R >  sufficiently small, we deduce from (h.), (.), (.), the Hölder inequality, and
the fact N –  – sp∗

p∗–q > –, N( – q
p∗ ) – s >  that

I(u) ≤ C
∫

|x|<R

|u|q
|x|s dx ≤ C

(∫

|x|<R
|u|p∗

dx
) q

p∗ (∫

|x|<R



|x|
sp∗
p∗–q

dx
) p∗–q

p∗

≤ C
(∫

|x|<R
|∇u|p dx

) q
p
(∫

|x|<R



|x|
sp∗
p∗–q

dx
) p∗–q

p∗

≤ C‖u‖qμ
(∫ R


rN–– sp∗

p∗–q dr
) p∗–q

p∗ ≤ C‖u‖qμR
N(– q

p∗ )–s
 →  (.)

as R → . Also, for R >  large enough, we obtain from (h.), the Hölder inequality, and
the fact N –  – ϑp∗

p∗–q < –, N( – q
p∗ ) – ϑ <  that

I(u) ≤ C
∫

|x|>R

|u|q
|x|ϑ dx≤ C

(∫

|x|>R
|u|p∗

dx
) q

p∗ (∫

|x|>R



|x|
ϑp∗
p∗–q

dx
) p∗–q

p∗

≤ C
(∫

|x|>R
|∇u|p dx

) q
p
(∫

|x|>R



|x|
ϑp∗
p∗–q

dx
) p∗–q

p∗

≤ C‖u‖qμ
(∫ +∞

R
rN–– ϑp∗

p∗–q dr
) p∗–q

p∗ ≤ C‖u‖qμR
N(– q

p∗ )–ϑ

 →  (.)

as R → ∞. Suppose that ω = {x ∈R
N ;R < |x| < R} and {un} is bounded in D ,p(RN ). We

may assume un ⇀ u in D ,p(RN ). By the compactness of the inclusion of D ,p(ω) in Lq(ω)
and the local boundedness of h(x), we easily see that limn→∞ I(un – u) = . Therefore, by
taking R →  and R → ∞, we conclude from (.) and (.) that limn→∞ I(un – u) = .
This implies the compactness of the inclusion of D ,p(RN ) in Lq(RN ,h(x)).
On the other hand, sinceG ⊂O(N) is closed andO(N) is a compact Lie group,G is com-

pact. Consequently, by using the first part of the proof and the methods in Schneider [,
Corollaries . and .], we deduce that D ,p

G (RN ) is compactly embedded in Lq(RN ,h(x))
and the results follow. �

Since we are interested in positive G-symmetric solutions of (PQ
h ), we define a func-

tional Jh :D
,p
G (RN ) →R given by

Jh(u) =

p
‖u‖pμ –

Q
p∗(s)

∫

RN

|u+|p∗(s)

|x|s dx –

q

∫

RN
h(x)

∣
∣u+

∣
∣q dx, (.)

http://www.boundaryvalueproblems.com/content/2014/1/154
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where u+ = max{,u}. By (.), (h.), (h.), and Lemma ., we easily see that Jh is well
defined and of C. Thus there exists a one-to-one correspondence between the weak solu-
tions of (PQ

h ) and the critical points of Jh. Moreover, an analogously symmetric criticality
principle of Lemma . clearly holds; hence the weak solutions of problem (PQ

h ) are ex-
actly the critical points of Jh.
Recall that the extremal function yε(x) satisfies (.)-(.). By (h.), we can choose � > 

such that B(, �) ⊂ O and define a function φ ∈ C(RN ) such that  ≤ φ(x) ≤ , φ(x) = 
for |x| ≤ �, φ(x) =  for |x| ≥ � and |∇φ| ≤ /� on R

N . Using the methods in [, ], we
deduce from (.)-(.) that

‖φyε‖pμ =
∫

RN

(
∣
∣∇(φyε)

∣
∣p –μ

|φyε |p
|x|p

)

dx =  +O
(
ε–N+p+pη

)
, (.)

∫

RN

|φyε |p∗(s)

|x|s dx =A
– N–s
N–p

μ +O
(
ε–N+s+ηp∗(s)), (.)

∫

RN

|φyε |q
|x|s dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(εq(η+–
N
p )),  ≤ q < N–s

η
,

O(εN–s+(–N
p )q| ln ε|), q = N–s

η
,

O(εN–s+(–N
p )q), N–s

η
< q < p∗(s).

(.)

Set Vε = φyε/‖φyε‖μ; then by (.), (.), and (.) we have

∫

RN
|x|–s|Vε |p∗(s) dx =

∫

RN

|x|–s|φyε |p∗(s)

‖φyε‖p∗(s)
μ

dx =A
– N–s
N–p

μ +O
(
ε–N+p+pη

)
, (.)

⎧
⎪⎪⎨

⎪⎪⎩

Cε
q(η+–N

p ) ≤ ∫

RN
|Vε |q
|x|s dx ≤ Cε

q(η+–N
p ),  ≤ q < N–s

η
,

Cε
N–s+(–N

p )q| ln ε| ≤ ∫

RN
|Vε |q
|x|s dx ≤ Cε

N–s+(–N
p )q| ln ε|, q = N–s

η
,

Cε
N–s+(–N

p )q ≤ ∫

RN
|Vε |q
|x|s dx ≤ Cε

N–s+(–N
p )q, N–s

η
< q < p∗(s).

(.)

Lemma . Suppose that (h.), (h.), and (.) hold. Then there exists some v ∈
D ,p

G (RN )\{}, v ≥  and v 
≡  on R
N , such that

sup
t≥

Jh(tv) <
p – s

(N – s)p
A

N–s
p–s

μ Q
p–N
p–s . (.)

Proof Recall that Vε = φyε/‖φyε‖μ, which satisfies (.) and (.). In the following, we will
show that Vε satisfies (.) for ε >  sufficiently small. Set

�(t) = Jh(tVε) =
tp

p
–

Q
p∗(s)

tp
∗(s)

∫

RN
|x|–s|Vε |p∗(s) dx –

tq

q

∫

RN
h(x)|Vε |q dx

and

�̃(t) =
tp

p
–

Q
p∗(s)

tp
∗(s)

∫

RN
|x|–s|Vε |p∗(s) dx

with t ≥ ; we deduce from p∗(s) > q > p >  and (h.) that �() = , �(t) >  for t → +,
and limt→+∞ �(t) = –∞. Therefore supt≥ �(t) can be achieved at some tε >  for which
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we obtain

tp–ε – tp
∗(s)–

ε Q
∫

RN
|x|–s|Vε |p∗(s) dx – tq–ε

∫

RN
h(x)|Vε |q dx = . (.)

Consequently, we deduce from (h.), (.), and (.) that

 < tε ≤
(

Q
∫

RN
|x|–s|Vε |p∗(s) dx

) 
p–p∗(s)

� tε ≤ C. (.)

On the other hand, the function �̃(t) attains its maximum at tε and is increasing on the
interval [, tε ], togetherwith (.), (.), (.), and h(x) ≥ C|x|–s which is directly got from
(h.), we obtain

sup
t≥

Jh(tVε) = �(tε) = �̃(tε) –
tqε
q

∫

RN
h(x)|Vε |q dx ≤ �̃

(
tε

)
–
tqε
q

∫

RN
h(x)|Vε |q dx

≤
(

p
–


p∗(s)

)(

Q
∫

RN
|x|–s|Vε |p∗(s) dx

) p
p–p∗(s)

–C
∫

RN
|x|–s|Vε |q dx

=
p – s

(N – s)p
A

N–s
p–s

μ Q
p–N
p–s +O

(
ε–N+p+pη

)
–C

∫

RN
|x|–s|Vε |q dx. (.)

Furthermore, we easily check from (.) that

–N + p + pη >N – s +
(

 –
N
p

)

q. (.)

Consequently, choosing ε >  small enough, we deduce from (.), (.), and (.) that

sup
t≥

Jh(tVε) = �(tε) <
p – s

(N – s)p
A

N–s
p–s

μ Q
p–N
p–s .

Therefore we conclude that Vε satisfies (.) for ε >  sufficiently small and the result
follows. �

Lemma . Suppose that (h.) and (h.) hold. Then the (PS)c condition in D ,p
G (RN ) holds

for Jh if

c <
p – s

(N – s)p
A

N–s
p–s

μ Q
p–N
p–s . (.)

Proof Let {un} ⊂ D ,p
G (RN ) be a (PS)c sequence for Jh with c satisfying (.). Then by (.)

and the fact that  < p < p∗(ϑ) < q < p∗(s), there exists n ≥  such that for n≥ n, we have

c +  ≥ Jh(un) –

q
〈
J ′h(un),un

〉
+

q
〈
J ′h(un),un

〉

=
(

p
–

q

)

‖un‖pμ +Q
(

q
–


p∗(s)

)∫

RN

|u+n|p∗(s)

|x|s dx +

q
〈
J ′h(un),un

〉

≥
(

p
–

q

)

‖un‖pμ + o()‖un‖μ.
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This implies that {un} is bounded inD ,p
G (RN ). Consequently, just as in Lemma ., wemay

assume that un ⇀ u in D ,p
G (RN ) and in Lp∗(s)(RN , |x|–s); moreover, un → u in Lq(RN ,h(x))

(see Lemma .) and a.e. on R
N . A standard argument shows that u is a critical point of

Jh, and hence

Jh(u) =Q
(

p
–


p∗(s)

)∫

RN

|u+|p∗(s)

|x|s dx +
(

p
–

q

)∫

RN
h(x)

∣
∣u+

∣
∣q dx ≥ . (.)

Now we set νn = un – u; then we apply the Brezis-Lieb lemma [] to the sequence
|x|–s|u+n|p∗(s) and use the condition (h.) and the fact that u is a critical point of Jh to obtain

‖νn‖pμ =Q
∫

RN
|x|–s∣∣ν+

n
∣
∣p

∗(s) dx + o() (.)

and

Jh(u) +

p
‖νn‖pμ –

Q
p∗(s)

∫

RN
|x|–s∣∣ν+

n
∣
∣p

∗(s) dx = c + o(). (.)

Consequently, for a subsequence of {νn} one gets

‖νn‖pμ → k ≥  and Q
∫

RN
|x|–s∣∣ν+

n
∣
∣p

∗(s) dx → k as n→ ∞.

It follows from (.) that k ≥ Aμ(k/Q)
p

p∗(s) , which implies either k =  or k ≥ A
N–s
p–s

μ Q
p–N
p–s .

If k ≥ A
N–s
p–s

μ Q
p–N
p–s , we deduce from (.), (.), and (.) that

c = Jh(u) +
(

p
–


p∗(s)

)

k ≥ p – s
(N – s)p

A
N–s
p–s

μ Q
p–N
p–s ,

which contradicts (.). Therefore, we obtain ‖νn‖pμ →  as n → ∞, and hence, un → u
in D ,p

G (RN ). The proof of this lemma is completed. �

Proof of Theorem . For any u ∈ D ,p
G (RN )\{}, we obtain from (h.), (.), (.), (.),

and the Hölder inequality

Jh(u) ≥ 
p
‖u‖pμ –

Q
p∗(s)

A
– p∗(s)

p
μ ‖u‖p∗(s)

μ –C‖u‖qμ.

Therefore, there exist constants α̃ >  and ρ >  such that Jh(u) ≥ α̃ for all ‖u‖μ = ρ . More-
over, since Jh(tu) → –∞ as t → ∞, there exists t̃ >  such that ‖̃tu‖μ > ρ and Jh (̃tu) < .
Now we set

ch = inf
γ∈�

max
t∈[,]

Jh
(
γ (t)

)
,

where � = {γ ∈ C([, ],D ,p
G (RN ));γ () = , Jh(γ ()) < ,‖γ ()‖μ > ρ}. By the mountain

pass theorem in Ref. [] (see also []), we conclude that there exists a sequence {un} ⊂
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D ,p
G (RN ) such that Jh(un) → ch ≥ α̃, J ′h(un) →  as n → ∞. Let v be the function obtained

in Lemma .. Then we have

 < α̃ ≤ ch ≤ sup
t∈[,]

Jh(tv) <
p – s

(N – s)p
A

N–s
p–s

μ Q
p–N
p–s .

Combining the above inequality and Lemma ., we obtain a critical point u of Jh satisfy-
ing (PQ

h ). Taking u
–
 = min{,u} as the test function, we get  = 〈J ′h(u),u– 〉 = ‖u– ‖pμ. This

implies u ≥  inRN . By the strongmaximumprinciple, we obtain u >  inRN . This, com-
bined with the symmetric criticality principle, implies that u is a positive G-symmetric
solution of (PQ

h ). �
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