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Abstract

We integrate out the Higgs boson in the electroweak standard model at one loop,
assuming that it is very heavy. We construct a low-energy effective Lagrangian, which
parametrizes the one-loop effects of the heavy Higgs boson at O(M0

H). Instead of applying
conventional diagrammatical techniques, we integrate out the Higgs boson directly in the
path integral.
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Introduction

Effective Lagrangians are used in order to describe the low-energy effects of heavy parti-
cles. An effective Lagrangian contains only light particles, and the heavy particles’ effects
are parametrized in terms of effective interactions of the light ones.

An effective Lagrangian can be constructed from the underlying theory by integrating out
the heavy particles. This can be done in two different ways:

• The diagrammatical method: One calculates the relevant Feynman graphs with heavy
particles and matches the full theory to the effective one.

• The functional method: One integrates out the the heavy fields directly in the path
integral.

Here we focus on the functional method which turns out to be much more elegant and simpler
than the diagrammatical one.

As a phenomenologically important application we consider the electroweak standard model
(SM) provided that MH ≫ MW, E. We integrate out the Higgs boson and determine the formal
limit MH → ∞ of the SM, i.e. all contributions of the Higgs boson to the resulting effective
Lagrangian at O(M0

H) (which includes logMH-terms).
In these proceedings we can sketch our method and our results only very briefly. The reader

who is interested in a more detailed presentation is referred to the original articles Refs. [1, 2].

Integrating out the Higgs field

We briefly describe the basic concepts of our method to integrate out heavy fields in the path
integral.

The background-field method

The SM Lagrangian contains terms cubic and quartic in the Higgs field. Thus, the integral
over the Higgs field is not of Gaussian type. However, this problem can be circumvented by
applying the background-field method (BFM) [3, 4], where each field is split into a (classical)
background field and a quantum field, such that the functional integral is only performed over
the latter. The background fields correspond at the diagrammatical level to tree lines while the
quantum fields correspond to lines in loops. Thus, at one loop it is sufficient to consider only
the part of the Lagrangian which is quadratic in the quantum fields. Then the heavy quantum
field can be integrated out by Gaussian integration.

The Stueckelberg formalism

Another advantage of the use of the BFM is that different gauges may be chosen for the quantum
and background fields, respectively [3, 4]. For our purposes it is useful to choose a generalized
Rξ-gauge [4] for the quantum fields (such that the quantized Lagrangian is still invariant under
gauge transformations of the background fields [3, 4]) but the unitary gauge for the background
fields. This aim can be achieved by applying a generalized [1, 2, 5] Stueckelberg transformation
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[6, 7] to the (background and quantum) vector fields, which removes the background Goldstone
fields from the Lagrangian. After all calculations are done, this transformation is inverted in
order to reintroduce the background Goldstone fields and to obtain a manifestly gauge-invariant
result.

Diagonalization of the Lagrangian

The one-loop Lagrangian of the SM (i.e. the part quadratic in the quantum fields) contains
terms linear in the quantum Higgs field H . After Gaussian integration these would yield terms
with inverse operators acting on the quantum fields. However, one can apply appropriate shifts
to the quantum fields, such that these linear terms are removed while the Higgs-independent
part of the Lagrangian remains unaffected [1, 5, 8]. The resulting Lagrangian can then be
written in the symbolic form

L1−loop = −1

2
H∆̃H(x, ∂x)H + L1−loop

∣

∣

∣

H=0
, (1)

where the operator ∆̃H , which depends on the background fields, also contains contributions
from the terms originally linear in the quantum Higgs field H owing to the shifts.

1/MH-expansion

Next the Gaussian integration over the quantum Higgs field can be performed. The resulting
functional determinant can be parametrized in terms of an effective Lagrangian [1, 9]

Leff =
i

2

∫

d4p

(2π)4
log

(

∆̃H(x, ∂x + ip)
)

. (2)

Then one can perform a Taylor expansion of the expression ∆̃H(x, ∂x + ip) around ∆̃H(x, ip)
(derivative expansion) followed by a Taylor expansion of the logarithm. These expansions yield
one-loop vacuum integrals of the type

∫

d4p
pµ1

. . . pµ2k

(p2 −M2
H)

l(p2 − ξM2
i )

m
, Mi = MW,MZ. (3)

These are O(M0
H) or higher only for 4 + 2(k − l −m) ≥ 0. Thus, in the two above-mentioned

Taylor expansions only a finite number of terms contribute to the effective Lagrangian Leff at
O(M0

H).

Elimination of the background Higgs field

After the integration over the quantum Higgs field H , the effective Lagrangian still contains
the background Higgs field Ĥ . The latter corresponds to Higgs tree lines, and thus can easily
be eliminated by a propagator expansion Diagrammatically this means that the Ĥ propagator
shrinks to a point rendering such (sub-)graphs irreducible, which contain background Higgs
lines only. Equivalently, the background Higgs-field can be eliminated by applying the classical
equations of motion which are valid at tree level. Before eliminating the field Ĥ, the Higgs sector
has to be renormalized by adding the Higgs-dependent part of the counterterm Lagrangian.
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The heavy-Higgs limit of the standard model

Proceeding as explained above, we find the formal limit of the SM for MH → ∞ – i.e. the
Lagrangian which contains the non-decoupling (O(M0

H)) effects of the Higgs boson – at one
loop [2]:

L1−loop
SM

∣

∣

∣

MH→∞

= L1−loop
GNLSM + Leff . (4)

In eq. (4) L1−loop
GNLSM is the one-loop Lagrangian of the gauged nonlinear σ-model (GNLSM)

[10], which is obtained from the SM Lagrangian by simply omitting the Higgs field in the
unitary-gauge. Leff is the effective Lagrangian generated by integrating out the Higgs field
and parametrizes the one-loop effects of the heavy Higgs field. Omitting terms which do not
contribute to the S-matrix we find [2]

LS−matrix
eff =

1

16π2

3

8

(

∆MH
+

5

6

)

g21
g22

M2
W

(

tr
{

T V̂µ

})2

− 1

16π2

1

24

(

∆MH
+

5

6

)

g1g2B̂µν tr
{

TŴ µν
}

+
1

16π2

1

48

(

∆MH
+

17

6

)

ig1B̂µν tr
{

T [V̂ µ, V̂ ν ]
}

− 1

16π2

1

24

(

∆MH
+

17

6

)

ig2 tr
{

Ŵµν [V̂
µ, V̂ ν ]

}

− 1

16π2

1

12

(

∆MH
+

17

6

)

(

tr
{

V̂µV̂ν

})2

− 1

16π2

1

24

(

∆MH
+

79

3
− 27π

2
√
3

)

(

tr
{

V̂µV̂
µ
})2

+O(M−2
H ) (5)

with

∆MH
= ∆− log

(

M2
H

µ2

)

, ∆ =
2

4−D
− γE + log(4π), (6)

where D is the space-time dimension in dimensional regularization, γE is Euler’s constant, and
µ is the reference mass.

In eq. (5) we have used the notation of Refs. [2, 10, 11], which we specify here only for the
case of the U -gauge, where the background Goldstone fields are absent, and thus the physical
content of the terms in Leff is most obvious:

V̂ µ = − i

2

(

g2Ŵ
µ
i τi + g1B̂

µτ3
)

, T = τ3, Ŵ µν =
1

2
Ŵ

µν
i τi, (7)

where B̂µ and Ŵ µ are the U(1) and SU(2) gauge fields, respectivly, g1 and g2 are the corre-
sponding gauge couplings and the τi are the Pauli matrices. The hats over the fields indicate
that these are background fields.

The result of our functional calculation agrees with the result of the diagrammatical calcu-
lation in Ref. [11].

The first two terms in eq. (5) contain vector-boson two-point (and higher) functions, the
next two three-point (and higher) functions and the last two four-point functions. Thus, the
first two parametrize the effects of the heavy Higgs boson to LEP 1 physics, the next two the
effects to LEP 2 physics and the last two those to LHC physics.
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Leff (5) does not contain custodial SU(2) violating terms of dimension 4, although there
are 7 such terms which are by naive power counting expected to be generated when integrating
out the Higgs field [10, 11]. As shown in Ref. [2], within our functional calculation it is obvious
that these terms vanish (while in a diagrammatical calculation [11] their absence seems to be
an accidental cancellation).

The effective interaction terms in eq. (5) have logarithmically divergent coefficients. Owing
to the renormalizability of the SM, these UV-divergences cancel against the logarithmically
divergent one-loop contributions from the GNLSM Lagrangian in eq. (4) [10]. Since logarithmic
divergences and logMH-terms in Leff always occur in the combination ∆MH

(6), the logMH-
terms in the SM coincide with the logarithmically divergent terms in the GNLSM, as assumed
in Ref. [10]. However, in addition eq. (5) contains finite and constant differences between the
SM and the GNLSM at one loop.

Conclusion

Our purpose with this project is twofold: On the one hand, we integrate out the Higgs boson in
the electroweak standard model at one loop. We parametrize the non-decoupling (i.e. O(M0

H))
effects of this field in terms of a low-energy effective Lagrangian. On the other hand, we have
developed a functional method to integrate out heavy fields directly in the path integral. This
method can be applied to integrate out any kind of non-decoupling heavy field and also be
generalized to a decoupling scenario.

Our method is an alternative to the conventional diagrammatical techniques and turns out
to be a huge simplification. While in a diagrammatical calculation various Green functions
(i.e. very many Feynman diagrams) have to be calculated and the effective Lagrangian has to
be determined indirectly by matching the full theory to the effective one [11], in a functional
calculation the effective Lagrangian is generated directly by integrating out the heavy fields.
The use of the BFM and of the Stueckelberg formalism automatically ensures gauge invariance
of the result.
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