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one does not know whether the density function is smooth or not. It makes sense to
consider the mean L,-consistency of the wavelet estimators for f € L, (1 <p < 00).In
this paper, the authors will construct wavelet estimators and analyze their L,(R)
performance. They prove that, under mild conditions on the family of wavelets, the
estimators are shown to be L, (1 < p < oo)-consistent for both noiseless and additive
noise models.
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1 Introduction

Wavelet analysis plays important roles in both pure and applied mathematics such as sig-
nal processing, image compressing, and numerical solutions. One of the important ap-
plications is to estimate an unknown density function based on random samples [1-3].
Optimal convergence rate and consistency are two basic asymptotic criteria of the quality
for an estimator. Some perfect achievements have been made for the wavelet estimation
in L, norm by Donoho et al. [4] etc., when an unknown density function belongs to Besov
spaces. However, in many practical applications, we do not know whether the density func-
tion is smooth or not [5]. Therefore, it is natural to consider the mean consistency of the
wavelet estimators, which means E||f — f’,, l, (1 <p < o0) converges to zero as the sample
size n tends to infinity.

In 2005, Chacén and Rodriguez-Casal [6] discussed the mean L;-consistency of the
wavelet estimator based on random samples without any noise. However, in practice, the
observed samples are contaminated by random noises. Devroye [7] proved the mean con-
sistency of the kernel estimator in L; norm. Liu and Taylor [8] investigated L, -consistency
of the kernel estimator. Ramirez and Vidakovic [9] proposed linear and nonlinear wavelet
estimators and showed that they are L,-consistent.

This paper studies the mean L,-consistency of the wavelet estimator. In Section 2, we
briefly describe the preliminaries on wavelet scaling functions and orthogonal projection
kernels. In Section 3, for the classical model, the mean L,-consistency is given, which
generalizes Chacén’s theorem [6]. The last section deals with the L,-consistency for the

additive noise model.
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2 Wavelet scaling function and orthonormal projection kernel
In this section, we shall recall some useful and well-known concepts and lemmas. As usual,
L,(R), p > 1, denotes the classical Lebesgue space on the real line R.

Definition 2.1 (see [10]) A multi-resolution analysis (MRA) of L,(RR) is a set of increasing,
closed linear subspaces V; C V},1, for all j € Z, called scaling spaces, satisfying:
i) N, V)= (0, US, Vj = La(R);
(ii) f(-) € Vo ifand only if f(2/-) € V; for all j € Z;
(iii) f(-) € Vp ifand onlyif f(- — k) € V forall k € Z;
(iv) there exists a function ¢(-) € Vy such that {¢(- — k)} is an orthonormal basis in Vj.

The function ¢(-) is called the scaling function.

It is easy to show that {gu(x),k € Z} forms an orthonormal basis in V;, where g (x) =
212¢(Yx - k)(x), j,k € Z.

Condition S There exists a bounded nonincreasing function ®(-) such that [ ®(|u|) du <
00, and |p(u)| < (|u|) (a.e.).

Condition S is not very restrictive. For example, the Meyer scaling functions satisfy that
condition; compactly supported and bounded scaling functions do as well. Furthermore,
Condition S implies that ¢ € Li(R) N Loo(R) and esssup ), |p(x — k)| < 0o. We denote

@) =2y lplx -kl

The following lemmas are taken from [2], which will be used later on.

Lemma 2.2 If the scaling function ¢ satisﬁes esssup Y ., lox — k)| < oo, then for any

sequence {Ai}kez € lp, one hﬂS C1||?»||1 2075 < I Zk Mc@iklly < CallAll,2 ), where C; =

1 1
615 llel{), Ca = (116, ||oo||<ﬂ||1 )hlsp<oo, + =L

Definition 2.3 (see [2]) If the scaling function ¢ satisfies esssup ), [¢(x — k)| < 0o, the
kernel function

K(xy) =) px-kp(y-k)
k

is called orthonormal projection kernel associated with ¢.

Forf e L,(R) (1<p <oo),ifesssup) , |¢(x— k)| < 00, it is not hard to show that
/ K, y)f 0)dy = Kif =) tjepyc(x)
k

where Kj(x,y) = YK (2x,2y), ajx = [ gi(x)f (x) dx.

Lemma 2.4 [fthe scaling function ¢ satisfies Condition S, then
(i) [Kxy)dy=1(ae);
(i) |K(xp)| < C1d>(%) (a.e.), where Cy, Cy are positive constants depending on .

Let F(x) = Ci®(£1), then F € Li(R) N Log(R) and |K(x,y)| < F(x - y) (a.e.).
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Lemma 2.5 If the scaling function ¢ satisfies Condition S, then for f € L,(R), 1 < p < 00,

one has
lim | K;f — =0.
Jim | if =l
The above result is also true if f € L, (R) is uniformly continuous.

Lemma 2.6 (Rosenthal’s inequality) Let Xi,...,X, be independent random variables such
that E(X;) = 0 and |X;| < M, then there exists a constant C(p) > 0 such that

(i) E( XH:X,-
i=1

(i) E( Xn:Xi
i=1

3 Mean consistency for L, norm
In this section, based on the random sample without noise, we shall construct the wavelet

p) <C(p) (MI”-2 Xn:E(Xf) + (éﬁ(}(ﬁ)) %), p>2,

i=1

4

p) <C(p) (iE(X?)) 7, 0O<p=<2.

i=1

estimator and give its L,-consistency.
Let X3, X5, . ..,X, are independent identically distributed (i.i.d.) random samples without
noise, ¢ be compactly supported scaling function, the wavelet estimator be defined as

follows:
A R R 1<
Julx) = Za;‘kw;‘k(x), Gje = Z Pik(X;). (1)
k i1

Obviously, one gets Edjx = = Y| [ ¢ (x)f (x) dx = ajr. On the other hand, one obtains

Ful®) =Y @)
k

3 (% 3 goikoc,«)) e

k i=1

% Z Z ik (X)) @i (x)
[E

1 n
- ;K,(x, X;). @

Theorem 3.1 Let a scaling function ¢(x) be compactly supported and bounded, f,,(x) be
the wavelet estimator defined in (1). If we take ¥ ~ nt, then for any f € L,(R), 1 < p < 00,

one has
Tim E||f ~full, = 0. (3)

Note The notation A < B indicates that A < ¢B with a positive constant ¢, which is inde-
pendent of A and B. If A < Band B < A, we write A ~ B.



Geng and Wang Journal of Inequalities and Applications (2015) 2015:111 Page 4 of 14

Proof Due to (E||f — f, I, <EIf —f |I;, one only needs to consider E||f —f I15.
Firstly, thanks to the triangular inequality and convexity inequality, one can decompose

E|f - fn [I> into a bias term and a stochastic term, respectively. That s,

E|f - full? = EIlf - Efy + Ef —Full}
< E(IIf — Efully + 1Efs —Full,)”

< 277(If — Efulle + ENlfy — ERIIZ).

(i) For the bias term ||f — Ef,, ||11Z, one has

N 1<
Efu(x) = E— ;Ig(x,xi) = EKj(x, X))

- [ Km0 = K,

Since ¢(x) satisfies Condition S, taking 2 ~ n%, due to Lemma 2.4 and Lemma 2.5, one

gets
Tim [f = Efyll, = Tim [f ~ Kif , = .
(ii) For the stochastic term E |[fn - Efn I, one can estimate it as follows:

E|Lﬂ—Eﬂ||§:E/Lﬂ—Eﬂ|de

- [ e~z

n n '3
- fE %21(,@,)(,»)-15% ;I@(x,Xi) dx
1 _n ) p
=— | E > (K, Xi) - EKG(x, Xy)) | dx
i=1
1 n I3
-— | E 121: Y;| dx.

Denote Y; = Kj(x, X;) — EKj(x, X;), then {Y;} are i.i.d. samples, and EY; = 0. One obtains
1Yl = |Kj(x, X)) - EKj(x, X0)| < K, X)| + [EKj(x, X))
+ / 2 Zq)(ﬂx - k)(p(ij - k) }f(y) dy
k

< V[¢lloollOplloo + 2j||§0||oo||9(p”oo/f(x)dx

=

2 Z <p(2jx - k)go(ZiXi - k)

< 2j+1.
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(i) For 2 < p < 00, Rosenthal’s inequality, Lemma 2.6, tells us that

n
E(
i=1

2 pl2
i><C(P)(2]+1p22E (Y?) + (ZE Y2> )

i=1

<@ ) (me)

i=1

and

= ™ (E(Ki(x, X1) - EK;(x, X0)) )"

< P2 (Esz(x,Xl))p/Z
pl2
= " ( / KX,/ () dy)
pl2
<n? ( / 2YF*(2x - 2y)f (y) dy)
— yPl29jpI2 E2( s — o) "
= "2 VP (Zx-2y)f(y)dy)
then
n pl2 pl2
/(ZE(Y?)) dx = np/22’p/2/</ 2jF2(2jx—2jy)f(y)dy> dx
i-1
pl2
nP2 / ( / PX()f (x - £/2) dt) dx

F? p/2
nP/22/P/2||F||’2’f< ()f( —t/zf')dt) dx

I3
o [ [ EOte ity

< nPPPo / / PX ()P (x - t/2) dx dt

< np/22jp/2'
Therefore, one gets

EWa~EJ 5 5 o (27 P2 027

20+D)Ww-2)9jy,  ppl29jp/2
= +

n? n?

2j p-1 2,‘ pl2
ONO
n n

Page 5 of 14

(4)
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Taking 2/ ~ n?, one obtains the following desired result:
lim E|f, - Ef, |12 = 0. (5)
(i) Forl<p<2,letA={x| [ﬁ, —Eﬁl <1}, B={x| [}A‘,, —Eﬁq| > 1}, then one has
EWV,~ BRI - £ [ - £,y
=E/ [ﬂ—Eﬁ|de+Ef[ﬂ—Eﬁ|de
A B
5]5/ [ﬂ—Eﬁ,|dx+E/[ﬁ,—Eﬂ,|2dx
A B

§E/[ﬁ,—Eﬁ,|dx+Ef[ﬁ,—Eﬁ,|2dx
= E\fy - Efulh + Ellf, - Ef |13 (6)

Obviously, one knows that f € L;(R) which guarantees that lim,,_, oo E |[ﬁ, - Ef’,, I3 =0.
Moreover, E |[f,, - Ef,,||1 =f %El Y., Yildx, according to Rosenthal’s inequality, Lem-
ma 2.6, one has

1

1 n 1 n ) 2
—E XEY < Z(ﬂ E(Y)) )
1 N
= W(E(Yl) )?
i\ 1/2 1/2
- (2) (fares-vom)
i\ 1/2
= (%) Gj* f(x)
= Ax), (7)

where G(x) = F2(x). On the other hand,

1
—E
n

n
v
i=1

< % lil:EU(,(x,X,-) - EKj(x, X))

S E|K X))

- [ Il

< / YF(Zx—2y)f(y)dy

- /F(t)f( -%) dt

<s) [ s [ Foly(x- 1) s

= B(x) + C(x), (8)

dt
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where B(x) = f(x) [ F(t)dt, C(x) = [ F(¢)|f (x - 5) —f(x)| dt. Then we get

E|[f,,—Eﬁ||1 < /min{A(x),B(x)+C(x)}dx§/min{A(x),B(x)}dx+/C(x)dx.

One knows that

/QMM=f/EmPG—%>4@pﬁ@=fpmfp@—§>quwmm
since
F@/p@-%)ﬁ@ﬁhg%@WMaM nm/PG—%>4uwmzo
j—00

Then one gets lim, . [ C(x)dx = 0. Next, for [ B(x)dx = [f(x) [ F(t)dtdx = |F|l1|f |-
One has B(x) € L;(R). By the Lebesgue dominated convergence theorem, one gets

nll)rgo min{A(x),B(x)} dx = /nll)rgo min{A(x),B(x)} dx < fnli)rgoA(x) dx.

It remains only to show that lim,,_, o, A(x) = 0. Since the function G(x) = F?(x) is radially
decreasing,

Jlim G; xf(x) = |IFll3f (%) (ae)

and ||F||3f(x) is finite for almost all x, we have lim,_, o A(x) = limn_mo(%Gj « )2 = 0.

Finally, we get
lim E||f, — Ef,|l, = 0. O
n—00
Remark Theorem 3.1 can be considered as a natural extension of Theorem 1 in [6].
Next we shall consider L,-consistency.

Theorem 3.2 Let a scaling function ¢(x) satisfy supp ¢ C [-A, A] and bounded, fn(x) bethe
wavelet estimator defined in (1). If f € Ly (R) is uniformly continuous and f(x) < W

forany § > 0, taking 2 ~ nt, then one gets

Jlim E|f ~fulloc = 0. )
Proof The proof is similar to Theorem 3.1. We have

EIlf ~ulloo < If = Efulloo + Efs = Efulloc-

Since ¢ satisfies Condition S and f is uniformly continuous, by Lemma 2.4 and Lemma 2.5,
one gets

lim |f = Efull, = lim |If = Kf [loc = 0. (10)
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For the stochastic term, it can be proved that

~Efl =

Z |6 — o] | () |
x

i/2 ~
= Z Gk — ol lolloe (a2,
k

then one has I[ﬁ, - Ef’n lloo < 272 >« l@jx — ajr]. So one obtains

E|fy — Efulloo S 27 ZEIa,k — al. (11)

According to Rosenthal’s inequality, Lemma 2.6, one has

n

% Z(Ql’jk(Xi) - Egir(X1))

i=1

Elajg —op| = E

1/2

IA

1 n
— 1D E(on(x) ~ Ege(0)”

i=1

1
pRTE) |E (X[

1/2
_ # ( / Y (Vx - K)f (x) dx)

B 1 ) t 1/2
- ﬁ(ﬁ_kl<A¢ “‘W@)””) '

Moreover, one has E||f;, - Ef, | S (2)"2 Sk rkizaf () d)"? and

;( /lt_Mf (%) dt>1/2
B E )
= </f( ) ) ' Ik§+1(/t—k<x4 W dt>1/2
<27 kuA*I </I;k|§A 1+ |k _;)/2}")2% dt)l/z

o 2A 1/2
=27+ 2 ((1+|(k A)/21|)2+5>

k>A+1

IA

. 1
S Y —
~ ; (1+ |k/2 )1+

. 1
<2y / S —
~ (1+ [£/2/])1+9

<2. 12)
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Therefore, one gets E||f; — Efylloc < (= Ty, Taking 2 ~ 17, one obtains
lim E||f = f,lls = 0. O
n—00

4 Additive noise model
In practical situations, direct data is not always available. One of the classical models is
described as follows:

Yi=Xi+e,

where X; stands for the random samples with unknown density fx and €; denotes the i.i.d.
random noise with density g. To estimate the density fy is a deconvolution problem.

In 2002, Fan and Koo [11] studied the wavelet estimation for random samples with
smooth and super smooth noise over a Besov ball. In 2014, Li and Liu [12] considered the
wavelet estimation for random samples with moderately ill-posed noise. In this section,
we consider the mean L,-consistency for fx € L,(R) with additive noise.

The Fourier transform of f € L;(R) is defined as follows:

o) = f Fx)e ™ dx.

It is well known that fy (£) = fx(£)g(t). For g(t) # 0 (V¢ € R), the wavelet estimator is given

by
Fion®) =Y dnin(x), (13)
k
where
1« 1
= S HORGE o0 -5 [ lfyg(‘”‘;)t) d, (14)

i=1
and ¢ is the Meyer scaling function.

Lemma 4.1 Iffx € Ly(R), then Q. defined in (14) is the unbiased estimation of a.

Proof The Plancherel formula tells us that

fr() Si(—t) dt.

1 (oD d
o = / Se@)g@dx= f S

On the other hand, one gets

Edy = E(% Z(mgo),k(m> - E(Hp)x(%)

i=1

_ i it(2y— (t)
'/(hfz N Wt)dtyymdy

-5 | [ nona e zft)
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¢(2)

23 e F, (<2t dt
T o fr ( )g(—Q/t)
(O
- E fy(t) G (—) dt.
Therefore, Ed = o O

The next two theorems deal with the different cases for p > 2 and 1 < p < 2, respectively.

Theorem 4.1 Let ¢(x) be the Meyer scaling function, g(t) 2 (1+ |t2|)‘g (B=0), andfx,,,(x)
. 1-€
is the wavelet estimator defined in (13). If fx € L,(R), 2 < p < 00, taking 2 ~ n™+?f (e > 0),

then one gets
Tim_ E|lfx —fxnlly = 0. (15)

Proof Similarly, one needs to consider a bias term and a stochastic term.

(i) For the bias term, one observes that

Efyn(x) =E (Z QP (x))
k
_ E<Z - Z(Ifjw)jk(n>¢jk(x>)
k i=1
- £( Lt riguts).

k

Note that [ 3~ |(Hje)x )l ) fy 0) dy < 211 (Hjg)llo 10 lloo |Ify 11 < 00, then
Efyulx) = E(Z(H,go),kmm-k(x))
k
ZE( P 1k(Y1 %k( )
= Zajk¢jk(x)
k
= Kifx (x).
From Lemma 2.5, one gets
Tim [|fy = Efically = lim [l = Kifxll, = 0. (16)
(ii) For the stochastic term. Due to Lemma 2.2, it can be found that
p
- Za/k‘ﬂjk(x) =
P p

i(2-1 ~
S PO " ag - alh,
k

ficn = Efcnll? =

i) ik (%)

Page 10 of 14
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so one gets
Elfon —Efcully S 2PEVEY " [a — oul?

(P _ A~
= 207N " Elaj — ol
k

17)
Firstly, we estimate E|&j — aji[,. We have
-l = |23 e - S B
G —anl = | = ) i(Y) = =
ik ik n e P )ik e P )i\ L
where Zj = (Hj)i(Y;) — E(Hjp)(Y;) and EZy = 0. Then
\Zi| = |(Hjo)i(Y:) — E(Hjo)(Y3))|
< |(H)u(Y))| + E|(Hjp)(Y3)|
- L/zéem oy _98) ‘P(t) /_ et PO _ e o
2 &)
< 2/ +ﬂ)
Thanks to Rosenthal’s inequality, Lemma 2.6, one has
R R
Eldye— aly = —E| " Zit
i=1
p
1 ( ﬁ )\P—2 2, < 2 ’
< let 21E|Z,k| Zlaziu
2i(5+8)(p-2) , 1 N
— - 2
= —— 5 ElZu + (E1Zwul?)?. (18)
One only needs to consider ) ( (E|Zi|?)% . Define A = S H@)y)?dy =27 [, |+ ‘”2/[)|2dt<
S1Q+12e)P2¢(e))> dt < 2%P, and
2\5 2\4
(E1Zul?)? = (E|(Hjp)i(Y1) - EHj)p(YD)]|)

(SN}

=

—

E|(Hp)w()|)

- </|(Hi¢)ik()’)|2fy(y)dy)§
,5< / |<H,¢)>,k<y>l2 IHOOP )

-1 / |Ho) ) 0)% .
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Moreover,

v @(t) 2
Z| l(p /k(y)’ (27.[‘/ @ k)N( th) dt)
; 3 iy P
yi it(Vy—k) BN
? 2,;(‘/ Tk

A

4 0 ~ 2
< 212( 3 ity <ﬂ(t) —ztkd ‘ + ‘/ ezt2’y QD(t) —itk dt )
==\l g(-2t) iz g(=2)

4m 2
— 1Jo g(=2¢)

Note that e’”/yg‘ﬂ I[o 2] € L2[0,27], {e™, k € Z} is an orthonormal basis of L,[0,27],
and by the Parseval formulas, one gets

4r - 2 4n
3 eit?/y g{)(t) e—itk dt‘ _ / 3 e
0 8(=2t) 0

Similarly, Zk I j‘ i ettZIy (‘P eitk dt|2 228 Then Zk 1(P 11(()/ |2 < 9j2B+1)

For the density functlonfy e Li(R) N L,(R), 2 < p < 00, one has fy € L,/»(R). Moreover,
Zk(E|Zlk|2)g SAI%_IZZJﬂ = 2/fr+D) Therefore,

2
s PO\ gy s

g(=2) ‘

ZEW —aull - Zﬂzm2 " Z(E|zlk|2)%

k
- o F+Bp-2)9j2B+1)  of(Bp+1)  ojBpe)) £ /0N B
+ = — +1).
~ nP-1 n nt << n ) >
+ j(2B+ . 1-€
Then we get E|lfx, — Efcall; S 260222 (2)51 4 1) < (Z22)5 Taking 2/ ~ n1927
n3
(e > 0), one obtains limn_,ooEfo,,, —Efx,,,llp =0. O

Theorem 4.2 Let ¢(x) be the Meyer scaling function, g(t)| 2 (1 + |t|2)‘§ B = O),fx,n(x) is
the estimator defined in (13). If fx € Lo(R) N L,(R) (1 < p < 2) and supp fx C [-B, B], taking
U ~ n 78 , then one has

Tim E|lfx —fxnli-s.lp = 0- (19)

Proof For the bias term, we get Ef‘x,nl[,B,B] (x) = KifxI_p,p)(x), then

Wfx = Efxnli-peilll = fx — Kifxli-g5 115

_ A; o) — Kificlig ()| dx
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B

. / o) - Kifie ()| dlx
B

< @) - K@) .

So one gets lim,,_oc llfx = Efiuli-g5lp < lim,—oc If = Kif I = 0.
Next we only consider the stochastic term. Forany 1 <p <2,

Ellfxnli-8.8 = Efnli-plly < Elfxnli-8) — Efxnli-g5 1

+ Elfnli-sp — Efculis 12 (20)

Because 1im,,_, o0 E|fy nli-5.8) — Efinli-s 12 < 1imy,_, o0 Ellfi — Efiull2 = 0, we only need
to consider E||fx,.{[-,8] — Efx,nd[-B 5] |l1. Clearly,

> olx - k)(Hp)y - k)
k

<> o= )|[(Hi9)0 - K| < 10, llso 1 Higlloo S 2%;
k

define

D(x,y) = Y ¢(x - k)(Hp)(y - k),
k

then

Fon(®) =" Gec()
k

_ Z(% Z(mw);k(n)) o)
k

i=1

=3 H )
i=1 k

1 n
i=1

ne

We know that

B
Efxnli-8,8) — Efxnli-sl1 = / E\fx.n — Efxul dx,

now we estimate E []A”X,,, - Efx,n |. Using Rosenthal’s inequality, Lemma 2.6, one gets

i=1

1/2
A A 1<
Elfn— Efial < - (ZE|D,(x, Y;) - EDj(x, Yi)|2>
R o
= I’ll/z j\W L1

= 2 ([ (Simo@y-nlle@s-a1) s
k

2y
S 72 10l If 10" (21)
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- ~ j(1 . i Le
Then E||fx,nli-8,8) — Efxnli-s,5 11 S %, taking 2/ ~ n2+2f , one gets

lim Ellfiuli-s.8) — Efxali-s1h = 0. O

Remark If g is the Dirac function §, then the conclusions with additive noise reduce to
the classical model results without noise.
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