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Abstract

Galaxy cluster mass distributions offer an important test of the cold dark matter picture of
structure formation, and may even contain clues about the nature of dark matter. X-ray
imaging spectroscopy of relaxed systems can map cluster dark matter distributions, but are
usually complicated by the presence of central cool components in the intracluster medium.
Here we describe a statistically correct approach to distinguishing amongst simple alterna-
tive models of the cool component, and apply it to one cluster. We also present mass profiles
and central density slopes for five clusters derived fromChandra data, and illustrate how
assumptions about the cool component affect the resulting mass profiles. For four of these
objects, we find that the central density profile (r < 200h−1

50 kpc)ρ(r)∼ rα with −2<α< −1,
for either of two models of the central cool component. Theseresults are consistent with
standard CDM predictions.

1.1 Introduction
The cold dark matter (CDM) paradigm successfully describesmany aspects of the

formation of large-scale structure in the universe (Lahavet al. 2001; Peacocket al. 2001;
Navarro, Frenk & White 1997; Mooreet al. 1999b). Galaxy-scale dark matter halos, how-
ever, exhibit several apparent inconsistencies with CDM, for example: the number of Milky
Way satellites appears to be at least an order of magnitude lower than CDM predictions
(Kauffman, White, & Guideroni 1993; Mooreet al. 1999a; Klypinet al. 1999), and dark
matter halos in dwarf and low surface brightness galaxies are much less cuspy than in CDM
simulations (Burkert 1995; McGaugh & de Blok 1998; Mooreet al. 1999b). Some reports
(Tyson, Kochanski & Dell’Antonio 1998; Smailet al. 2000) even suggest that CDM fails
on galaxy cluster scales for some clusters, but the latter are controversial (Broadhurstet al.
2000; Shapiro & Iliev 2000).

Proposed modifications of CDM include self-interacting dark matter (Spergel & Stein-
hardt 2000; Firmaniet al. 2000), warm dark matter (Hogan & Dalcanton 2000), annihilating
dark matter (Kaplinghat, Knox & Turner 2000), scalar field dark matter (Hu & Peebles 2000;
Goodman 2000), and mirror matter (Mohapatra, Nussinov & Teplitz 2002), each of which is
invoked to soften the core density profile. Many of these modifications will soften the core
profile of galaxy clusters as well, although other astrophysical processes such as the adi-
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abatic contraction of core baryons (Hennawi & Ostriker 2002) may ameliorate this effect.
Baryons, however, introduce a host of complications to CDM simulations (Frenk 2002).

In order better to discriminate among CDM, its modifications, and other astrophysical
influences, we are mapping the dark matter profiles of a sampleof galaxy cluster cores.
We use imaging spectroscopy from theChandra X-ray Observatory (our own observations
– Arabadjis, Bautz & Garmire 2002 – and those in theChandra archive) to deproject the
radial profile of the intracluster medium (ICM) density and temperature for each cluster. In
order to extract a dark matter profile from spatially resolved X-ray spectroscopy one usually
assumes that the galaxy cluster is spherically symmetric and in hydrostatic equilibrium, and
so for the most part we have restricted our sample to clustersfor which, to judge from their
Chandra X-ray images, these assumptions appear to be valid. As notedby Allen (1998),
clusters in hydrostatic equilibrium often contain “cooling flows,” or cool components in their
cores, and these components must be properly modelled if reliable inferences about cluster
mass are to be drawn. If the model of the ICM contains only a single emitting component
(at temperatureT and densityρ) at each radius, the inferred temperature profile will tend to
dip significantly toward the center of a cluster with a cool component. If, however, gas in
the the core contains a second (cooler) component which is cospatial and isobaric with the
first, then a hot ICM component coexists with the cool component in the core. The latter
case tends to produce a larger central mass (see Figures 1.1)and steeper density profile than
the former.

In this contribution, we first discuss the proper method for distinguishing between these
two simple models, and then present results for mass profilesfor a number of clusters.

1.2 One Temperature or Two?

1.2.1 Approach
Our problem is to choose between a simple modelMs, representing a single-com-

ponent core ICM, and a complex modelMc, representing two-phase gas. In order to test for
the presence of a second emission component we adopt a simplified geometry containing
only two spherical shells (inner = 1, outer = 2). In both models (Ms andMc), shell 2 con-
tains a (hot) thermal plasma at temperatureT2h and densityρ2h. ModelMs contains only one
emission component in shell 1, characterized by a temperatureT1h and a densityρ1h, whereas
modelMc contains a hot and a cool emission component in shell 1, described byT1h, ρ1h,
T1c, andρ1c. The X-ray emission from each component is modelled spectroscopically using
the MEKAL model (see, e.g., Liehdal, Osterheld & Goldstein 1995) as implemented in the
XSPECsoftware package (Arnaud 1996). The best-fit parameter values of each model are
calculated using aχ2 minimization routine. Hereafter we will refer to the simpleand com-
plex model parameters using vectorsθs andθc, respectively; i.e.,θs = (T1h,ρ1h,T2h,ρ2h) and
θc = (T1h,ρ1h,T1c,ρ1c,T2h,ρ2h).

It might seem straightforward to apply a conventional test such as the likelihood ratio test
or theF-test (Bevington 1969; Cash 1979) to choose between the two models. However,
sinceθs lies on a boundary ofθc (with ρ1c = 0), these tests cannot be employed (Protassov
et al. 2002). Instead, we construct anempirical F-distribution using Markov Chain Monte
Carlo (MCMC) sampling, and gauge the significance of the complex model from the location
of theF value of the data within that distribution (Protassovet al. 2002).
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A B

Fig. 1.1. [A] One- and two-temperature mass profiles (dotted/triangles and
solid/circles, respectively) of EMSS 1358+6245; [B] empirical F-distribution for
modelsMs andMc of EMSS 1358+6245.

1.2.2 An empirical “F-distribution”
We briefly summarize our computation of an empirical “F-distribution” here; de-

tails will be presented elsewhere (Arabadjis & Bautz, in preparation). Starting with the
best-fit parametersθ0 of modelMs, we sample the 4D parameter space in its vicinity using
MCMC sampling. This is done by running a Tcl script within XSPECwhich calculates the
probability distribution functionP of a trial perturbationθ1 aboutθ0 given the observed data.
The trial point is chosen using the trial distribution functionq(θ0,θ1). The choice ofq is arbi-
trary; we restrict ourselves to functions which are symmetric in parameter space transitions,
i.e.q(θi,θ j) = q(θ j,θi). This new parameter set is accepted ifP(θ1)/P(θ0) exceeds a random
number on [0,1]. If not, the trial point is rejected and new one is selected. The sequence of
acceptedθi is a Markov Chain whose stationary distribution followsP(θ) (Lewis & Bridle
2002). We repeat this procedure until we have 100 values ofθ for modelMs.

For each of the parameter sets in the sample we simulate an X-ray spectrum, taking proper
account of the instrument response and photon statistics. We then model each of the simu-
lated data sets using bothMs andMc, and tabulate theF-value of each data set:

F =
χ2(θs) −χ2(θc)
χ2(θs)/ν(Ms)

(1.1)

whereν(Ms) is the number of degrees of freedom of the simple model. (In practice, the nor-
malization can be ignored.) TheF-distribution for the cooling flow cluster EMSS 1358+6245
is shown in panel B of Figure 1.1. TheF-value of the originalChandra data set is indicated
with a dashed line.

1.2.3 An example: MS1358+6245
Of the 100MCMC simulations that were run, only two resulted in anF-value which

exceeded that of the data – that is, ifM
s were the correct description, anF-value as large

as that observed would occur with a probability of only 2% – meaning that the model with
a separate, co-spatial cool component is preferred. The result is that a model with a steeper
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density profile and a larger central mass is favored. If this trend obtains for most cooling
flow clusters, it may rule out several of the CDM modifications.

1.3 Mass profiles and core slopes
We have yet to apply the foregoing analysis to discriminate between 1- and 2-

temperature models to all clusters in our sample. Instead, here we merely illustrate, in
Figure 1.2, the sensitivity of the derived mass profile and inferred density slope in the cluster
core to the assumed state of the intracluster medium for five reasonably relaxed clusters.
These results have been obtained using the deprojection methods described in Arabadjis,
Bautz & Garmire (2002). The left panel of Figure 1.2 shows that, generally, the inferred
mass is larger, the encircled mass profile marginally flatter, and, in consequence, the density
somewhat steeper in the 2-temperature model.

The right panel of Figure 1.2 shows the logarithmic density slope parameterα (here
defined so that the central densityρ(r) ∼ rα) inferred from the mass profile for each cluster.
(We plotα against redshift merely as a convenient means of display.) The indices shown
were obtained by fitting the mass profile withinr < 200 h−1

50 kpc, which is typically about
one-tenth the virial radius inferred from the best-fit NFW profiles for these objects. We note
that the core slopes are generally consistent with, or slight steeper than, the standard CDM
results (−1.5< α < −1.0; Navarro, Frenk & White 1997; Mooreet al. 1999b).

1.4 Summary
We have illustrated a rigorous and quantitative procedure for distinguishing be-

tween emission models of cool components in clusters. We have presented mass profiles
derived fromChandra X-ray images for five clusters, using both 1- and 2-temperature mod-
els for the central X-ray emission. In almost all cases we findthat the slope of the total
central mass density is consistent with, or slightly steeper than, standard CDM predictions.
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