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Abstract Area spectrum of black holes has been obtained
via various methods such as quasinormal modes, adiabatic
invariance and angular momentum. Among those methods,
calculations were done by assuming black holes in thermal
equilibrium. Nevertheless, black holes in the asymptotically
flat space usually have a negative specific heat and therefore
tend to stay away from thermal equilibrium. Even for black
holes with a positive specific heat, the temperature may still
not be well defined in the process of radiation, due to the
back reaction of a decreasing mass. With respect to these
facts, it is very likely that Hawking radiation is nonthermal
and the area spectrum is no longer equidistant. In this note,
we would like to illustrate how the area spectrum of black
holes is corrected by this nonthermal effect.

1 Area law and logarithmic correction

A finite size system often displays a discrete energy spec-
trum as regards quantum fluctuations. It was suggested that
since the dynamics of a black hole is uniquely determined
by its charge(s), which is closely related to the finite region
enclosed by the horizon, one expects the mass or area spec-
trum to display a similar discreteness [1,2]. There were many
proposals to obtain the area spectrum for various black holes
since then. Earlier methods of quantizing the horizon area
are mostly based on real or imaginary parts of the quasinor-
mal modes [3–12]. Recently the application of an adiabatic
invariant action variable did not use the quasinormal modes
[13,14] and the idea of quantizing the angular momentum
to obtain the area spectrum first appeared in the study of
non-extremal RN black holes [15]. The various methods of
quantization have settled on a spectrum of equidistant dis-
creteness,

�A = cl2
p. (1)

a e-mail: steve.wen@gmail.com

In particular, one obtained c = 8π for various kinds of black
holes in different spacetime dimensions. Nevertheless, this
universal result is closely related to the assumption that the
black hole is in the thermal equilibrium state where the Hawk-
ing temperature is well defined. Realistic black holes are
more likely to be in the nonequilibrium state due to their nega-
tive specific heat. Even for black holes with a positive specific
heat, the temperature may still be ill defined in the process of
radiation, due to the back reaction of the decreasing mass. A
universal logarithm correction to the Bekenstein–Hawking
area law has been predicted in various theories of quantum
gravity and modified general relativity, such that1 [16]

SBH = A

4l2
p

+ α ln

(
A

l2
p

)
, (2)

for horizon area A. The above logarithmic correction in (2)
can be regarded as the consequence of loop quantum correc-
tions of surface gravity [17,18] where α is the integral of the
trace anomaly [19,20]. The corresponding correction to the
area spectrum was computed for α = − 3

2 in the context of
an adiabatic invariance approach for constant surface gravity.
As a result, an uneven discreteness was observed [13]:

�A � 8πl2
p − 32παl4

p

A
. (3)

2 Nonthermal correction via back reaction

We are looking for the other correction due to back reac-
tion from the Hawking radiation. Among various models
of black hole radiation, the tunneling model proposed by
Parikh and Wilczek [21] has provided useful insights in the

1 In this paper, we will adopt the units such that Newton constant G,
Boltzmann constant kB , and the speed of light c are all equal to 1. In
these units, the Planck constant h̄ has the unit of area l2

p and the entropy
is dimensionless.
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effort to resolve the information loss paradox [22], black
hole evolution [23,24], and black hole remnants [25]. The
Parikh–Wilczek model regards the Hawking radiation as a
tunneling process in some stationary vacuum. The potential
barrier is dynamically established due to the back reaction,
which observes energy conservation. The emission rate in
the tunneling model has a universal result:

� ∼ e�SBH , (4)

given the black hole entropy change �SBH due to radiation.
The back reaction constantly changes the surface gravity dur-
ing the tunneling process, therefore the black hole is never in
thermal equilibrium. In the following, we would like to use
the Schwarzschild black hole as an example to argue that the
back reaction effect could produce another correction to the
area spectrum of order O(A−1).

In the case of Schwarzschild black hole with mass M , we
use the logarithmic corrected area law (2) to compute the
change of entropy after a particle with mass ω is tunneled
out, that is,

l2
p�SBH = l2

p

(
SBH

∣∣
M−ω

− SBH
∣∣
M

)
= −8π Mω + 4πω2

−αl2
p

(
2

ω

M
+ ω2

M2

)
+ O(α2), (5)

where the first term on the right hand side is nothing but the
thermal spectrum if the inverse of the Hawking temperature
T −1

H = 8π M is identified. In the following we will show
that the second term is the nonthermal correction due to back
reaction. Those terms with α inside are the series expansion
of the logarithmic correction with respect to the large black
hole mass and we regard them as the quantum correction to
the spectrum. To demonstrate how the area spectrum also
receives a correction from those nonthermal and quantum
effects, let us recall the derivation of (4) and then divert to
the quantization of area. The tunneling process happens at
the horizon in the following metric [21]:

ds2 = −
(

1 − 2M

r

)
dt2 +2

√
2M

r
dtdr +dr2 +r2d�2

2, (6)

which can be obtained from the static Schwarzschild black
hole metric by a coordinate transformation of the Painlevé-
type. The WKB approximation states that the emission rate
is � ∼ e−2ImS/h̄ , where the imaginary part of action reads

ImS = Im
∫ rout

rin

pr dr = Im
∫ M−ω

M

∫ 2(M−ω)

2M

dH

ṙ
dr , (7)

for differential Hamiltonian dH = d(M − ω′) = −d�′ and
the trajectories of emission are given by radial null geodesics

ṙ = 1 −
√

2(M−ω′)
r . We remark that the emitted mass ω has

been subtracted from M such that total energy is conserved.
The computation of the above integral showed exactly the
result (4) for �SBH = SBH

∣∣
M−ω

− SBH
∣∣
M [21]. This com-

putation was also carried out in many kinds of black hole
backgrounds and the result appears to be quite general. In
this paper, we will take it for granted, and we will further
apply the Sommerfeld–Bohr quantization rule by demand-
ing that each emission of ω carries away an action quantum
h or equivalently one degree of freedom h/ l2

p = h/h̄ = 2π

where the unit h̄ = l2
p is adopted. That is,2

2Im
∫ rout

rin

pr dr = −�SBH = 2π. (8)

This boils down to a simple quadratic equation of ω:

(
2 − αh̄

2π M2

)
ω2 −

(
4M + αh̄

π M

)
ω + h̄ = 0. (9)

Here both nonthermal and quantum effects ignorable, one can
drop the ω2 term and obtain the quantum of mass ω = h̄

4M
by solving (9). The area discreteness can be computed as

�A = 8πr
dr

d M
�M

∣∣
r=2M,�M=ω

= 8π h̄. (10)

The universal prefactor 8π agrees with that obtained from
previous methods [29]. Now we would like to include the
nonthermal and quantum effects by solving (9) honestly and
obtain

ω � h̄

4M
+ h̄2(π − 2α)

32π M3 + O
(

α2

M5

)
, (11)

where we choose the smaller root for ω < M and use the
Taylor expansion as long as M � l p. Finally, we have the
area discreteness

�A = 8π h̄ + (16π2 − 32πα)h̄2

A
+ · · · . (12)

Due to the nonthermal correction, the area spacing gets larger
as the horizon area shrinks as α < π

2 but gets smaller
vice versa. This can be regarded as an important signature
for the Parikh–Wilczek tunneling model of Hawking radia-
tion if the area discreteness were ever to be detected in the
future. The area discreteness can easily be generalized to
the Schwarzschild black hole in arbitrary dimension D [30],
where

�A=8π h̄D/2−1+ (32π2 − 32π(D−2)α)h̄(D−2)

(D − 2)A
+· · · ,

(13)

2 A similar quantization rule was previously adopted in [26,27] for the
Schwarzschild black hole and in [28] for the massless topological black
hole.

123



Eur. Phys. J. C (2015) 75 :78 Page 3 of 6 78

where A = r D−2
0 �D−2 for horizon radius r0. We remark

that in D = 4 the nonthermal correction is competitive to the
quantum correction, however, the former becomes less and
less important as D increases.

To obtain a correction to black holes with more charges or
different topology, one can in principle solve the following
algebraic equation as a consequence of (8)3:

SBH(Qi − qi ) − SBH(Qi ) + 2π = 0, (14)

given the change of black hole entropy as a function of black
hole charges Qi and emitted charges qi . This is the basic
assumption in our paper. In the following section, we will
show our new results of a nonthermal correction by solving
(14) for various kinds of black holes.

3 Nonthermal correction for various black holes

Here we will follow the same approach applied to the
Schwarzschild black hole in the previous section and obtain
a nonthermal correction for various kinds of black holes. We
will assume the limit of large mass, i.e. M � l p, to ensure
the use of (8), and we will focus only on the nonthermal
correction but set α = 0 to ignore the quantum correction.

• For a Reissner–Nordström black hole of mass M and
electric charge Q, we have the metric

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
2,

f (r) = 1 − 2M

r
+ Q

r2 , (15)

where the horizon r+ = M + √
M2 − Q2. It is conve-

nient to define the extremality � = Q/M and the charge-
mass-ratio of the emitted particle γ = q/ω. The area
discreteness in general reads

�A = 8π h̄(1 + a(�, γ ))+ 16π2h̄2

A
(1 + b(�, γ )), (16)

where the functions a(�, γ ) and b(�, γ ) are complicated
but can be perturbatively computed. For instance,

a(�, γ ) � 1

2
γ� + O(�2),

b(�, γ ) � −γ 2

2
+ 3

2
γ� − 3

4
γ 3� + O(�2), (17)

3 There are many works following the Parikh–Wilczek tunneling model
[21] to apply to black holes with more than one charge, such as Reissner–
Nordström black holes [31] and BTZ black holes [37], to mention a few.
They all agree with the expression (4). It was pointed out in [32] that
(4) can be obtained without spacetime but relying on the Hilbert space
description of the black hole.

in the near Schwarzschild limit (� � 1). On the other
hand, in the near extremal limit where �, γ → 1, we
obtain

a(x, γ ) � 3 − 12x + O(x2), b(x, γ )

� 3 − 22x + O(x2), (18)

where � ≡ 1 − 2x2.
• For a BTZ black hole in three dimensions [33,34], the

area spectrum has been discussed in [35,36] and the tun-
neling rate was discussed in [37]. We begin with the met-
ric

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(

dφ − J

2r2 dt

)2

,

f (r) = −M + r2

l2 + J 2

4r2 . (19)

The entropy function is well known to be

SBH = π

2h̄
r+, (20)

where r2+ = 1
2

(
Ml2 + √

M2l4 − J 2l2
)
. Following (14),

one obtains for nonrotating BTZ (J = 0)

�A = 8π h̄ − 32π2h̄2

A
+ · · · . (21)

For J 
= 0, the area spacing in general depends on the
black hole angular momentum J and the spin of the emit-
ted particle j . If one defines the extremality � ≡ J/M
and the emitted particle’s spin–mass ratio γ ≡ j/ω, then

�A = 8π h̄ − 32π2h̄2

A
(1 + aBTZ(�, γ )) + · · · , (22)

where the function aBTZ(�, γ ) can be solved by Taylor’s
expansion at small � and γ :

aBTZ(�, γ ) � γ 2

l2 − 2
γ�

l2 − �2

8l2 + · · · . (23)

The constant leading term in (22) agrees with that found
in [35,36], and, moreover, we observe that the nonthermal
correction depends on � and γ in general.

• For a D-dimensional AdS black hole of different horizon
topologies, we have the metric

ds2 = − f (r)dt2 + f −1dr2 + r2d�2
D−2,

f (r) = k + r2

l2 − aM

r D−3 . (24)
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For simplicity, we first examine the one with a planar hori-
zon, that is, k = 0. The horizon can be analytically solved

as r+ = (al2 M)
1

D−1 . We find a leading-order equidistant
spectrum:

�A = 8π h̄D/2−1 − 32π2h̄(D−2)

(D − 2)A
+ · · · . (25)

Our finding shows a leading universal factor 8π for any
D > 3, however, it is different from that obtained in [38].
The nonthermal correction takes the same form as that
in the Schwarzschild black hole (13) but with opposite
sign. We remark that the correction implicitly depends
on the AdS radius of curvature l via the horizon area A.
This result cannot be simply compared with (13) in the
flat limit l → ∞ due to the different horizon topology
chosen here.
For the spherical near-horizon topology, k = 1, we find
that the correction to the area spectrum explicitly depends
on l. In particular, at the limit of large mass and weak
curvature (but keeping M/ l small), one obtains

�A � 8π h̄ + π h̄2

M2 + l−2
(

4Mh̄ − h̄3

8M3

)
+ · · · , (26)

for D = 4. We remark that the result of (13) can be
reproduced in the flat limit l → ∞.

• For a D-dimensional Schwarzschild–de Sitter black hole,
we have the metric

ds2 = −
(

1 − 2M

r D−3 − r2

l2

)
dt2

+
(

1 − 2M

r D−3 − r2

l2

)−1

dr2 + r2d�2
D−2. (27)

First, we would like to examine the case of D = 3, where
one obtains the exact solution

�A = 8π h̄. (28)

Since there is in fact no black hole in three dimensional de
Sitter space, this should be identified as the area spectrum
of d S3 space itself.4

For D > 3, one receives the area spectrum correction.
For instance, in D = 4 for large M and l:

�A � 8π h̄ − 2592π h̄22/3
(

M

l

)8/3

+ · · · . (29)

4 As discussed in [39], if an additional contribution due to volume
change is included, we would obtain twice the discreteness as �A =
16π h̄.

• For a D-dimensional AdS topological black hole, we
have the metric [40]

ds2 = −
(

−1 − 2M

r D−3 + r2

l2

)
dt2

+
(
−1 − 2M

r D−3 + r2

l2

)−1

dr2+r2d�2
D−2. (30)

For D = 4, we obtain the area spectrum for large M and
l:

�A � 8π h̄ − 2592π h̄22/3
(

M

l

)8/3

+ · · · , (31)

which is the same as (29). For a massless topological
black hole, where M → 0, we obtain the universal result
�A = 8π h̄.

• For a D-dimensional Gauss–Bonnet black hole, the met-
ric reads

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2
D−2,

f (r) = 1 + r2

2α

[
1 − (1 + 4α′a′M

r D−1 )1/2
]

,

α′ = (D − 3)(D − 4)αGB, a′ = 16πG

(D − 2)�D−2
.

(32)

The tunneling model of the (AdS) Gauss–Bonnet black
hole has been studied in [41,42], and the emission rate
agrees with that in (4), where the entropy is given by

S = r D−2+ �D−2

4

[
1 + 2

(
D − 2

D − 4

)
α′

r2+

]
, (33)

where r+ satisfies

a′Mr5−D+ = r2+ + α′. (34)

The area spectrum was discussed in [43], where the
conclusion that the entropy spectrum is equally spacing
agrees with our assumption (14). In particular, the coef-
ficient α′ vanishes for D = 4 such that

�A = 8π h̄ + 16π2h̄2

A
+ · · · , (35)

which has no effect from the Gauss–Bonnet term. For
D = 5, the area spectrum correction can be expressed
via Taylor’s expansion of αGB/M :
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Fig. 1 Time evolution for the usual Hawking radiation as blackbody
radiation, and radiation with the nonthermal correction. The latter evap-
orates faster due to increased spacing of the area spectrum

�A = 8π h̄(1 + aGB(αGB, M)) + 32π2h̄2

3A
×(1 + bGB(αGB, M)) + · · · ,

aGB(αGB, M) = − 3π

2M
αGB + 9π2

8M2 α2
GB + · · · ,

bGB(αGB, M) = − 3π

2M
αGB + 9π2

16M2 α2
GB + · · · . (36)

4 Discussion

In summary, we have investigated the nonthermal correction
to the area spectrum in various kinds of black holes using the
quantization rule (8). This semiclassical approximation usu-
ally works better for highly excited states, that is, large black
hole masses (charges), and the leading term reproduces the
universal coefficient 8π . However, if the equidistant spec-
trum for the entropy, |�SBH| = 2π , could persist through
the lifetime of a black hole, Eq. (8) predicts an increasing
correction to the area spectrum toward the end of evapora-
tion. To estimate the nonthermal correction to the emission
rate of a Schwarzschild black holes, we observe in (12) that
the nonthermal correction contributes like a quantum cor-
rection with α = −π

2 at the O(1/A) order. Therefore, the
nonthermal effect could be modeled as radiation at an effec-
tive temperature5

T eff
H = 1

8π M

(
1 − 1

8M2

)−1

. (37)

In Fig. 1, we plot both the thermal radiation and the nonther-
mal radiation for the Schwarzschild black hole. It is expected

5 The idea of effective temperature was previously introduced in
[26,27] and his definition of effective temperature agrees with our obser-
vation here via a quantum correction.

that the black hole speeds up its evaporation in the nonther-
mal radiation thanks to increasing spacing in area spectrum.
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