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Abstract

Reliable detection of somatic copy-number alterations (sCNAs) in tumors using whole-exome sequencing
(WES) remains challenging owing to technical (inherent noise) and sample-associated variability in WES data.
We present a novel computational framework, ENVE, which models inherent noise in any WES dataset, enabling
robust detection of sCNAs across WES platforms. ENVE achieved high concordance with orthogonal sCNA
assessments across two colorectal cancer (CRC) WES datasets, and consistently outperformed a best-in-class
algorithm, Control-FREEC. We subsequently used ENVE to characterize global sCNA landscapes in African
American CRCs, identifying genomic aberrations potentially associated with CRC pathogenesis in this population.
ENVE is downloadable at https://github.com/ENVE-Tools/ENVE.
Background
Human cancer is caused in part by structural changes
resulting in DNA copy-number alterations at distinct
locations in the tumor genome. Identification of such
somatic copy-number alterations (sCNA) in tumor tis-
sues has contributed significantly to our understanding
of the pathogenesis and to the expansion of therapeutic
avenues across multiple cancers [1–4]. Traditionally,
sCNAs have been detected using cytogenetic techniques
such as fluorescent in situ hybridization, array compara-
tive genomic hybridization [5], and representational
oligonucleotide microarrays [6] as well as single nucleo-
tide polymorphism (SNP) arrays [7]. However, each of
the above techniques has limitations with regard to the
number, resolution, and platform-specific assessability of
regions that can be interrogated in the genome.
More recently, massively parallel sequencing tech-

nologies have provided the unique opportunity to
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comprehensively characterize genome-scale DNA alter-
ations in tumor tissues. In particular, whole-exome
sequencing (WES) offers a cost-effective way of interro-
gating mutation and copy-number profiles within
protein-coding regions in the tumor genome. This has
resulted in the increasing use of WES in both the re-
search [8, 9] and clinical settings [10, 11]. However,
variability in tumor content among clinical samples in
addition to the random technical variability in DNA
library enrichment steps during WES can potentially
introduce systematic biases across the genome, thus
making sCNA detection relatively challenging. Al-
though quite a few algorithmic approaches have been
developed to address these issues [12–18], a recent
comprehensive review [19] of these published method-
ologies, primarily using simulated data, showed sub-
stantial variability in sensitivity and specificity across
algorithms, with algorithm-specific parameter choice a
key confounder of algorithm performance. This poses a
significant challenge in reliably detecting sCNAs in
WES data because choosing the right parameter for a
given application is non-trivial. There is therefore a
pressing need to develop relatively parameter-free and
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robust methodologies for detecting these sCNAs across
diverse tumor types and sequencing platforms.
Here we present a novel computational methodology,

ENVE (Extreme Value Distribution Based Somatic
Copy-Number Variation Estimation), which robustly
detects tumor-specific copy-number alterations in mas-
sively parallel DNA sequencing data without the need
for complex parameter choices or user intervention.
We demonstrate the robustness of ENVE’s performance
in two independent matched tumor/normal WES data-
sets (total N = 107), derived from Caucasian and
African American (AA) colorectal cancers (CRC), by
comparing ENVE-based sCNA calls in WES data
against SNP arrays and quantitative real-time PCR
(qPCR)-based sCNA assessments performed on the
same sample sets. We further show ENVE as signifi-
cantly and consistently outperforming the best-in-class
sCNA detection algorithm, Control-FREEC [12, 19], in
these analyses. We additionally demonstrate the repro-
ducibility of ENVE’s key noise-modeling feature using
an independent WES dataset derived from 54 normal
diploid samples. Finally, using the ENVE framework,
we characterize, for the first time, global sCNA land-
scapes in colon cancers arising in AA patients, identify-
ing genomic aberrations potentially associated with
colon carcinogenesis in this population.

Methods
AA CRC samples
The AA CRC sample set included a total of 30 fresh-
frozen, predominantly late-stage microsatellite stable
(MSS) CRCs and matched normal samples from AA
patients (Additional file 1: Table S1). The colon cancer
diagnosis of all tumor samples was reviewed and con-
firmed by an anatomic pathologist (JW). Genomic DNA
from the tumor samples was extracted as previously
described [20]. DNA from all patients’ tumors was con-
firmed as being MSS by evaluation of microsatellite alleles
in tumor and matched normal DNA at microsatellite
markers BAT26, BAT40, D2S123, D5S346, and D17S250
[21]. All samples used in this study were accrued under
the tumor sample accrual protocol entitled, “CWRU 7296:
Colon Epithelial Tissue Bank,” which was approved by the
University Hospitals Case Medical Center Institutional
Review Board for Human Investigation with the assigned
UH IRB number 03-94-105. Under this protocol, tissue
was obtained through written informed consent from
patients for research use. All aspects of this study were
conducted in accordance with these approved guidelines.

Whole-exome capture, deep sequencing, and alignment
of AA CRC samples
Target capture, library preparation, and deep sequencing
of the 30 normal/tumor paired frozen DNA samples were
performed by the Oklahoma Medical Research Founda-
tion Next Generation DNA Sequencing Core Facility
(Oklahoma City, OK, USA). Target sequence enrichments
were performed using the Illumina TruSeq Exome Enrich-
ment kit as per the manufacturer’s protocols (Illumina
Inc., San Diego, CA, USA). Briefly, sample DNA was
quantified using a PicoGreen fluorometric assay, and 3 μg
of genomic DNA was randomly sheared to an average size
of 300 bp using a Covaris S2 sonicator (Covaris Inc.,
Woburn, MA, USA). Sonicated DNA was then end-
repaired, A-tailed, and ligated with indexed paired-end
Illumina adapters. Target capture was performed on DNA
pooled from six indexed samples, following which the
captured library was PCR amplified for ten cycles to
enrich for target genomic regions. The captured libraries
were precisely quantified using a qPCR-based Kapa
Biosystems Library Quantification Kit (Kapa Biosystems
Inc., Woburn, MA, USA) on a Roche LightCycler 480
(Roche Applied Science, Indianapolis, IN, USA). Deep
sequencing of the capture enriched DNA pools was per-
formed on an Illumina HiSeq 2000 instrument to generate
100-bp paired-end reads, and to achieve an average read
depth of ~70× per tumor sample and ~50× per matched
normal sample. A Burrows–Wheeler Aligner version
0.6.1-r104 [22] algorithm [23] was used to align individual
100-bp reads from the raw FASTQ files to the human
reference genome (build hg19). Following the conversion
of aligned reads in to Binary Sequence Alignment/Map
(BAM) format and subsequent removal of duplicated
reads, coverage metrics of target bases were calculated
using the Picard tools version 1.41 [24]. On average,
Picard metrics showed ~69 % of the target bases covered
at 20× read depth for the normal samples and ~86 % of
the target bases covered at 20× read depth for the tumors.

The Cancer Genome Atlas CRC whole-exome dataset
We identified a total of 77 MSS colon adenocarcinoma
and matched normal WES samples from The Cancer
Genome Atlas (TCGA) colon cancer repository on the
Cancer Genomics Hub [25], for which Affymetrix SNP6
array-based copy-number profiles were available on
TCGA Data Portal (Additional file 1: Table S1). BAM
files for the 77 tumor/normal pairs were downloaded
from Cancer Genomics Hub using the GeneTorrent cli-
ent. Subsequent to removal of duplicated reads, coverage
metrics of target bases were calculated using the Picard
tools. On average, Picard metrics showed ~86 % of the
target bases covered at 20× read depth for both the nor-
mal and tumor samples.

SNP array-based copy-number analysis
We evaluated 12 of the 30 AA tumor/normal paired
samples (Additional file 1: Table S1) for genome-wide
somatic copy-number alterations using HumanOmni2.5-8
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BeadChips containing 2,379,855 markers (Illumina).
Briefly, 200 ng of normal and tumor DNA were hybridized
on to the BeadChips and array images were scanned using
the HiScan System (Illumina). The array data were subse-
quently processed using GenomeStudio software to gener-
ate the B-allele frequency and log-ratio values across all
the markers per individual chromosome (Illumina).
Quality control analysis of the SNP array data revealed
an average of 98 % (range 91–99 %) call rate for the
samples. The B-allele frequency and log-ratio values of
the samples were next imported into Partek Genomics
Suite software (Partek Inc., St. Louis, MO, USA) to
identify regions showing significant copy-number alter-
ations in the tumors. This analysis was performed as
per the manufacturer’s instructions using default set-
tings on the genomic segmentation algorithm, which
included a minimum marker-distance of 50, P-value
threshold of 0.001, and signal to noise ratio of 0.3.
Affymetrix SNP Array 6.0–based copy-number profiles

were obtained from TCGA portal [26] for the 77 TCGA
CRC WES samples (Additional file 1: Table S1). TCGA
Level 3 copy-number data provide segmented copy-
number calls, after elimination of potential germline copy-
number variation (CNV) in each sample, using the Broad
Institute’s Copy Number Inference pipeline for Affymetrix
SNP Array 6.0 arrays. For each tumor sample, genome-
wide segmented copy-number calls were obtained at
different Segment-Mean cutoff values ranging from ≥0.1
to ≥0.5 (indicating somatic amplifications) and from ≤−0.1
to ≤−0.5 (indicating somatic deletions). In all cases, seg-
mented copy-number calls inferred from at least 10 SNP
array probes were included in the analyses as previously
suggested [2, 27].

Copy-number analysis using pooled normals
For the AA CRC WES dataset, we first computationally
pooled reads from the 30 AA normal samples (Add-
itional file 1: Table S1). Next, we sub-sampled this
pooled normal data to generate 12 independent refer-
ence normals containing a similar number of total
mapped reads observed for each of the 12 AA tumor
samples for which SNP array data were available. We
then performed ENVE Modules 2a-c on this simulated
data to identify significant (ENVE P ≤ 0.05) sCNAs in
the 12 AA tumor samples. Similarly, for the SNP array
data, a computationally pooled reference normal was de-
rived from the 12 AA normal samples using the Partek
Genomics Suite software (Partek) followed by SNP
array-based sCNA detection in the 12 tumors.

qPCR-based estimation of somatic copy-number
alterations
Recurrent somatic copy-number alterations in candidate
regions identified by ENVE in the WES dataset were
validated using a qBiomarker qPCR copy-number array
as per the manufacturer’s instructions (Qiagen Inc.,
Valencia, CA, USA). Briefly, 500–700 ng of genomic
DNA from six matched tumor/normal AA CRC cases
used for WES, and DNA from an additional six AA nor-
mal colon samples (Additional file 1: Table S1) was used
for qPCR validation of a custom 11-gene panel, with
each gene mapping to a distinct genomic locus. Of note,
each of the 11 genes on the custom panel selected for
qPCR analysis showed significant copy-number alter-
ation, as detected by ENVE in WES data, in at least one
of the six AA CRC cases. Pre-designed qPCR primers
for the 11 candidate genes and a multi-copy reference
(MRef ) control were plated in quadruplicate on a
96-well plate, enabling the analysis of two samples per
plate (Qiagen). qPCR was carried out using the CFX96
Real-Time PCR equipment (BioRad, Hercules, CA, USA)
in a total volume of 25 μl containing the SYBR Green
Assay Master Mix (Qiagen) for 10 min at 95 °C,
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1
min. Cq values obtained from each of the reaction wells
were uploaded to an online data analysis tool [28] for
subsequent significance estimation of tumor-specific
CNAs in the 11 target genes using the calibrator genome
methodology, where the 12 AA normal samples served
as diploid genome controls. Tumor-specific CNAs with
P ≤ 0.05 were considered significant.

Control-FREEC–based copy-number analysis for AA and
TCGA CRC datasets
Somatic copy-number analysis on the AA CRC and
TCGA CRC WES datasets was performed using the
developer’s recommended parameters for processing
WES data from matched tumor/normal samples [12].
The window size was set to 500 bp with a step of 250 bp
for all of the analyses. GC content normalization was
enabled for all of the analyses, along with the noisyData
option set as TRUE in order to avoid false-positive
predictions due to non-uniform capture in exome se-
quencing data. For the primary analyses, Control-FREEC
(version 6.7) was run in the default mode without enab-
ling correction for contamination by normal cells.
However, contamination adjustment was subsequently
enabled to evaluate whether automatic inference of
tumor content in the tissue samples improved the per-
formance of Control-FREEC.

Recurrent sCNA identification using GISTIC
The ENVE output file containing ENVE P-values assigned
to each candidate copy-number–altered segment in the 30
AA CRC and stage-matched 30 TCGA Caucasian CRC
cases was analyzed using the GISTIC tool (version 2.0.21)
[27]. The markers file for GISTIC was derived as the
union of the start coordinates of all possible 100-bp
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segments within the exonic regions defined in the region-
of-interest file for the Illumina TruSeq Exome platform.
Copy-number–altered segments that were not considered
significant (ENVE P > 0.05) were assigned a LogRatio
value of 0, thus making them copy-neutral for GISTIC
analysis. GISTIC broad-level analysis was performed with
a size threshold of 98 % of a chromosome arm to differen-
tiate between arm-level and focal events. sCNA regions
and arm-level events with q ≤ 0.25 were considered
significant. The significance of focal sCNA events was
determined using residual q-values, which were estimated
by removing amplifications or deletions that overlapped
other, more significant sCNAs in the same chromosome.
Focal sCNAs with residual q ≤ 0.05 were considered
significant. The frequencies of the resulting significant
recurrent sCNAs were plotted using ggplot2 (R package
version 0.9.3.1).

WES data accessibility for AA CRC and TCGA cohorts
As mentioned above, the 77 MSS colon adenocarcinoma
and matched normal WES samples from TCGA colon
cancer cohort are publicly available in the repository on
the Cancer Genomics Hub [25]. The AA CRC WES data-
set (N = 30) was generated in-house, and all appropriate
processed files relevant to this study can be accessed at
the ENVE Tool website [29].

Results
We describe the key computational steps in the ENVE
methodology and evaluate its performance using two
matched tumor/normal WES datasets, an in-house
WES dataset of predominantly late-stage, MSS AA
CRCs (N = 30) [20], and a Caucasian MSS CRC WES
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Fig. 1 Overview of the ENVE workflow to detect somatic copy-number alte
involves modeling of inherent noise in WES data using normal diploid sam
variability as captured by the learned model parameters to detect sCNAs in
dataset obtained from TCGA (TCGA CRC, N = 77)
(See “Methods” and Additional file 1: Table S1). A sub-
set of these TCGA cases consisting of predominantly
late-stage cancers (N = 30) was used to further assess
differences in sCNAs in CRCs arising in AA versus
Caucasian ethnicities.
ENVE methodology overview
The ENVE methodology consists of two major modules:
Module 1 uses non-tumor normal diploid samples to
capture and model inherent noise in WES data likely
arising from technical variability in the DNA capture,
hybridization, and/or amplification steps, in addition to
variability in sequencing platforms. This is followed by
Module 2. which utilizes the learned model parameters
to reliably detect somatic copy-number alterations in tu-
mors (Fig. 1).
Module 1
Module 1 of the ENVE methodology consists of four
steps as follows:
Module 1a: Pairwise random normal-normal comparisons
In this module (Fig. 1), WES profiles of N normal samples
{S1, S2, …, SN} are taken pairwise, resulting in (N !)/
(2 * (N − 2) !) random normal–normal combinations
{S1:S2, S1:S3, …, SN-1:SN}. We accordingly applied this
module to the WES profiles of the 30 AA normal and 30
TCGA normal samples, resulting in a total of 435 random
normal–normal comparisons for the AA and TCGA
cohorts.
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ENVE Significant sCNAs
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rations. The ENVE framework consists of two major modules: the first
ples (Module 1 on the left); the second module utilizes the expected
tumors (Module 2 on the right)
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Module 1b: Estimation of segmental LogRatios in pairwise
random normal-normal comparisons
In this module (Fig. 1), genome-wide segmental LogRatios
for each of the (N !)/(2 * (N − 2) !) random normal–nor-
mal combinations are calculated using read depth com-
parison and circular binary segmentation [30]. For each
sample pair being compared, each target region within the
exome is divided into non-overlapping 100-bp windows.
The ratio of average read depth within these 100-bp
windows is estimated for each pair of samples being
compared (DSi and DSj) after normalizing for the total
number of uniquely mapped bases per sample (TRSi

and TRSj) as follows:

WRdRatio ¼ log2
DSi

DSj
� TRSj

TRSi

� �
ð1Þ

The ratio of read depth per window (WRdRatio) is then
corrected for GC content according to published meth-
odology [14]. The resulting GC-corrected WRdRatio data
are segmented using circular binary segmentation,
resulting in genomic segments and associated segmental
LogRatios summarized from the GC-corrected WRdRatio

of all 100-bp windows within each segment. The result-
ing distribution of genome-wide segmental LogRatios
in the normal–normal comparisons is adjusted to be
Fig. 2 Modeling of inherent noise in the AA CRC WES dataset. a Distributio
normal–normal comparisons derived from 30 normal diploid WES samples
different LogRatio thresholds using the 435 normal–normal comparisons ac
deviations. Bold horizontal lines within each chromosome indicate the noise
distributed around zero by subtracting the mode of the
distribution from each of the segmental LogRatios.
Accordingly, we applied ENVE Module 1b on the 435

random normal–normal comparisons derived from the
AA and TCGA normal WES datasets. As expected for
comparisons of normal diploid samples, the vast majority
of the segmental LogRatios across the normal–normal
comparisons were distributed around zero, with a minor-
ity of segments showing segmental LogRatios deviating
significantly from zero (Figs. 2 and 3). Because these
significant deviations could result from either inherent
noise in WES data or focal germline CNV within the
normal diploid samples being compared, identification of
those segmental LogRatio deviations associated primarily
with inherent noise is essential for subsequent noise
modeling in WES data.

Module 1c: Establishing chromosome-specific noise
thresholds
ENVE Module 1c (Fig. 1) is specifically designed to iden-
tify chromosome-specific segmental LogRatio deviations
associated particularly with random inherent noise in
WES data. Given that segmental LogRatio deviations in
the normal–normal sample comparisons tend to be
asymmetrically distributed around zero (for example,
Figs. 2a and 3a), the positive and negative LogRatio
n of exome-wide segmental LogRatios generated using 435 random
. b, c Chromosomal coverage by copy-number altered segments at
ross all chromosomes for the positive (b) and negative (c) LogRatio
-threshold values



Fig. 3 Modeling of inherent noise in the TCGA CRC WES dataset. a Distribution of exome-wide segmental LogRatios generated using 435 random
normal–normal comparisons derived from 30 normal diploid WES samples. b, c Chromosomal coverage by copy-number altered segments at
different LogRatio thresholds using the 435 normal–normal comparisons across all chromosomes for the positive (b) and negative (c) LogRatio
deviations. Bold horizontal lines within each chromosome indicate the noise-threshold values
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deviations in the normal–normal comparisons are mod-
eled separately. Accordingly, each chromosome is first
divided into equal-sized non-overlapping 10-kb win-
dows. The frequency with which each of the chromo-
somal windows is covered by copy-number altered
segments at LogRatios ranging from 0 to 2 in incre-
ments of 0.05 is counted, both in the positive and nega-
tive directions. Because chromosomal coverage tends to
be more complete and randomly distributed at lower
Absolute LogRatio Thresholds (as expected with random
inherent noise) for both positive and negative deviations,
as opposed to the sparse and focal coverage observed at
higher Absolute LogRatio Thresholds (as expected with
germline CNVs), ENVE Module 1c employs a robust
quantitative approach to differentiate between inherent
noise and germline CNVs in the normal–normal com-
parisons (ENVE Module 1c, Fig. 1). Each chromosome is
first divided into non-overlapping 10-kb windows. Sub-
sequently, the frequency of segmental coverage within
each chromosomal window is calculated using segments
with absolute LogRatios at or above Absolute LogRatio
Threshold (RT), with RT varying from 0 to 1 (RTmax) in
steps of 0.05. Let FRT be the vector containing the fre-

quencies of segmental coverage f RT
j

� �
for all the win-

dows in a chromosome at a particular RT. The fraction
of chromosomal coverage at a particular RT is therefore
the ratio of non-zero entries in FRT to the length of FRT

for a given chromosome. Next, the entropy of chromo-
somal coverage, for given a chromosome, at each RT is
given as:

ERT ¼ −
X
∀j

f RT
j � log2 f RT

j

� �
ð2Þ

RTF is defined as the RT associated with the maximal
drop in fraction of chromosomal coverage and RTE is
defined as the RT associated with the first major loss in
entropy of chromosomal coverage per chromosome. The
maximum of RTF and RTE corresponds to the noise
threshold (RNT), above which we expect to see focal
alterations associated with germline CNVs, and below
which we expect to see variations associated with
random inherent noise. The average silhouette index
[31] ascertains whether the pairwise distances between
FRT vectors across RNT are substantially different from
the pairwise distances between FRT vectors within all RT
above or below RNT. Positive silhouette index values
close to 1 suggest that the chromosome-specific noise
thresholds (RNT) appropriately capture the variability
associated with inherent noise.
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Accordingly, we employed the above measures in
ENVE Module 1c on the 435 AA and TCGA normal–
normal comparisons, obtaining chromosome-specific
noise thresholds (Figs. 2b,c and 3b,c; Additional file 2:
Figures S1 and S2). These chromosome-specific noise
thresholds exhibited high positive silhouette indices
(≥0.8) in both the AA and TCGA normal–normal com-
parisons, indicating that the focal copy-number altered
segments observed above the noise thresholds are quali-
tatively distinct from the random distribution of seg-
ments below the noise thresholds.
To further ascertain that these discrete focal alter-

ations in genomic segments observed above the noise
thresholds in the normal–normal data are indicative of
germline CNVs prevalent among the normal samples,
we repeated the analysis of ENVE Modules 1a-c (Fig. 1)
by replacing the normal–normal comparisons with cor-
responding matched tumor–tumor comparisons for both
the AA and TCGA CRC datasets, assuming that any
likely germline CNV should also be detectable in the
matched tumor samples. We next identified the genomic
regions from the matched tumor–tumor comparisons
overlapping the genomic segments falling above the
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more likely to be associated with germline CNVs, whereas
the randomly distributed segments falling below the noise
thresholds are indicative of inherent noise in WES data.
Additionally, we note that the focal genomic segments
with high LogRatios above noise thresholds within each
chromosome were repeatedly observed across multiple
unique normal sample pair comparisons in both the AA
and TCGA CRC datasets, providing further evidence of
their being indicative of germline CNVs as opposed to
random inherent noise. Importantly, the observed differ-
ences in chromosome-specific noise-threshold values in
AA versus TCGA CRC datasets (Figs. 1 and 2) further
highlight ENVE’s ability to model noise in a platform- and
sample-agnostic manner.

Module 1d: Modeling inherent noise using the Generalized
Extreme Value distribution
This module (Fig. 1) derives generalized extreme value
(GEV) distribution-based models of the inherent noise
associated with WES data. First, copy-number altered
segments falling below the noise thresholds in the nor-
mal–normal comparisons (Figs. 2 and 3) are selected for
noise modeling. Assuming X1, X2, … Xn to be the seg-
mental LogRatios of selected copy-number altered seg-
ments within the normal–normal comparisons, the
Fisher–Tippett theorem [32] states that the distribution
of Mn =max{X1, X2,…, Xn} converges to (as n→∞) the
GEV distribution:

G yð Þ ¼ exp − 1þ ξ
y−μ
σ

� �h i−1=ξ� �
ð3Þ

where ξ, μ, and σ are the shape, the location, and scale
parameters, respectively, that fully define the GEV. Be-
cause the only requirement for the GEV distribution is
that the segmental LogRatios, Xi, are independent and
identically distributed random variables, the tails of
whose distributions can have either an exponential or
polynomial decay, we modeled the maxima of the
segmental LogRatios using the GEV. Also, because the
variability in segmental LogRatio estimates is likely to be
chromosome-specific, reflecting variations in gene
density and capture efficiency across regions, separate
GEV model parameters are inferred for respective chro-
mosomes. Furthermore, because somatic copy-number
deletion events can only fall into two categories (hetero-
zygous or homozygous deletions), as opposed to the
copy-number amplifications, separate GEV parameters
for positive and negative deviations are estimated,
respectively, using the probability weighted moment
method [32]. Accordingly, per chromosome, the max-
imum segmental LogRatio values associated with positive
deviations within each of the K normal–normal compari-
sons, resulting in K maxima, are used to estimate the GEV
parameters to evaluate somatic copy-number amplifica-
tions. Similarly, the minimum segmental LogRatio values
associated with negative deviations within a chromosome
for each of the K normal–normal comparisons, resulting
in K minima, are used to estimate the GEV parameters to
evaluate somatic copy-number deletions. The R package
fExtremes (R package version 3010.81) is used to estimate
the above GEV parameters.
We applied ENVE Module 1d on the AA and TCGA

normal–normal comparisons to obtain chromosome-
specific GEV parameters, thus effectively capturing and
modeling chromosome-specific inherent noise associated
with each of these WES datasets.
Module 2
We next applied ENVE Module 2 (Fig. 1) to call sCNAs
in AA CRC and TCGA CRC WES samples.
Module 2a-b: Estimation of segmental LogRatios in
tumor–normal comparisons
ENVE Module 2a-b performs read depth comparison
and circular binary segmentation to identify all of the
potentially copy-number altered segments along with
their respective GC-corrected segmental LogRatios for
each matched tumor/normal comparison similar to
Module 1a-b. To account for potential aneuploidy/hyper-
ploidy [33, 34] in the tumor samples, which could result
in the segmental LogRatios of copy-neutral regions deviat-
ing from zero, the distribution of genome-wide segmental
LogRatios in every tumor–normal comparison is adjusted
by subtracting the mode of the distribution from each of
the segmental LogRatios. Using these modules, we accord-
ingly obtained segmental LogRatios for each of the AA
and TCGA matched tumor/normal comparisons.
Module 2c: GEV-based significance evaluation of tumor–
normal segmental LogRatios
The chromosome-specific GEV parameters for amplifica-
tions and deletions, as derived in Module 1d above, are
used in Module 2c to evaluate the probability that an
observed candidate amplification or deletion within a
chromosome is due to inherent noise in WES data. This
module employs the pgev function within fExtremes
(R package version 3010.81). Segments that achieve a sig-
nificant probability (P ≤ 0.05) are accordingly classified as
being amplified or deleted in the respective tumor sample.
Thus, by applying ENVE Modules 2a-c (Fig. 1), we identi-
fied chromosomal regions showing significant copy-
number alterations (ENVE P ≤ 0.05) in each of the 30 AA
CRC and 77 TCGA CRC samples (Additional file 1: Tables
S2 and S3).
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ENVE implementation
ENVE is implemented as a tool that is freely available
along with the source codes for academic use at [29].
ENVE can accept BAM files and then performs the
above outlined statistical analyses and outputs somatic
copy-number alterations along with their segmental Log-
Ratios and significance estimates for each tumor sample.
The computational resources required to run ENVE using
GC-corrected normalized read-counts are lightweight,
wherein all of the normal–normal and tumor–normal
analyses for a cohort of 77 tumor/normal samples could
be performed on a desktop with a single processor and
16GB of memory in under 10 h.

Evaluation of ENVE performance in detecting sCNAs in
tumor samples
We next proceeded to systematically evaluate the per-
formance of ENVE by assessing its sensitivity and speci-
ficity on individual tumor samples. Although there exists
no gold-standard technique for use as a comparator in
formal evaluation of sensitivity and specificity of sCNA
calls in stromal-admixed clinical tumor samples, we
nevertheless proceeded to evaluate ENVE’s performance
by comparing against widely used SNP arrays.
Accordingly, we performed SNP array-based sCNA de-

tection in both the AA CRC and TCGA CRC datasets.
For the TCGA CRC dataset, we obtained SNP array-
based sCNA calls for all of the 77 tumors included in
our WES study from the TCGA portal (see “Methods”).
Similarly, for the AA CRC dataset, we obtained SNP
array sCNA calls in 12 of the 30 AA CRC samples used
in our WES study (see “Methods”). As an additional key
comparator, we evaluated another algorithm, Control-
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CRC WES datasets. Significant sCNAs as detected by the Partek Suite w
array segments with Segment-Mean cutoffs of ±0.5 were used for com
FREEC [12], which has been reported to outperform
published WES-based sCNA detection algorithms in a
comprehensive review [19]. We performed sCNA detec-
tion on the two WES datasets using Control-FREEC’s
recommended parameters (see “Methods”), and subse-
quently compared the ENVE-based and Control-FREEC-
based sCNA calls in each of the AA CRC and TCGA
CRC samples, individually, with those detected by the
SNP arrays. We anchored the comparison to only within
gene-coding regions because SNP arrays also span sub-
stantial non-coding regions that are not interrogated by
the WES platform. Because SNP arrays are also not a
gold-standard technique for evaluating sensitivity and
specificity, we instead assessed the concordance between
the SNP arrays and the respective ENVE and Control-
FREEC algorithms. Specifically, as shown in Additional
file 2: Figure S3, the percent concordance between SNP
arrays and ENVE/Control-FREEC was calculated as the
ratio of the total length of all concordant exonic sCNA
regions called by the WES algorithm to the total length
of the exonic SNP array sCNA regions.
Figure 5a shows the median number of genes associ-

ated with sCNA regions in AA and TCGA CRC WES
datasets, as detected by ENVE and Control-FREEC,
along with their concordance with SNP array-based
estimates. For regions with copy-number amplifications,
ENVE achieved a higher concordance with SNP arrays
than Control-FREEC both in the AA CRC (97.32 % vs.
87.26 %) and TCGA CRC (97.68 % vs. 89.27 %) data-
sets, despite Control-FREEC calling on average 30 %
more amplification events than ENVE in both WES
datasets (Fig. 5b). This strongly implies that ENVE has
higher sensitivity and specificity in calling copy-number
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amplifications than Control-FREEC. Similarly, for re-
gions with copy-number deletions, ENVE achieved a
higher concordance rate with SNP arrays (Fig. 5a) than
Control-FREEC both in the AA CRC (90.6 % vs. 47.68 %)
and TCGA CRC datasets (78.22 % vs. 67.03 %), with
Control-FREEC calling on average 16 % more deletion
events than ENVE across samples in the TCGA CRC data-
set (Fig. 5b). Noting the extremely poor performance of
Control-FREEC in identifying deletion events, especially
in the AA CRC WES dataset, we proceeded to evaluate
whether its performance could be improved by enabling
Control-FREEC to infer and adjust for potential stromal
admixture and tumor content in the two WES datasets. In
this mode, we found Control-FREEC called on aver-
age 55 % more copy-number altered events than
ENVE, but did not match ENVE’s sensitivity in de-
tecting sCNAs in three of the four comparisons
across the AA and TCGA WES datasets (Additional
file 2: Figure S4A,B). Moreover, ENVE consistently
showed better performance than Control-FREEC when
tested across different Segment-Mean cutoff values that
were used for classifying sCNAs in the TCGA SNP array
dataset (Additional file 2: Figure S5), or at low overall read
depth simulated scenarios (Additional file 2: Figure S6).
Taken together, these results strongly point to the poten-
tially high sensitivity and specificity of the ENVE frame-
work in detecting sCNAs in WES data.
In addition to the above SNP array-based comparative

analysis, we also evaluated ENVE’s performance by using
a second orthogonal platform, qPCR. Accordingly, we
designed a custom qPCR copy-number array containing
a set of 11 genes, each representing a distinct genomic
locus that showed recurrent sCNAs (frequency ≥ 30 %)
among the 30 AA CRC cases in the WES dataset, as de-
tected by ENVE (Additional file 1: Table S2). Using this
qPCR array, we estimated sCNAs in a subset of AA
CRC cases (N = 6), where each of the cancers showed
copy-number alteration in at least one of the 11 genes
(Fig. 6a). Of note, these six cases were not represented
in the 12 samples used for the SNP array analysis, thus
allowing for an independent evaluation of ENVE’s per-
formance. Respective matched normal samples from
these six cancers, along with an additional six AA nor-
mal samples, were used as diploid genome controls in
the qPCR analysis. We again used the WES-based sCNA
calls from Control-FREEC for these six CRC cases as an
additional key comparator in this analysis. Comparison
of amplifications, deletions, and copy-neutral calls be-
tween qPCR and ENVE showed a significantly higher
overall concordance of 72.72 % (Chi-square P = 0.049,
Fig. 6b) compared to the 59 % concordance observed be-
tween qPCR and Control-FREEC (Additional file 2:
Figure S7). Notably, 54 % of the qPCR and ENVE
concordant alterations exhibited low tumor/normal
LogRatios ranging between −1 and 0.7 in the WES data
(Fig. 6a), likely suggesting that the higher performance
of ENVE compared to Control-FREEC results from
ENVE’s ability to detect sCNAs even at low tumor/nor-
mal read depth ratios in these stromal-admixed tumor
samples. It is important to note that although the genes
and samples selected for this comparison were chosen
based on ENVE’s output, we had no a priori expectation
of the qPCR results, thus allowing for a fair comparison
with Control-FREEC.
Taken together, although neither qPCR nor SNP arrays

are gold-standard techniques for a formal evaluation of
the sensitivity and specificity of ENVE and Control-
FREEC, our comparative analyses based on these com-
monly used techniques underscore the ability of the
ENVE methodology to reliably detect sCNAs in variable
stromal admixture tumor tissues, without having to re-
sort to complex and unstable estimations of tumor con-
tent or ploidy.
Characterization of sCNA landscapes in AA CRCs
Using the ENVE-significant alterations as input (Additional
file 1: Table S2), we next identified chromosomal
regions showing significant (q-value ≤ 0.25) recurrent
focal and arm-level alterations in AA CRCs using the
GISTIC tool [27] (see “Methods”; Additional file 1:
Tables S4–S6, Fig. 7). While focal sCNAs occurred
throughout the length of respective chromosomes
(Additional file 1: Tables S4 and S5), GISTIC’s broad-
level analysis showed significant (q-value ≤ 0.25)
chromosomal arm-level deletions specifically in 1p, 8p,
14q, 15q, 18p, and 18q, and amplifications in 1q, 7p,
8q, 13q, 19q, 20p, and 20q in AA CRCs (Additional file 1:
Table S6). Furthermore, chromosomal regions containing
well-known CRC tumor suppressor genes (TP53, DCC,
SMAD4, SMAD2) [9, 35, 36] showed recurrent copy-
number deletions in ≥25 % of AA CRC cases. Conversely,
copy-number amplifications in 13q and 20q loci, regions
known to harbor candidate oncogenes [37–39], were
observed in ≥27 % of AA CRC cases.
We next asked if there were any recurrent sCNA

signatures identified in AA CRCs (Fig. 7) that were sig-
nificantly different from Caucasian CRCs. Accordingly,
we identified a set of 30 predominantly late-stage MSS
Caucasian CRC cases from the TCGA WES cohort
(Additional file 1: Table S1), and evaluated for signifi-
cant sCNAs (ENVE P ≤ 0.05; Additional file 1: Table S3)
followed by GISTIC analysis to identify recurrent chromo-
somal arm-level alterations (q ≤ 0.25; Additional file 1:
Table S6). Assessing for significant chromosomal arm-
level alterations in these two cohorts, however, showed no
marked differences in their frequencies between the AA
and TCGA CRC WES datasets, and/or between the AA
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CRC WES and the TCGA CRC SNP array datasets (Add-
itional file 1: Table S6).
While the majority of the recurrent sCNAs observed

in AA CRCs (Fig. 7) were consistent with those previ-
ously reported for colon cancers [9], there is a likelihood
that ethnicity-associated differences exist in both the
location and frequency of focal sCNAs in CRCs. Al-
though we identified a significant number of focal copy-
number alterations in AA CRCs (Additional file 1: Table
S5), a larger platform-matched and algorithm-matched
sCNA analysis is necessary to systematically characterize
ethnicity-specific differences in focal sCNAs in CRCs.
Nonetheless, our prior study detailing the gene-
mutational landscapes in AA CRCs [20], together with
our current comprehensive characterization of sCNA
landscapes in AA CRCs, uncovers recurrent genetic
aberrations that are potentially associated with CRC
development in the AA population.
Discussion
We have developed a robust and unbiased method for
detecting somatic copy-number alterations using WES
data. Performance evaluation of ENVE in two independ-
ent WES tumor tissue datasets showed a high concord-
ance between ENVE and SNP array and qPCR-based
sCNA estimates (Figs. 5 and 6). In addition, we found
ENVE significantly and consistently outperformed the
best-in-class published WES-based sCNA detection
algorithm [19], Control-FREEC [12] (Figs. 5 and 6,
Additional file 2: Figures S4–S7). More importantly, our
performance evaluations strongly indicate that ENVE
has high sensitivity and specificity in detecting sCNAs
from WES data derived from stromal-admixed tumor
samples. In particular, our comparative analyses reveal
the effectiveness of ENVE in detecting genuine sCNAs
even at low tumor/normal segmental LogRatios (−1 to
0.7) (Fig. 6a), strongly underscoring the drawbacks with
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using pre-defined LogRatio value cutoffs to identify
sCNAs in tumors. In fact, examination of the relation-
ship between the LogRatios of individual segments and
ENVE-based P-values (Additional file 2: Figure S8)
shows that no single segmental LogRatio-cutoff value
would have captured all recurrent copy-number amplifi-
cations or deletions in either the AA or TCGA CRC
WES datasets. Besides, the commonly observed variabil-
ity in cancer cell content among clinical specimens
would preclude the use of a single LogRatio-cutoff value
for determining recurrent sCNAs. Although some pub-
lished copy-number algorithms have attempted to over-
come the challenge of defining LogRatio-cutoffs by
inferring the tumor content and ploidy of each sample
to estimate the absolute tumor copy-number [16, 18, 40, 41],
these estimates are often unstable, with these algo-
rithms differing in their underlying assumptions, which
may not always correspond to the complex chromo-
somal architecture in tumors [42]. Our approach, in
contrast, does not infer tumor content or ploidy, but
provides a probabilistic estimate of the presence of
sCNAs in tumors given the inherent noise in WES
measurements as estimated from non-malignant nor-
mal diploid samples, and therefore offers a simpler and
robust alternative.
Because one of the key characteristics of ENVE is the

use of normal diploid samples for capturing inherent
noise associated with WES data, we used DNA samples
derived from 54 immortalized lymphoblastoid cell lines
established from patients’ peripheral blood lymphocytes
to determine whether noise threshold estimates are sen-
sitive to the number of normal diploid samples used for
noise assessment. We estimated chromosome-specific
noise thresholds using normal–normal comparisons
derived from random groups of 16–54 samples in incre-
ments of 2, repeated ten times. We found the ENVE
estimates of noise thresholds across chromosomes to
be nearly all stable with respect to the number of
diploid samples used for the estimation (Additional
file 2: Figure S9). Although the chromosome-specific
noise thresholds are not sensitive to the number of diploid
samples being used, reliable estimation of the parameters
of the GEV distribution requires 100–150 extreme values
[43], corresponding to a lower acceptable limit of 15–20
normal diploid samples. Therefore, we suggest that using
15–20 normal samples is sufficient to model the inherent
noise in WES data, and as such is computationally effi-
cient. We therefore anticipate that ENVE’s key feature
involving modeling of inherent noise in WES data will
enable its broad application across studies, where
population-matched and platform-matched normal dip-
loid DNA samples are frequently available.
Foreseeing a likely practical situation where a normal

sample matching the tumor may not be available from
the patient, we further evaluated the performance of
ENVE in a simulated circumstance where each of the
tumor samples was compared to a pooled set of normal
samples derived from the WES data. This analysis was
performed using computationally derived pooled normal
samples for both the AA CRC WES and SNP array data-
sets (see “Methods”). Next, we compared the ENVE
sCNA calls with SNP array-based sCNA calls in the
same 12 AA CRC cases from above (Fig. 5). Notably, in
this pooled analysis (Additional file 2: Figure S10), ENVE
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exhibited high concordance rates with the SNP array
calls for both amplifications (97.72 %) and deletions
(92.86 %), as compared to the matched normal analysis,
further suggesting that ENVE remains a viable method-
ology for reliably detecting sCNAs in tumors even in the
absence of a matched normal sample.
We note that one of the limitations of published algo-

rithms [12–18] is their exclusive applicability to deep-
sequencing data derived from fresh-frozen material but
not archived formalin-fixed paraffin-embedded (FFPE)
biospecimens. While sequencing of archived FFPE DNA
allows for de novo characterization of gene mutations,
as shown by us and others [11, 44], estimation of copy-
number alterations using WES of FFPE specimens
remains challenging owing to poor DNA quality in
archived FFPE tumor samples. This, in turn, may result
in enhanced inherent noise, which may also be prevalent
in FFPE-derived normal diploid DNA samples. We have
not assessed the performance of ENVE in archival FFPE
samples, but we anticipate that ENVE’s noise-modeling
feature may reliably capture the degree of inherent noise
in FFPE samples, thus potentially enabling use of the
extensive clinically annotated tumor samples held in
pathology archives.
One potential limitation of ENVE is that, while it

models sources of inherent noise in WES data, it does
not explicitly model the likely occurrences of genomic
complexities, such as aneuploidy and hyperploidy, in the
tumors. This may possibly influence the true positive/
negative sCNA detection rates of the current ENVE
framework. However, estimating allele frequencies in
addition to LogRatios from WES data is a conceivable
extension to the current ENVE framework, and may ad-
dress the influence of such aberrations. Another likely
limitation of ENVE is the requirement of at least 15–20
platform-matched normal samples in order to capture
and model the inherent noise in WES data. However,
because most cancer-profiling studies are designed to
include the collection of platform-matched normal sam-
ples (matched/unmatched with the tumors), this limita-
tion is likely not burdensome. More importantly, we
note that the ENVE’s unique noise-modeling feature, not
included in any of the other published sCNA detection
algorithms, provides detailed and otherwise unavailable
comprehension of the inherent noise in any given WES
dataset to the user (Figs. 1b,c and 2b,c), thus allowing
for reliable interrogation of sCNAs in the tumor samples
in a platform-agnostic manner.

Conclusions
We present ENVE as a robust method for detecting
sCNAs in WES-based studies using either matched or un-
matched tumor/normal samples, without the need for
complex parameter choices or extensive user intervention.
In particular, ENVE reliably detects sCNAs in stromal-
admixed tumor samples and is therefore expected to be
broadly applicable across cancer-profiling studies. We
believe this user-friendly methodology should be portable
to any massively parallel DNA sequencing platform.
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