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Abstract. Nautilus is a concurrent anticipatory programming language based on the object-oriented language GNOME
which is a simplified and revised version of OBLOG. A semantics for Nautilus is given by Nonsequencial Automata, that
is a categorial semantic domain based on labeled transition system with full concurrency, where a class of morphisms
stands for anticipation. The semantics of an object in Nautilus is given by an anticipation morphism, which is viewed as a
special automaton morphism where target automata, called base, is determined by the computations of a freely generated
automata able to simulate any object specified over the involved attributes, and the source automata is a relabelled
restriction of the base. In order to introduce the anticipation of Nautilus, some examples are presented depicting the
features of the language.
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1 INTRODUCTION

The main purpose of this paper is to present Nautilus as a concurrent anticipatory programming language, i.e., its
semantic is an anticipatory system that involves "its future", inspired by [5] and based on [8, 9]. An anticipatory
system [5] is a system for which the present behavior is based on past and/or present events but also on future events
built from these past, present and future events. Nautilus [8, 2, 3] is a general purpose concurrent object-based
language, originally based on the language Gnome [10, 11, 14], and introduces some special features inspired by the
semantic domain such as anticipation. A semantics for Nautilus is given by Nonsequential Automata [8, 7, 9, 6],
which constitute a categorial [1] semantic domain based on labeled transition system with full concurrency, where a
class of morphisms stands for anticipation. It is a model which satisfies the diagonal compositionality requirement,
i.e., anticipations compose and distribute over system combinators.

In Nautilus, an object can be specified either as a simple object or the resulting object of an encapsulation,
aggregation, anticipation or parallel composition. An action of an object in Nautilus may be a sequential or
concurrent composition of clauses, executed in an atomic way. The semantics of an object in Nautilus is given by an
anticipation morphism where the target automata, called base, is determined by the computations of a freely
generated automata able to simulate any object specified over the involved attributes, and the source automata is a
relabelled restriction of the base. An anticipation maps transitions into transactions reflecting the implementation of
an automaton on top of another. Therefore, an anticipation mapping is viewed as a special automaton morphism (a
kind of implementation morphism) [7] where the target object is closed under computation, i.e., the target (more
concrete) automaton is enriched with all the conceivable sequential and nonsequential computations that can be split
into permutations of original transitions. Accordingly, the anticipation of an object is specified over an existing
object (an action may be mapped into a complex action of the target object). Also, an action may be mapped
according to several alternatives, that is, an anticipation may be state dependent. Thus, we say a more abstract object
is "implemented" over a more concrete object, possibly specifying alternative "implementations". In other words, an
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action of the source object may have more than one implementation (possible system anticipations) which may be
explicit (alternatives are explicit in the source object) or implicit (actions in the target object used in an anticipation
have alternatives). Without alternative implementations, anticipation can be seen as an abstraction mechanism in the
language (such as the top-down or bottom-up approach design of systems). In this way, Nautilus is a concurrent
programming language in which the objects uses the knowledge of past, present and, in some sense, future states.

2 NONSEQUENTIAL AUTOMATA

Nonsequential automata constitute a categorial semantic domain based on labeled transition system with full
concurrency, where restriction and relabelling are functorial and a class of morphisms stands for anticipation. It is a
model for concurrency which satisfies the diagonal compositionality requirement, i.e., anticipations compose
(vertically) and distribute over combinators (horizontally).

A nonsequential automaton is a special kind of automaton in which states and transitions posses a commutative
monoidal structure. A structured transition specifies an independence or concurrency relationship between the
component transitions. A structured state can be viewed as a "bag" of local states where each local state can be
regarded as a resource to be consumed or produced, like a token in Petri nets.

Nonsequential automata and its morphisms constitute a category which is complete and cocomplete with
products isomorphic to coproducts. A product (or coproduct) can be viewed as the parallel composition. In what
follows CMon denotes the category of commutative monoids and suppose that / e / where / is a set and k e {0, 1}
(for simplicity, we omit that / e / and k e {0,1}).
Definition (Nonsequential Automaton) A nonsequential automaton N = (V, T, d0, <5/, I, L, lab) is such that T = (T,
®, t), V = (Vj ®, e), L = (L, ®, e) are CMon-objects of transitions, states and labels respectively, do, <5/: T —> V are
CMon-morphisms called source and target respectively, i: V —> T is a CMon-morphism such that 5k oi = idv and
lab: T —>L is CMon-morphism such that lab(t) = T whenever there is v e V where i(v) = t.

Therefore, a nonsequential automaton N = (V, T, d0, <5/, I, L, lab) can be seen asN = (G, L, lab) where G = (V,
T, 30, <5/, i) is a reflexive graph internal to CMon (i.e., F, T are CMon-objects and <50, <5/, I are CMon-morphisms)
representing the automaton shape, L is a comutative monoid representing the labels and lab is the labeling
morphism. In an automaton, a transition labeled by T represents a hidden transition (and therefore, can not be
triggered from the outside). Note that, all idle transitions are hidden. The labeling procedure is not extensional in the
sense that two distinct transitions with the same label may have the same source and target states (as we will se later,
it is essential to give semantics for an object anticipation in Nautilus).

A transition t such that 80(0 = X, 81 (t) = Y is denoted by t: X —>• Y. Since a state is an element of a monoid, it
may be denoted as a formal sum nlAl®..,®nj?iAm, with the order of the terms being immaterial, where A/ is in V
and n\ indicate the multiplicity of the corresponding (local) state, for / = l...m. The denotation of a transition is
analogous. We also refer to a structured transition as the parallel composition of component transitions. When no
confusion is possible, a structured transition X®T. X(DA —> F@A where t: X —> Y and l/^: A —> A are labeled by X
and T, respectively, is denoted by X: X(DA—>Y(DA.
Definition (Nonsequential Automaton Morphism) A nonsequential automaton morphism h: NI —> N2 where N! =
(Vh Th d0i, da, li, L!, Iab2) andN2 = (V2, T2, 802, <5/2, k, L2, Iab2) is a triple h = (hv, hT, hL) such that hv: V2 -> V2,
hT: T! —> T2, hL: L/ —> L2 are CMon-morphisms, hv o Ski = 8k2 o hTr hT o I/ = 12 o hv and hL o labj = Iab2 o hT.

Nonsequencial automata and their morphisms constitute the category NAut.
Proposition The category NAut is bicomplete with products isomorphic to coproducts.

The category of nonsequential automaton is rich in categorial constructions (restriction, relabelling,
synchronization, encapsulation and anticipation) which provides the basic combinators for the Nautilus language
described in the next section.

Restriction and relabelling of transitions are functorial operations defined using the fibration and cofibration
techniques. Both functors are induced by morphisms at the label level. The restriction operation restricts an
automaton "erasing" all those transitions which do not reflect some given table of restrictions:
a) let N be a NAut-object with L as the CMon-object of labels, Table be a CMon-object, called table of restrictions,

and restr: Table —> L be a restriction morphism. Let u: NAut —> CMon be the obvious forgetful functor taking
each automaton into its labels;
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b) the functor u is a fibration and the fibers u~l Table, u~l L are subcategories of NAut. The fibration u and the
morphism restr induce a functor re sir: u~* L —> u~* Table. The functor restr applied to N provides the
automaton reflecting the desired restrictions.

A relabelling relabels the transitions of an automaton according to some morphism of labels. The steps for
relabelling are as follows:
a) let N be a NAut-object with LI as the CMow-object of labels, relab: LI —> L2 be a relabelling morphism. Let u

be the same forgetful functor used for synchronization purpose;
b) the functor u is a cofibration (and therefore, a bifibration) and the fibers u~* LI, u~* L2 are subcategories of

NAut. The cofibration u and the morphism relab induce a functor relab: u~l LI —> u~l L2. The functor relab
applied to N provides the automaton reflecting the desired relabelling.

Proposition The forgetful functor u: NAut —» CM on that takes each nonsequential automaton onto its underlying
commutative monoid of labels is a fibration and a cofibration.
Definition (Functor restr) Consider the fibration u: NAut —> CMon, the automaton automaton N = (V, T, do, <5/, l,
L, lab) and the restriction morphism restr: Table —> L. The restriction ofN is given by the functor restr: u~l L —>
u~* Table induced by u and relab applied to N.
Definition (Functor relab) Consider the fibration u: NAut —> CMon, the automaton automaton N = (V, T, do, <5/, l,
Lj, lab) and the relabelling morphism relab: LI —> L2- The relabelling ofN satisfying relab is given by the relab:
u~l LI —> u~l L2 induced by u and relab applied to N.

Synchronization and encapsulation of nonsequential automata are special cases of restriction and relabelling,
respectively. Since the product (or coproduct) construction in NAut stands for parallel composition, reflecting all
possible combinations between component transitions, it is possible to define a synchronization operation using the
restriction operation erasing from the parallel composition all those transition which do not reflect some table of
synchronizations (see [8]). A view of an automaton is obtained through hiding of transitions. A hidden transition, i.e.
relabelled by T, cannot be used for synchronization.

2.1 Anticipation in Nonsequential Automata

An anticipation maps transitions into transactions reflecting the implementation of an automaton on top of
another. Therefore, an anticipation mapping is viewed as a special automaton morphism (a kind of implementation
morphism) where the target object is closed under computation, i.e., the target (more concrete) automaton is
enriched with all the conceivable sequential and nonsequential computations that can be split into permutations of
original transitions.

In the text that follows, the category of categories internal to CMon is denoted by Cat(CMon), RGr(CMon) is the
category of reflexive graphs internal to CMon. We introduce the category LCat(CMon) which can be viewed as a
generalization of labeling on Cat(CMon). There is a forgetful functor from LCat(CMon) into NAut. This functor has
a left adjoint which freely generates a nonsequential automaton into a labeled internal category. The composition of
both functors from NAut into LCat(CMon) leads to an endofunctor, called transitive closure. The composition of
anticipations of nonsequential automata is defined using Kleisli categories (see [9]). In fact, the adjunction above
induces a monad which defines a Kleisli category. We show that anticipation distributes over the parallel
composition and therefore, the resulting category of automata and anticipations satisfies the diagonal
compositionality.
Definition (Category L,Cat(CMon)) Consider the category Cat(CMon), The category LCat(CMon) is the comma
category idcat(CMon)^dCat(CMon) where idCat(CMoh)is tne identity functor in Cat(CMon).

Therefore, a LCat(CMon)-object is a triple N = (G, L, lab) where G, L are Cat(CMon)-objects and lab is a
Cat(CMon) -morphism.
Proposition The category LCat(CMon) has all (small) products and coproducts. Moreover, products and
coproducts are isomorphic.
Definition (Functor en) Let N = (G, L, lab) be a LCat(CMon)-object and h = (hQ, h|J: N-| -> N2 be a
LCat(CMon)-morphism. The functor en: LCat(CMon) —> NAut is such that:
a) the Cat(CMon)-object G = (V, T, 50, 8lti, ;) is taken into the RGr(CMon)-object G = (V, T', <50', <5/, if), where T'

is T subject to the equational rule below and 50', <5/, i are induced by d0, 5P l considering the monoid Tf; the
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Cat(CMon)-object L = (V, L, 60, dpl, ;) is taken into the CMon-object Lf, where Lf is L subject to the same
equational rule; the LCat(CMon)-object N = (G, L, lab) is taken into the NAut-object N = (G, Lf, lab) where
lab is the RGr(CMon)-morphism canonically induced by the Cat(CMon)-morphism lab;

t: A^B € r u: B^C € T' t': A'^B' € 7' u f : B'->C' € F

b) the LCat(CMon)-morphism h = (hQ, h|_): N-| —> N2 with hQ = (hflfy, h^), h|_ = (hLy, hjjp) is taken into the
NAut-morphism h = (htfy, h^j", huj"): Nj —> A/2 where h^fj" and hup are the monoid morphisms induced by
hj\f^ and h^f, respectively.

The functor en has a requirement about concurrency which is (t;u)<8>(t' ;u'=)(t(8)t' );(®u' .)That is, the
computation determined by two independent composed transitions t;u and t' ;uis equivalent to the computation
whose steps are the independent transitions t(8)t' and U®ll'.
Definition (Functor nc) Let A = (G, L, lab) be a NAut-object and h = (hQ, hjj: AI —>A2 be a NAut-morphism. The
functor nc: NAut -> LCat(CMon) is such that:
a) the RGr(CMon)-object G = (V, T, 80, Srl) with V = (V, 0, e), T = (T, ®, r) is taken into the Cat(CMon)-object G

= (V, Tc, S0
C, 57

c,i, /; with Tc = (Tc, ®, T), 80
C, <5;

c, _;_: Tc xTc -JTC inductively defined as follows:
t: A -> B e T

t: A^B e Tc

t: A^B € Tc u: B^C € 7C t: A^B e Tc u: C^D E Tc

t;u: A ^ C e Tc t ® u : A 0 C ^ B 0 D e Tc

subject to the following equational rules:

t e T° t: A^B e Tc

T;t = t & t;T = t iA;t = t & t;iB = t

t : A ^ B e 7 c u: B -> C e Tc v: C^D e Tc

t;(u;v) = (t;u);v

t E Tc u E Tc t e Tc 1A E Tc 1B e Tc

= t ^A®1B = 1A0B

t € T° U € T° V € T°

t<8>(u<8>v) = ( t®u)®v

the CMon-object L is taken into the Cat(CMon)-object L = (1 , Lc, !, !, !, ;) as above; the NAut-object A = (G,
L, lab) is taken into the LCat(CMon)-object A = (G, L, lab) where lab is the morphism induced by lab;

b) the NAut-morphism h = (hy, hj, hj^y. AI -^A2 is taken into the Cat(CMon)-morphism h = (hQ, h|_): A-| — > A2
where hQ = (hy, hjc), h|_ = (!, hjjc) and hjc, hjjc are the monoid morphisms generated by the monoid
morphisms hj and hj1^ respectively.

Proposition The functor nc: NAut —> LCat(CMon) is left adjoint to en: LCat(CMon) —>NAut.
Definition (Transitive Closure Functor) The transitive closure functor is tc = cno nc: NAut -^>NAut.

Let <nc, en, T|, 8>: NAut —> LCat(CMon) be the adjunction above. Then, T = <tc, T|, (i> is a monad on NAut such
that |i = en 8 nc: tc^ —> tc where en: en —> en and nc: nc —> nc are the identity natural transformations and en 8 nc
is the horizontal composition of natural transformations. For some given automaton N, tc N is N enriched with its

computations, T|N: N — » tc N includes N into its computations and |iN: fc^N — » tc N flattens computations of
computations into computations.

An anticipation morphism 9 from A into the computations of B could be defined as a

556

Downloaded 27 Nov 2002 to 192.58.150.40. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



(p: A —> tc B and the composition of anticipations as in Kleisli categories (each monad defines a Kleisli category).
However, for giving semantics of objects in Nautilus, anticipations should not preserve labeling (and thus, they are
not NAut-morphisms). As we show below, each anticipation induces a NAut-morphism. Therefore, we may define a
category whose morphisms are AfAw^-morphisms induced by anticipations. Both categories are isomorphic.
Definition (Anticipation) Let t = <tc, rj, j£> where 77 = <?!&, ?]£>, /j. = <^G, I~IL> be the monad induced by the
adjunction <nc, en, 7], £>: NAut —> LCat(CMon). The category of nonsequential automata and anticipations,
denoted by ANAut, is such that (suppose the NAut-objects Nfc = <G#, L£, labfc>,for kin {1,2,3}):

a) ANAut-objects are the NAut-objects',
b) cp = cpQ: Nj —> N2 is a ANAut-morphism where (pQ: G] —> tc G2 is a RGr(CMon)-morphism and for each

NAut-object N, (p = TJQ: N —> N is the identity morphism ofN in ANAut\
c) let (p:N] —>N2, Y: A/2 —>N3 be ANAut-morphisms. The composition \j/o (pisa morphism iffQ OK cpQ:N]

where \f/Q OK cpQ is as illustrated in Figure 1.

Gi -

I

KLrr(LMon)

_^^, tcG2 ^Vrc2G3 _W^ tcG3

FIGURE 1. Composition of Anticipations

In what follows, an automaton <G, L, lab> may be denoted as a morphism lab: G —> inc L or it is abbreviated
just by lab: G —> L.
Definition (Anticipation with Induced Labeling) Let t = <tc, rjf JJL> where rj = <TIG, ?]£>, \JL = </IG> A*L> be the
monad induced by the adjunction <nc, en, 7], £>. The category of nonsequential automata and anticipations with
induced labeling ANAutL is such that (suppose the NAut-objects Nfc = <G#, L£, labfc>,for kin {1,2, 3}):

a) ANAutL-objects are the NAut-objects;
b) let cpQ: G] —> tc G2 be a RGr(CMon)-morphism, Then cp = «PG, (PL>: N! —>N2 is a ANAutj^-morphism where

<PL ^ given by the pushout illustrated in the Figure 2 (left). For each NAut-object N, (p = <TJQ: G —> tcG,
(PL: L —> Lrj>: N —> N is the identity morphism ofN in ANAutL where (pL is as above;

c) let (p: N] —> N2, ys: A/2 —> N$ be ANAutj^-morphisms, The composition iffocp is a morphism
VL °L ̂ L>; Nj ~^N$ where iffQ OK cpQ e \f/L OL q>L is as illustrated in Figure 2 (right).

——————————————————————————————————————————————— RGr(CMon)

labi Li
<PG

tcGz- +» tcL2

p.o.
+» L2,<pt

FIGURE 2. Induced Labelling in Anticipation
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It is easy to prove that ANAut and ANAutL are isomorphic (we identify both categories by ANAut). Thus, every
anticipation morphism can be viewed as a NAut-morphism. For a A/VA«£-morphism (p: A —» B, the corresponding
NAut-morphism is denoted by 9: A —» £c B.

Since anticipations constitute a category, the vertical compositionality is achieved. In the following proposition,
we show that, for some given anticipation morphisms, the morphism (uniquely) induced by the parallel composition
is also an anticipation morphism and thus, the horizontal compositionality is (also) achieved.
Proposition Let {(pf: N]j —> tc N2j} be an indexed family of anticipations. Then x/e/ <p/: Xf^lNji —> xiel tc ̂ 2i ^
an anticipation.

2.2 Restriction and Relabeling of Anticipations

The restriction of an anticipation is the restriction of the source automaton. The restriction of a community of
anticipations (i.e., the parallel composition of anticipated automata) is the restriction of the parallel composition of
the source automata whose anticipation is induced by the component anticipations. Note that, in the following
construction, we assume that the horizontal compositionality requirement is satisfied. Remember that tc preserves
products and that every restriction morphism has a cartesian lifting at the automata level.
Definition (Restriction of an Anticipation) Let <p: N] —> tc N2 be an anticipation and restrL: Table —> LI be a
restriction morphism and restrjy: restrN] —>Ni be its cartesian lifting. The anticipation of the restricted automaton
restr Nj is restr (p: restr N] —> tc N2 such that restr cp= cpo restrjy.
Proposition Let {(pi: N]} —> tcN2$ be an indexed family of anticipations where Nfa = <Gfa, Lfa, labfa>. Let
restrL: Table —> x/L/z- be a restriction morphism and restrjy: restrNjj —> x^Ni^ be its cartesian lifting. The
restriction of the parallel composition of component anticipations is restr (pf: restr N]} —> tc(XfN2i) such that
restr (pi = x/ <p/ o restrjy where x/ <p/ is uniquely induced by the product construction.

The relabelling of an anticipation is induced by the relabelling of the source automaton.
Definition (Relabelling of an Anticipation) Consider the Figure 3. Let q>: NI —> tc N2 be an anticipation where Nfc
= <G£, L£, labfc> and cp = «PG> 9L>- Let lab: Lj —> LI' be a relabelling morphism and relab Nj = <G], L]',
relab o lab]> the relabelled automaton. Then, the relabelling of the anticipation morphism is relab (p =
relab

•NAut—i
rest r N-| j

-RGr(CMon)
relab-labi

<PG|
1̂ tc Iab2 ,

tc 62 ————=-^ tc 1-2

FIGURE 3. Restriction and Relabelling of Anticipations

3 NAUTILUS: ITS SYNTAX AND SEMANTICS

The language named Nautilus is based on the object-oriented language GNOME [11] which is a simplified and
revised version of OBLOG [12, 13, 14]. It is a high level specification language for concurrent, communicating
systems. The main features of Nautilus are the following:
- objects may interact through callings;
- an object may be the aggregation of component objects;
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- an object may be anticipated into a sequential or parallel computations of another object;
- an object may be a view of another object;
- interaction, aggregation and anticipation may be state-dependent, i.e., may depend dynamically on some
conditions;
- interaction, aggregation and anticipation are compositional;
- the evaluation of an action is atomic;
- the clauses of an action may be composed in a sequential or multiple ways.

In this brief discussion of the language Nautilus we introduce some key words in order to help the understanding
of the examples below. The specification of an object in Nautilus depends on if it is a simple object or a structured
object such as an anticipation (over) or a parallel composition. In any case, a specification has two main parts:
interface and body. The interface declares the category (category) of some actions (birth, death). The body
(body) declares the attributes (slot - only for the simple object) and the methods of all actions. A birth or death
action may occur at most one time (and determines the birth or the death of the object). An action may occur if its
enabling (enb) condition holds. An action with alternatives (alt) is enabled if at least one alternative is enabled. In
this case, only one enabled alternative may occur where the choice is an internal nondeterminism. The evaluation of
an action (or an alternative within an action) is atomic. An action may be a sequential (seq/end seq) or multiple
(cps/end cps) composition of clauses. A multiple composition is a special composition of concurrent clauses
based on Dijkstra's guarded commands [4] where the valuation (val) clauses are evaluated before the results are
assigned to the corresponding slots. Due to space restrictions, we introduce some details of the language Nautilus
through examples (in the next section) and, at the same time, we give its semantics using nonsequential automata.

A nonsequential automata semantics for Nautilus is easily defined. Since an action may be a sequential or
multiple composition of clauses executed in an atomic way, the semantics of a simple object is given by an
anticipation morphism where the target automaton called base is determined by the computations of a freely
generated automaton able to simulate any object specified over the involved attributes and the source automaton is a
relabelled restriction of the base. Therefore, the semantics of an action in Nautilus is a nonsequential automaton
transition (and thus is atomic) anticipated into a (possible complex) computation.

The semantics of a anticipation is the composition of semantics, i.e., the anticipation of the source automata over
the target composed with the anticipation of the target over its base.

The semantics of an interaction, aggregation and encapsulation in Nautilus are straightforward since they are
given by synchronization and encapsulation of anticipation morphisms of nonsequential automata (an aggregation
also defines a relabelling). An action with inputs or outputs is associated to a family of transitions indexed by the
corresponding values.

The semantics of a community of concurrent objects is the parallel composition of the semantics of component
objects, i.e., the parallel composition of anticipations.

4 NAUTILUS AND ANTICIPATION

In this section we present some examples depicting the features of the Nautilus language. The examples are all
presented in textual format instead of the visual diagrammatic one for purpose of simplicity and to keep the paper
short.

We borrow the example called "The Carrot Principle" from Dubois [5] in order to introduce the anticipation
features, syntax and semantics of the Nautilus language. In this example "You like to go for a donkey ride. You sit
on the donkey which does not want to go. So you present a carrot before it and then it goes to capture the carrot, but
at the same time the carrot goes also before it. The carrot is an "anticipatory attractor" of the movement. To go to the
left or to the right, you position the carrot to the left or to the right respectively: this defines a selection of one
particular trajectory amongst all the potential possible subtrajectories." As mentioned by Dubois, this example
depicts two kinds of anticipation: the attractor which is the motor of the action, and several selections of local
anticipatory trajectories aiming at obtaining a global anticipatory trajectory or the final goal.

We have specified in Nautilus other examples of objects for systems with anticipation behavior. We can mention
among others which are not presented here due to limitation of space: two players competing against each other in a
game, a simulation of a simple case of free-will, a system which tries to avoid unwanted future states, etc.

The Nautilus code for the "Carrot Principle" is shown in Tables 1, 2, 3, 4. As the purpose of this example is to
explore the building blocks of the language, it is not necessarily the best example of specification one could built
using Nautilus. It has two simple objects named Donkey and Carrot, which specifies the behavior of the basic
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objects that participate in our system. An aggregation of these two simple object is defined as the Guided_Donkey
object, which behavior corresponds to the synchronization of the Donkey and the Carrot (it describes the
'anticipatory attractor" of the donkey movement). Finally we define a possible anticipation between all the possible
paths the Guided_Donkey may fallow, thus building the Trained_Donkey.

TABLE 1. Specification of Simple Object Donkey
object Donkey
export

New
Left
Right
Walk
Stop

category
birth request New

body
slot Direction: (N,S,E,W)
slot Action: 0..1

act New
altNewl

seq
val Direction « N
val Action « 0

end seq
alt New2

cps
val Direction « S
val Action « 0

end cps

alt New4
...

act Left
alt Leftl

enb Direction = N
val Direction « W

alt Left4
enb Direction = W
val Direction « S

act Right
alt Rightl

enb Direction = N
val Direction « E

alt Right4
enb Direction = W
val Direction « N

act Walk
val Action « 1

act Stop
enb Action = 1
val Action « 0

end Donkey

PABLE 2. Specification of Simple Object Carrot
object Carrot
export

New
Left
Right
Forward
Hide

category
birth request New

body
slot Pos: (L,R,F,H)
act New

val Pos « H
act Left

val Pos « L
act Right

val Pos « R
act Forward

val Pos « F

act Hide
alt Hidel

enb Pos = L
val Pos « H

alt Hide2
enb Pos = R
val Pos « H

alt HideS
enb Pos = F
val Pos « H

end Carrot

PABLE 3. Specification of Aggregation Object Guided Donkey
object Guided_Donkey
aggregation of

Donkey
Carrot

export
New
TurnLeft
TurnRight
Walk
Stop

category
birth request New

body
act New composed by

New of Donkey
New of Carrot

act TurnLeft composed by
Left of Donkey
Left of Carrot

act TurnRight composed by
Right of Donkey
Right of Carrot

act Walk composed by
Walk of Donkey
Forward of Carrot

act Stop composed by
Stop of Donkey
Hide of Carrot

end Guided_Donkey
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TABLE 4. Specification of Anticipation Object Trained Donkey
object Trained_Donkey
over Guided_Donkey
export

Born
Go
Return

category
birth request Born
request Go
request Return

body
act Born

New
act Go

alt Gol

seq
Walk
TurnLeft
Walk
Turn Right
Walk

end seq
alt Go2

seq
TurnLeft
Walk
TurnRight
Walk
Walk

end seq

act Return
seq

TurnLeft
TurnLeft
Walk
Walk
TurnLeft
Walk

end seq
end Trained_Donkey

The Donkey is composed of five possible actions: new (causes the object to be born, as pointed by the birth
clause), left (the donkey turns left), right (the donkey turns right), walk (the donkey goes forward), stop (the donkey
stops moving). Those actions alter the internal state of the object, i.e., they change the values of the object slots
which possible values are the cardinal points (N,SJZ,W) for the direction slot, and 0 (donkey is not moving) or 1
(donkey is moving) for the action slot. The set of actions listed in the sentence export are the only actions that can
be referenced by other objects. It is important to explain how actions are executed. Active actions are the ones for
which every condition regarding to its requirements of usage are satisfied and so that every call can be executed. The
selection of the activated action that will arise is an internal nondeterminism. Note that the birth action new has four
alternatives. Both alternatives are always enabled, since they do not have enabling conditions. However, since it is a
birth action, it occurs only once. For the purpose of explaining the semantics of Nautilus we have used the sequential
(seq) composition of clauses in the alternative newl and the multiple (cps) composition in the other alternatives.

The semantics of an independent object in Nautilus is given by an anticipation morphism of nonsequential
automata as follows:

The target automata called base is determined by the computations of a freely generated automata able to
simulate any object specified over the involved attributes, i.e., it is defined as the computations of an automaton
whose states are freely generated by the set of all possible values of all slots and the transitions are freely
generated by the set of all possible transitions between values of component attributes.
From the nonsequential automata computational closure, every possible computation over the object attributes
may be simulated. In this sense, the target automata anticipates all computation paths for the specified object.
The source automaton is a relabelled restriction of the base. The restriction can be seen as the operation which
selects the desired paths from all the possible anticipations.
Finally, the anticipation morphism Donkey: Dl^>tcD2, where Dl and D2 are nonsequential automata, is
partially represented in Figure 4. In the figure we show the mappings for two of the four alternatives of the
action New and also for the Stop action and only one of the Left actions. In the target automaton, the bold lines
represent part of the automaton used in the restriction morphism. Detailed instructions on how the morphisms
and the automata are built can be found in [8].

The behavior of the object Carrot is analogous and its semantics can be given in a similar fashion.
Aggregation consists in synchronizing two objects, therefore in a deeper level, synchronizing two automata. In

the example, the object Guided_Donkey is implemented as the aggregation (aggregation of) of two other
objects Donkey and Carrot respectively. The initially separated parts are now faced together forming an aggregator
object that will specify the aggregated objects behaviors. The semantics of an aggregation is the result of the
synchronization of anticipations of nonsequential automata.

The structured object Trained_Donkey is constructed using the anticipation clause (over) in Nautilus. The
anticipation constructor in Nautilus aims to set an object in function of the possible transactions from another object,
which is called the anticipation base. Thus, the anticipation of an object is specified over an existing object (the
Trained_Donkey is specified over the Guided_Donkey). An action may be anticipated into a complex action (a
sequential or multiple composition of clauses) of the target object. In the example, the actions Go and Return are
sequential compositions (seq/end seq) and the action Born is anticipated into a single action. Also, an action
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New New New New

FIGURE 4. Semantics of an Object in Nautilus

TD1

Walk fT W;L;W;R;W W;L;W;R;W Walk

FIGURE 5. Semantics of an anticipation in Nautilus
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may be anticipated according to several alternatives, that is, an anticipation may be state dependent. In this sense, an
action of the source object may have more then one implementation which may be explicit, i.e. alternatives are
explicit in the source object (the action Go has two explicit alternatives) or implicit, i.e. actions in the target object
used in an anticipation have alternatives (the action New has four alternatives as defined in the Donkey object). Note
that anticipations are compositional and therefore, the target object of an anticipation may be the source of another
anticipation.

The semantics of an anticipation is a composition of anticipations, i.e., the anticipation of the source automata
over the target composed with the anticipation of the target over its base. Consider the anticipation of the 'Carrot
Principle" example. Its semantics is given by the anticipation morphism partially illustrated in Figure 5. Let TD
(Trained_Donkey) be the anticipated object over the GD (Guided_Donkey) object. Let GD: GDl^cGD2 the
semantics of GD. The semantics of TD is the composition of the corresponding semantics: GDoTD, such that
TD: TD1—>£cGDl, where the nonsequential automaton TD1 is a relabelled restriction of tcGDl. Notice we only
depict a small part of the nonsequential automata in the figure, showing two implicit anticipations of the Born action
and two explicit ancitipations of the Go action.

5 CONCLUDING REMARKS

The language Nautilus is a concurrent object oriented language, which is based on the language GNOME, and
introduces some special features such as anticipation.

In Nautilus, an object can be specified either as a simple object or the resulting object of an encapsulation,
aggregation, anticipation or parallel composition. A semantics for Nautilus is given by Nonsequencial automata
which constitute a categorial semantic domain with full concurrency, based on structured labeled transition systems,
which satisfies the diagonal compositionality requirement, i.e., anticipation compose (vertically) and distributes
through the parallel composition (horizontally).

The semantics of a simple object is given by an anticipation morphism where the target automaton called base is
determined by the computations of a freely generated automaton able to simulate any object specified over the
involved attributes and the source automaton is a relabelled restriction of the base. Therefore, the semantics of an
action in Nautilus is a nonsequential automaton transition (and thus is atomic) anticipated into a (possible complex)
computation. Also, those computations may have alternatives representing possible system anticipations. The
semantics of a anticipation is the composition of semantics, i.e., the anticipation of the source automata over the
target composed with the anticipation of the target over its base (anticipation is explained using Kleisli categories).

As a general purpose programming language, Nautilus can be used to specify several different kinds of systems.
In this paper we have only covered simple examples depicting the anticipation constructor in Nautilus (which aims
to set an object in function of the possible transactions from another object). Nautilus has already been compared to
other object-oriented languages, such as Java, and has shown to posses several good features in the specification of
data types (e.g. a stack) and complex systems (e.g. a vending machine or a distributed white-board system) (see [2,
3] for a comparison).

For our knowledge, Nautilus is the first general purpose concurrent programming language to include
anticipation as a feature.
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