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Abstract
The wavelet estimations have made great progress when an unknown density
function belongs to a certain Besov space. However, in many practical applications,
one does not know whether the density function is smooth or not. It makes sense to
consider the mean Lp-consistency of the wavelet estimators for f ∈ Lp (1 ≤ p ≤ ∞). In
this paper, the authors will construct wavelet estimators and analyze their Lp(R)
performance. They prove that, under mild conditions on the family of wavelets, the
estimators are shown to be Lp (1≤ p ≤ ∞)-consistent for both noiseless and additive
noise models.
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1 Introduction
Wavelet analysis plays important roles in both pure and applied mathematics such as sig-
nal processing, image compressing, and numerical solutions. One of the important ap-
plications is to estimate an unknown density function based on random samples [–].
Optimal convergence rate and consistency are two basic asymptotic criteria of the quality
for an estimator. Some perfect achievements have been made for the wavelet estimation
in Lp norm by Donoho et al. [] etc., when an unknown density function belongs to Besov
spaces. However, in many practical applications, we do not know whether the density func-
tion is smooth or not []. Therefore, it is natural to consider the mean consistency of the
wavelet estimators, which means E‖f – f̂n‖p ( ≤ p ≤ ∞) converges to zero as the sample
size n tends to infinity.

In , Chacón and Rodríguez-Casal [] discussed the mean L-consistency of the
wavelet estimator based on random samples without any noise. However, in practice, the
observed samples are contaminated by random noises. Devroye [] proved the mean con-
sistency of the kernel estimator in L norm. Liu and Taylor [] investigated L∞-consistency
of the kernel estimator. Ramírez and Vidakovic [] proposed linear and nonlinear wavelet
estimators and showed that they are L-consistent.

This paper studies the mean Lp-consistency of the wavelet estimator. In Section , we
briefly describe the preliminaries on wavelet scaling functions and orthogonal projection
kernels. In Section , for the classical model, the mean Lp-consistency is given, which
generalizes Chacón’s theorem []. The last section deals with the Lp-consistency for the
additive noise model.
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2 Wavelet scaling function and orthonormal projection kernel
In this section, we shall recall some useful and well-known concepts and lemmas. As usual,
Lp(R), p ≥ , denotes the classical Lebesgue space on the real line R.

Definition . (see []) A multi-resolution analysis (MRA) of L(R) is a set of increasing,
closed linear subspaces Vj ⊂ Vj+, for all j ∈ Z, called scaling spaces, satisfying:

(i)
⋂∞

–∞ V j = {},
⋃∞

–∞ Vj = L(R);
(ii) f (·) ∈ V if and only if f (j·) ∈ Vj for all j ∈ Z;

(iii) f (·) ∈ V if and only if f (· – k) ∈ V for all k ∈ Z;
(iv) there exists a function ϕ(·) ∈ V such that {ϕ(· – k)} is an orthonormal basis in V.

The function ϕ(·) is called the scaling function.

It is easy to show that {ϕjk(x), k ∈ Z} forms an orthonormal basis in Vj, where ϕjk(x) =
j/ϕ(jx – k)(x), j, k ∈ Z.

Condition S There exists a bounded nonincreasing function �(·) such that
∫

�(|u|) du <
∞, and |ϕ(u)| ≤ �(|u|) (a.e.).

Condition S is not very restrictive. For example, the Meyer scaling functions satisfy that
condition; compactly supported and bounded scaling functions do as well. Furthermore,
Condition S implies that ϕ ∈ L(R) ∩ L∞(R) and ess sup

∑
k |ϕ(x – k)| < ∞. We denote

θϕ(x) =
∑

k |ϕ(x – k)|.
The following lemmas are taken from [], which will be used later on.

Lemma . If the scaling function ϕ satisfies ess sup
∑

k∈Z |ϕ(x – k)| < ∞, then for any

sequence {λk}k∈Z ∈ lp, one has C‖λ‖lp ( j
 – j

p ) ≤ ‖∑
k λkϕj,k‖p ≤ C‖λ‖lp ( j

 – j
p ), where C =

(‖θϕ‖

p∞‖ϕ‖


q
 )–, C = (‖θϕ‖


q∞‖ϕ‖


p
 )–,  ≤ p ≤ ∞, 

p + 
q = .

Definition . (see []) If the scaling function ϕ satisfies ess sup
∑

k |ϕ(x – k)| < ∞, the
kernel function

K(x, y) =
∑

k

ϕ(x – k)ϕ(y – k)

is called orthonormal projection kernel associated with ϕ.

For f ∈ Lp(R) ( ≤ p ≤ ∞), if ess sup
∑

k |ϕ(x – k)| < ∞, it is not hard to show that

∫

Kj(x, y)f (y) dy = Kjf =
∑

k

αjkϕjk(x),

where Kj(x, y) = jK(jx, jy), αjk =
∫

ϕjk(x)f (x) dx.

Lemma . If the scaling function ϕ satisfies Condition S, then
(i)

∫
K(x, y) dy =  (a.e.);

(ii) |K(x, y)| ≤ C�( |x–y|
C

) (a.e.), where C, C are positive constants depending on �.

Let F(x) = C�( |x|
C

), then F ∈ L(R) ∩ L∞(R) and |K(x, y)| ≤ F(x – y) (a.e.).
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Lemma . If the scaling function ϕ satisfies Condition S, then for f ∈ Lp(R),  ≤ p < ∞,
one has

lim
j→∞‖Kjf – f ‖p = .

The above result is also true if f ∈ L∞(R) is uniformly continuous.

Lemma . (Rosenthal’s inequality) Let X, . . . , Xn be independent random variables such
that E(Xi) =  and |Xi| < M, then there exists a constant C(p) >  such that

(i) E

(∣
∣
∣
∣
∣

n∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ C(p)

(

Mp–
n∑

i=

E
(
X

i
)

+

( n∑

i=

E
(
X

i
)
) p


)

, p > ,

(ii) E

(∣
∣
∣
∣
∣

n∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ C(p)

( n∑

i=

E
(
X

i
)
) p



,  < p ≤ .

3 Mean consistency for Lp norm
In this section, based on the random sample without noise, we shall construct the wavelet
estimator and give its Lp-consistency.

Let X, X, . . . , Xn are independent identically distributed (i.i.d.) random samples without
noise, ϕ be compactly supported scaling function, the wavelet estimator be defined as
follows:

f̂n(x) =
∑

k

α̂jkϕjk(x), α̂jk =

n

n∑

i=

ϕjk(Xi). ()

Obviously, one gets Eα̂jk = 
n
∑n

i=
∫

ϕjk(x)f (x) dx = αjk . On the other hand, one obtains

f̂n(x) =
∑

k

α̂jkϕjk(x)

=
∑

k

(

n

n∑

i=

ϕjk(Xi)

)

ϕjk(x)

=

n

n∑

i=

∑

k

ϕjk(Xi)ϕjk(x)

=

n

n∑

i=

Kj(x, Xi). ()

Theorem . Let a scaling function ϕ(x) be compactly supported and bounded, f̂n(x) be
the wavelet estimator defined in (). If we take j ∼ n 

 , then for any f ∈ Lp(R),  ≤ p < ∞,
one has

lim
n→∞ E‖f – f̂n‖p = . ()

Note The notation A � B indicates that A ≤ cB with a positive constant c, which is inde-
pendent of A and B. If A � B and B � A, we write A ∼ B.
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Proof Due to (E‖f – f̂n‖p)p ≤ E‖f – f̂n‖p
p, one only needs to consider E‖f – f̂n‖p

p.
Firstly, thanks to the triangular inequality and convexity inequality, one can decompose

E‖f – f̂n‖p
p into a bias term and a stochastic term, respectively. That is,

E‖f – f̂n‖p
p = E‖f – Ef̂n + Ef̂n – f̂n‖p

p

≤ E
(‖f – Ef̂n‖p + ‖Ef̂n – f̂n‖p

)p

≤ p–(‖f – Ef̂n‖p
p + E‖f̂n – Ef̂n‖p

p
)
.

(i) For the bias term ‖f – Ef̂n‖p
p, one has

Ef̂n(x) = E

n

n∑

i=

Kj(x, Xi) = EKj(x, X)

=
∫

Kj(x, y)f (y) dy = Kjf (x).

Since ϕ(x) satisfies Condition S, taking j ∼ n 
 , due to Lemma . and Lemma ., one

gets

lim
n→∞‖f – Ef̂n‖p = lim

n→∞‖f – Kjf ‖p = .

(ii) For the stochastic term E‖f̂n – Ef̂n‖p
p, one can estimate it as follows:

E‖f̂n – Ef̂n‖p
p = E

∫

|f̂n – Ef̂n|p dx

=
∫

E|f̂n – Ef̂n|p

=
∫

E

∣
∣
∣
∣
∣


n

n∑

i=

Kj(x, Xi) – E

n

n∑

i=

Kj(x, Xi)

∣
∣
∣
∣
∣

p

dx

=


np

∫

E

∣
∣
∣
∣
∣

n∑

i=

(
Kj(x, Xi) – EKj(x, Xi)

)
∣
∣
∣
∣
∣

p

dx

=


np

∫

E

∣
∣
∣
∣
∣

n∑

i=

Yi

∣
∣
∣
∣
∣

p

dx.

Denote Yi = Kj(x, Xi) – EKj(x, Xi), then {Yi} are i.i.d. samples, and EYi = . One obtains

|Yi| =
∣
∣Kj(x, Xi) – EKj(x, Xi)

∣
∣ ≤ ∣

∣Kj(x, Xi)
∣
∣ +

∣
∣EKj(x, Xi)

∣
∣

≤
∣
∣
∣
∣

j
∑

k

ϕ
(
jx – k

)
ϕ
(
jXi – k

)
∣
∣
∣
∣ +

∫ ∣
∣
∣
∣

j
∑

k

ϕ
(
jx – k

)
ϕ
(
jy – k

)
∣
∣
∣
∣f (y) dy

≤ j‖ϕ‖∞‖θϕ‖∞ + j‖ϕ‖∞‖θϕ‖∞
∫

f (x) dx

� j+.
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(i) For  ≤ p < ∞, Rosenthal’s inequality, Lemma ., tells us that

E

(∣
∣
∣
∣
∣

n∑

i=

Yi

∣
∣
∣
∣
∣

p)

≤ C(p)

(
(
j+)p–

n∑

i=

E
(
Y 

i
)

+

( n∑

i=

E
(
Y 

i
)
)p/)

�
(
j+)p–

n∑

i=

E
(
Y 

i
)

+

( n∑

i=

E
(
Y 

i
)
)p/

and

( n∑

i=

E
(
Y 

i
)
)p/

=
(
nE(Y)

)p/

= np/(E
(
Kj(x, X) – EKj(x, X)

))p/

≤ np/(EK
j (x, X)

)p/

= np/
(∫

K
j (x, y)f (y) dy

)p/

≤ np/
(∫

jF(jx – jy
)
f (y) dy

)p/

= np/jp/
(∫

jF(jx – jy
)
f (y) dy

)p/

,

then

∫ ( n∑

i=

E
(
Y 

i
)
)p/

dx = np/jp/
∫ (∫

jF(jx – jy
)
f (y) dy

)p/

dx

= np/jp/
∫ (∫

F(t)f
(
x – t/j)dt

)p/

dx

= np/jp/‖F‖p


∫ (∫ F(t)
‖F‖


f
(
x – t/j)dt

)p/

dx

� np/jp/
∫ ∫ F(t)

‖F‖


f p/(x – t/j)dt dx

� np/jp/
∫ ∫

F(t)f p/(x – t/j)dx dt

� np/jp/.

Therefore, one gets

E‖f̂n – Ef̂n‖p
p � 

np

((
j+)p–nj + np/jp/)

=
(j+)(p–)jn

np +
np/jp/

np

=
(

j

n

)p–

+
(

j

n

)p/

. ()
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Taking j ∼ n 
 , one obtains the following desired result:

lim
n→∞ E‖f̂n – Ef̂n‖p

p = . ()

(ii) For  ≤ p < , let A = {x | |f̂n – Ef̂n| < }, B = {x | |f̂n – Ef̂n| ≥ }, then one has

E‖f̂n – Ef̂n‖p
p = E

∫

|f̂n – Ef̂n|p dx

= E
∫

A
|f̂n – Ef̂n|p dx + E

∫

B
|f̂n – Ef̂n|p dx

≤ E
∫

A
|f̂n – Ef̂n|dx + E

∫

B
|f̂n – Ef̂n| dx

≤ E
∫

|f̂n – Ef̂n|dx + E
∫

|f̂n – Ef̂n| dx

= E‖f̂n – Ef̂n‖ + E‖f̂n – Ef̂n‖
. ()

Obviously, one knows that f ∈ L(R) which guarantees that limn→∞ E‖f̂n – Ef̂n‖
 = .

Moreover, E‖f̂n – Ef̂n‖ =
∫ 

n E|∑n
i= Yi|dx, according to Rosenthal’s inequality, Lem-

ma ., one has


n

E

∣
∣
∣
∣
∣

n∑

i=

Yi

∣
∣
∣
∣
∣
≤ 

n

( n∑

i=

E(Yi)

) 


=


n/

(
E(Y)) 



≤
(

j

n

)/(∫

jF(jx – jy
)
f (y) dy

)/

=
(

j

n

)/

Gj ∗ f (x)

= A(x), ()

where G(x) = F(x). On the other hand,


n

E

∣
∣
∣
∣
∣

n∑

i=

Yi

∣
∣
∣
∣
∣
≤ 

n

n∑

i=

E
∣
∣Kj(x, Xi) – EKj(x, Xi)

∣
∣

� E
∣
∣Kj(x, X)

∣
∣

=
∫

∣
∣Kj(x, y)

∣
∣f (y) dy

≤
∫

jF
(
jx – jy

)
f (y) dy

=
∫

F(t)f
(

x –
t
j

)

dt

≤ f (x)
∫

F(t) dt +
∫

F(t)
∣
∣
∣
∣f

(

x –
t
j

)

– f (x)
∣
∣
∣
∣dt

= B(x) + C(x), ()
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where B(x) = f (x)
∫

F(t) dt, C(x) =
∫

F(t)|f (x – t
j ) – f (x)|dt. Then we get

E‖f̂n – Ef̂n‖ ≤
∫

min
{

A(x), B(x) + C(x)
}

dx ≤
∫

min
{

A(x), B(x)
}

dx +
∫

C(x) dx.

One knows that
∫

C(x) dx =
∫ ∫

F(t)
∣
∣
∣
∣f

(

x –
t
j

)

– f (x)
∣
∣
∣
∣dt dx =

∫

F(t)
∫ ∣

∣
∣
∣f

(

x –
t
j

)

– f (x)
∣
∣
∣
∣dx dt,

since

F(t)
∫ ∣

∣
∣
∣f

(

x –
t
j

)

– f (x)
∣
∣
∣
∣dx ≤ F(t)‖f ‖ and lim

j→∞

∫ ∣
∣
∣
∣f

(

x –
t
j

)

– f (x)
∣
∣
∣
∣dx = .

Then one gets limn→∞
∫

C(x) dx = . Next, for
∫

B(x) dx =
∫

f (x)
∫

F(t) dt dx = ‖F‖‖f ‖.
One has B(x) ∈ L(R). By the Lebesgue dominated convergence theorem, one gets

lim
n→∞

∫

min
{

A(x), B(x)
}

dx =
∫

lim
n→∞ min

{
A(x), B(x)

}
dx ≤

∫

lim
n→∞ A(x) dx.

It remains only to show that limn→∞ A(x) = . Since the function G(x) = F(x) is radially
decreasing,

lim
j→∞ Gj ∗ f (x) = ‖F‖

f (x) (a.e.)

and ‖F‖
f (x) is finite for almost all x, we have limn→∞ A(x) = limn→∞( j

n Gj ∗ f )/ = .
Finally, we get

lim
n→∞ E‖f̂n – Ef̂n‖ = . �

Remark Theorem . can be considered as a natural extension of Theorem  in [].

Next we shall consider L∞-consistency.

Theorem . Let a scaling function ϕ(x) satisfy suppϕ ⊂ [–A, A] and bounded, f̂n(x) be the
wavelet estimator defined in (). If f ∈ L∞(R) is uniformly continuous and f (x) � 

(+|x|)+δ

for any δ > , taking j ∼ n 
 , then one gets

lim
n→∞ E‖f – f̂n‖∞ = . ()

Proof The proof is similar to Theorem .. We have

E‖f – f̂n‖∞ ≤ ‖f – Ef̂n‖∞ + E‖f̂n – Ef̂n‖∞.

Since ϕ satisfies Condition S and f is uniformly continuous, by Lemma . and Lemma .,
one gets

lim
n→∞‖f – Ef̂n‖p = lim

n→∞‖f – Kjf ‖∞ = . ()
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For the stochastic term, it can be proved that

|f̂n – Ef̂n| =
∣
∣
∣
∣

∑

k

α̂jkϕjk(x) –
∑

k

αjkϕjk(x)
∣
∣
∣
∣ ≤

∑

k

|α̂jk – αjk|
∣
∣ϕjk(x)

∣
∣

≤ j/
∑

k

|α̂jk – αjk|‖ϕ‖∞ (a.e.),

then one has ‖f̂n – Ef̂n‖∞ � j/ ∑
k |α̂jk – αjk|. So one obtains

E‖f̂n – Ef̂n‖∞ � j/
∑

k

E|α̂jk – αjk|. ()

According to Rosenthal’s inequality, Lemma ., one has

E|α̂jk – αjk| = E

∣
∣
∣
∣
∣


n

n∑

i=

(
ϕjk(Xi) – Eϕjk(Xi)

)
∣
∣
∣
∣
∣

≤ 
n

∣
∣
∣
∣
∣

n∑

i=

E
(
ϕjk(Xi) – Eϕjk(Xi)

)

∣
∣
∣
∣
∣

/

≤ 
n/

∣
∣Eϕ

jk(X)
∣
∣/

=


n/

(∫

jϕ(jx – k
)
f (x) dx

)/

=


n/

(∫

|t–k|≤A
ϕ(t – k)f

(
t
j

)

dt
)/

.

Moreover, one has E‖f̂n – Ef̂n‖∞ � ( j

n )/ ∑
k(

∫
|t–k|≤A f ( t

j ) dt)/ and

∑

k

(∫

|t–k|≤A
f
(

t
j

)

dt
)/

≤
∑

|k|≤A+

(∫

|t–k|≤A
f
(

t
j

)

dt
)/

+
∑

|k|≥A+

(∫

|t–k|≤A
f
(

t
j

)

dt
)/

�
∑

|k|≤A+

(∫

f
(

t
j

)

dt
)/

+
∑

|k|≥A+

(∫

|t–k|≤A


( + |t/j|)+δ

dt
)/

� j/ +
∑

k≥A+

(∫

|t–k|≤A


( + |(k – A)/j|)+δ

dt
)/

= j/ +
∑

k≥A+

(
A

( + |(k – A)/j|)+δ

)/

� j/ +
∑

k≥


( + |k/j|)+δ/

� j/ +
∫ 

( + |t/j|)+δ/ dt

� j. ()
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Therefore, one gets E‖f̂n – Ef̂n‖∞ � ( j

n )/. Taking j ∼ n 
 , one obtains

lim
n→∞ E‖f – f̂n‖∞ = . �

4 Additive noise model
In practical situations, direct data is not always available. One of the classical models is
described as follows:

Yi = Xi + εi,

where Xi stands for the random samples with unknown density fX and εi denotes the i.i.d.
random noise with density g . To estimate the density fX is a deconvolution problem.

In , Fan and Koo [] studied the wavelet estimation for random samples with
smooth and super smooth noise over a Besov ball. In , Li and Liu [] considered the
wavelet estimation for random samples with moderately ill-posed noise. In this section,
we consider the mean Lp-consistency for fX ∈ Lp(R) with additive noise.

The Fourier transform of f ∈ L(R) is defined as follows:

f̃ (t) =
∫

f (x)e–itx dx.

It is well known that f̃Y (t) = f̃X(t)g̃(t). For g̃(t) �=  (∀t ∈ R), the wavelet estimator is given
by

f̂X,n(x) =
∑

k

α̂jkϕjk(x), ()

where

α̂jk =

n

n∑

i=

(Hjϕ)jk(Yi); (Hjϕ)(y) =


π

∫

eity ϕ̃(t)
g̃(–jt)

dt, ()

and ϕ is the Meyer scaling function.

Lemma . If fX ∈ L(R), then α̂jk defined in () is the unbiased estimation of αjk .

Proof The Plancherel formula tells us that

αjk =
∫

fX(x)ϕjk(x) dx =


π

∫
˜fX(t)ϕ̃jk(t) dt =


π

∫ f̃Y (t)
g̃(t)

ϕ̃jk(–t) dt.

On the other hand, one gets

Eα̃jk = E

(

n

n∑

i=

(Hjϕ)jk(Yi)

)

= E(Hjϕ)jk(Y)

=
∫ (


π

∫


j
 eit(jy–k) ϕ̃(t)

g̃(–jt)
dt

)

fY (y) dy

=


π

∫ ∫


j
 eit(jy–k)fY (y) dy

ϕ̃(t)
g̃(–jt)

dt
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=


π

∫


j
 e–itk f̃Y

(
–jt

) ϕ̃(t)
g̃(–jt)

dt

=


π

∫ f̃Y (t)
g̃(t)

ϕ̃jk(–t) dt.

Therefore, Eα̃jk = αjk . �

The next two theorems deal with the different cases for p ≥  and  ≤ p < , respectively.

Theorem . Let ϕ(x) be the Meyer scaling function, g̃(t) � ( + |t|)– β
 (β ≥ ), and f̂X,n(x)

is the wavelet estimator defined in (). If fX ∈ Lp(R),  ≤ p < ∞, taking j ∼ n
–ε

+β (ε > ),
then one gets

lim
n→∞ E‖fX – f̂X,n‖p = . ()

Proof Similarly, one needs to consider a bias term and a stochastic term.
(i) For the bias term, one observes that

Ef̂X,n(x) = E
(∑

k

α̂jkϕjk(x)
)

= E

(
∑

k


n

n∑

i=

(Hjϕ)jk(Yi)ϕjk(x)

)

= E
(∑

k

(Hjϕ)jk(Y)ϕjk(x)
)

.

Note that
∫ ∑

k |(Hjϕ)jk(y)||ϕjk(x)|fY (y) dy ≤ j‖(Hjϕ)‖∞‖θϕ‖∞‖fY ‖ < ∞, then

Ef̂X,n(x) = E
(∑

k

(Hjϕ)jk(Y)ϕjk(x)
)

=
∑

k

E(Hjϕ)jk(Y)ϕjk(x)

=
∑

k

αjkϕjk(x)

= KjfX(x).

From Lemma ., one gets

lim
n→∞‖fX – Ef̂X,n‖p = lim

n→∞‖fX – KjfX‖p = . ()

(ii) For the stochastic term. Due to Lemma ., it can be found that

‖f̂X,n – Ef̂X,n‖p
p =

∥
∥
∥
∥

∑

k

α̂jkϕjk(x) –
∑

k

αjkϕjk(x)
∥
∥
∥
∥

p

p
=

∥
∥
∥
∥

∑

k

(α̂jk – αjk)ϕjk(x)
∥
∥
∥
∥

p

p

� j( p
 –)

∑

k

|α̂jk – αjk|pp,



Geng and Wang Journal of Inequalities and Applications  (2015) 2015:111 Page 11 of 14

so one gets

E‖f̂X,n – Ef̂X,n‖p
p � j( p

 –)E
∑

k

|α̂jk – αjk|pp

= j( p
 –)

∑

k

E|α̂jk – αjk|pp. ()

Firstly, we estimate E|α̂jk – αjk|pp. We have

|α̂jk – αjk| =

∣
∣
∣
∣
∣


n

n∑

i=

(Hjϕ)jk(Yi) –

n

n∑

i=

E(Hjϕ)jk(Yi)

∣
∣
∣
∣
∣

=

n

∣
∣
∣
∣
∣

n∑

i=

Zik

∣
∣
∣
∣
∣
,

where Zik = (Hjϕ)jk(Yi) – E(Hjϕ)jk(Yi) and EZik = . Then

|Zik| =
∣
∣(Hjϕ)jk(Yi) – E(Hjϕ)jk(Yi)

∣
∣

≤ ∣
∣(Hjϕ)jk(Yi)

∣
∣ + E

∣
∣(Hjϕ)jk(Yi)

∣
∣

=
∣
∣
∣
∣


π

∫


j
 eit(jYi–k) ϕ̃(t)

g̃(–jt)
dt

∣
∣
∣
∣ +

∫ ∣
∣
∣
∣


π

∫


j
 eit(jy–k) ϕ̃(t)

g̃(–jt)
dt

∣
∣
∣
∣fY (y) dy

� j( 
 +β).

Thanks to Rosenthal’s inequality, Lemma ., one has

E|α̂jk – αjk|pp =


np E

∣
∣
∣
∣
∣

n∑

i=

Zik

∣
∣
∣
∣
∣

p

� 
np

(
(
j( 

 +β))p–
n∑

i=

E|Zik| +

( n∑

i=

E|Zik|
) p


)

=
j( 

 +β)(p–)

np– E|Zk| +


n
p


(
E|Zk|

) p
 . ()

One only needs to consider
∑

k(E|Zk|)
p
 . Define A =

∫ |(Hjϕ)(y)| dy = π
∫

R | ϕ̃(t)
g̃(–jt) | dt �

∫ |( + |jt|)β/ϕ̃(t)| dt � jβ , and

(
E|Zk|

) p
 =

(
E
∣
∣(Hjϕ)jk(Y) – E(Hjϕ)jk(Y)

∣
∣) p



≤ (
E
∣
∣(Hjϕ)jk(Y)

∣
∣) p



=
(∫

∣
∣(Hjϕ)jk(y)

∣
∣fY (y) dy

) p


= A
p


(∫ |(Hjϕ)jk(y)|
A

fY (y) dy
) p



≤ A
p
 –

∫
∣
∣(Hjϕ)jk(y)

∣
∣fY (y)

p
 dy.
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Moreover,

∑

k

∣
∣(Hjϕ)jk(y)

∣
∣ =

∑

k

(


j


π

∣
∣
∣
∣

∫

eit(jy–k) ϕ̃(t)
g̃(–jt)

dt
∣
∣
∣
∣

)

� j
∑

k

(∣
∣
∣
∣

∫ π


– π


eit(jy–k) ϕ̃(t)
g̃(–jt)

dt
∣
∣
∣
∣

)

≤ j
∑

k

(∣
∣
∣
∣

∫ π



eitjy ϕ̃(t)

g̃(–jt)
e–itk dt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ 

– π


eitjy ϕ̃(t)
g̃(–jt)

e–itk dt
∣
∣
∣
∣

)

≤ j
(∑

k

∣
∣
∣
∣

∫ π



eitjy ϕ̃(t)

g̃(–jt)
e–itk dt

∣
∣
∣
∣



+
∑

k

∣
∣
∣
∣

∫ 

– π


eitjy ϕ̃(t)
g̃(–jt)

e–itk dt
∣
∣
∣
∣

)

.

Note that eitjy ϕ̃(t)
g̃(–jt) I[,π ] ∈ L[, π ], {e–itk , k ∈ Z} is an orthonormal basis of L[, π ],

and by the Parseval formulas, one gets

∑

k

∣
∣
∣
∣

∫ π



eitjy ϕ̃(t)

g̃(–jt)
e–itk dt

∣
∣
∣
∣



=
∫ π





∣
∣
∣
∣e

itjy ϕ̃(t)
g̃(–jt)

∣
∣
∣
∣



dt = jβ .

Similarly,
∑

k | ∫ 
– π


eitjy ϕ̂(t)

ĝ(–jt) e–itk dt| = jβ . Then
∑

k |(Hjϕ)jk(y)| � j(β+).
For the density function fY ∈ L(R) ∩ Lp(R),  ≤ p < ∞, one has fY ∈ Lp/(R). Moreover,

∑
k(E|Zk|)

p
 � A

p
 –jβ = j(βp+). Therefore,

∑

k

E|α̂jk – αjk|pp =
j( 

 +β)(p–)

np–

∑

k

E|Zk| +


n
p


∑

k

(
E|Zk|

) p


� j( 
 +β)(p–)j(β+)

np– +
j(βp+)

n
p


=
j(βp+)

n
p


((
j

n

) p
 –

+ 
)

.

Then we get E‖f̂X,n – Ef̂X,n‖p
p � j( p

 –) j(βp+)

n
p


(( j

n )
p
 – + ) � ( j(β+)

n )
p
 . Taking j ∼ n

–ε
+β

(ε > ), one obtains limn→∞ E‖f̂X,n – Ef̂X,n‖p
p = . �

Theorem . Let ϕ(x) be the Meyer scaling function, g̃(t)|� ( + |t|)– β
 (β ≥ ), f̂X,n(x) is

the estimator defined in (). If fX ∈ L(R) ∩ Lp(R) ( ≤ p < ) and supp fX ⊂ [–B, B], taking
j ∼ n

–ε
+β , then one has

lim
n→∞ E‖fX – f̂X,nI[–B,B]‖p = . ()

Proof For the bias term, we get Ef̂X,nI[–B,B](x) = KjfXI[–B,B](x), then

‖fX – Ef̂X,nI[–B,B]‖p
p = ‖fX – KjfXI[–B,B]‖p

p

=
∫

R

∣
∣fX(x) – KjfXI[–B,B](x)

∣
∣p dx
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=
∫ B

–B

∣
∣fX(x) – KjfX(x)

∣
∣p dx

≤ ∥
∥fX(x) – KjfX(x)

∥
∥p

p.

So one gets limn→∞ ‖fX – Ef̂X,nI[–B,B]‖p ≤ limn→∞ ‖f – Kjf ‖p = .
Next we only consider the stochastic term. For any  ≤ p < ,

E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖p
p ≤ E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖

+ E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖
. ()

Because limn→∞ E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖
 ≤ limn→∞ E‖f̂X,n – Ef̂X,n‖

 = , we only need
to consider E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖. Clearly,

∣
∣
∣
∣

∑

k

ϕ(x – k)(Hjϕ)(y – k)
∣
∣
∣
∣ ≤

∑

k

∣
∣ϕ(x – k)

∣
∣
∣
∣(Hjϕ)(y – k)

∣
∣ ≤ ‖θϕ‖∞‖Hjϕ‖∞ � jβ ;

define

D(x, y) =
∑

k

ϕ(x – k)(Hjϕ)(y – k),

then

f̂X,n(x) =
∑

k

α̂jkϕjk(x)

=
∑

k

(

n

n∑

i=

(Hjϕ)jk(Yi)

)

ϕjk(x)

=

n

n∑

i=

∑

k

(Hjϕ)jk(Yi)ϕjk(x)

=

n

n∑

i=

Dj(x, Yi).

We know that

E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖ =
∫ B

–B
E|f̂X,n – Ef̂X,n|dx,

now we estimate E|f̂X,n – Ef̂X,n|. Using Rosenthal’s inequality, Lemma ., one gets

E|f̂X,n – Ef̂X,n| ≤ 
n

( n∑

i=

E
∣
∣Dj(x, Yi) – EDj(x, Yi)

∣
∣

)/

≤ 
n/

(
E
∣
∣Dj(x, Y)

∣
∣)/

≤ j

n/

(∫ (∑

k

∣
∣(Hjϕ)

(
jy – k

)∣
∣
∣
∣ϕ

(
jx – k

)∣
∣
)

fY (y) dy
)/

� j

n/ jβ‖θϕ‖∞‖f ‖/
 . ()
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Then E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖ � j(+β)

n/ , taking j ∼ n
–ε

+β , one gets

lim
n→∞ E‖f̂X,nI[–B,B] – Ef̂X,nI[–B,B]‖ = . �

Remark If g is the Dirac function δ, then the conclusions with additive noise reduce to
the classical model results without noise.
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