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Abstract
The convergence analysis of a variable KM-like method for approximating common
fixed points of a possibly infinitely countable family of nonexpansive mappings in a
Hilbert space is proposed and proved to be strongly convergent to a common fixed
point of a family of nonexpansive mappings. Our variable KM-like technique is
applied to solve the split feasibility problem and the multiple-sets split feasibility
problem. Especially, the minimum norm solutions of the split feasibility problem and
the multiple-sets split feasibility problem are derived. Our results can be viewed as an
improvement and refinement of the previously known results.
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1 Introduction
Problems of image reconstruction from projections can be represented by a system of
linear equations

Ax = b. (.)

In practice, the system (.) is often inconsistent, and one usually seeks a point whichmin-
imizes x ∈ R

n by some predetermined optimization criterion. The problem is frequently
ill-posed and there may be more than one optimal solution. The standard approach to
dealing with that problem is via regularization. The well-known convex feasibility prob-
lem is to find a point x∗ satisfying the following:

to find a point x ∈
m⋂
i=

Ci,

where m ≥  is an integer, and each Ci is a nonempty closed convex subset of a Hilbert
space H . A special case of the convex feasibility problem is the split feasibility problem
given by:
Let C, Q be nonempty closed convex subsets of Hilbert spaces H and H, respectively,

and let A :H →H be a bounded linear operator. The split feasibility problem (SFP) is

to find a point x ∈ C such that Ax ∈Q. (.)
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The SFP is said to be consistent if (.) has a solution. It is easy to see that SFP (.) is
consistent if and only if the following fixed point problem has a solution:

find x ∈ C such that x = PC
(
I – γA∗(I – PQ)A

)
x, (.)

where PC and PQ are the projections onto C andQ, respectively, and A∗ is the adjoint ofA.
Let L denote the spectral radius of A∗A. It is well known that if γ ∈ (, /L), the operator
T = PC(I – γA∗(I – PQ)A) in the operator equation (.) is nonexpansive [].
It has been extensively studied during the last decade because of its applications inmod-

eling inverse problems which arise in phase retrievals and in medical image reconstruc-
tion. It has also been applied to modeling intensity-modulated radiation therapy; see, for
example [–] and the references therein.
Several iterativemethods have been proposed and analyzed to solve the SFP (.); see, for

example [, , , –] and the references therein. Byrne [] introduced the CQ algorithm

xn+ = Txn, n ∈N, (.)

and proved that the sequence {xn} generated by the CQ algorithm (.) converges weakly
to a solution of SFP (.), where T = PC(I – γA∗(I – PQ)A) and  < γ < /L.
In view of the fixed point formulation (.) of the SFP (.), Xu [] and Yang [] applied

the following perturbed Krasnosel’skĭı-Mann CQ algorithm to solve the SFP (.):

xn+ = ( – αn)xn + αnTnxn, n ∈ N. (.)

Here {Tn} is a sequence of operators defined by

Tn = PCn

(
I – γA∗(I – PQn )A

)
, n ∈N,

where {Cn} and {Qn} are sequences of nonempty closed convex subsets in H and H,
respectively, which obey the following assumption:
(C)

∑∞
n= αndρ(Cn,C) <∞ and

∑∞
n= αndρ(Qn,Q) < ∞ for each ρ > , where dρ is the

ρ-distance between Qn and Q (see Section .).
It is not very easy to verify condition (C) for each ρ > . Thus, the condition (C) is

quite restrictive even for weak convergence of the sequence {xn} defined by (.). One of
our objectives is to relax the condition (C).
Many practical problems can be formulated as a fixed point problem (FPP): finding an

element x such that

x = Tx, (.)

where T is a nonexpansive self-mapping defined on a closed convex subset C of a Hilbert
spaceH . The solution set of FPP (.) is denoted by F(T). It is well known that if F(T) �= ∅,
then F(T) is closed and convex. The fixed point problem (.) is ill-posed (it may fail to
have a solution, nor uniqueness of solution) in general. Regularization by contractions can
removed such illness.We replace the nonexpansive mapping T by a family of contractions
Tf
t := tf + (– t)T , with t ∈ (, ) and f : C → C a fixed contraction.We call f an anchoring

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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function. The regularized problem of fixed point for T is the fixed point problem for Tf
t .

The mapping Tf
t has a unique fixed point, namely, xt ∈ C. Therefore, xt is the solution of

the fixed point problem

xt = tfxt + ( – t)Txt . (.)

We now discretize the regularization (.) to define an explicit iterative algorithm:

xn+ = tnfxn + ( – tn)Txn, n ∈ N. (.)

The iterative algorithm (.) is due to Moudafi [], by generalizing Browder’s and
Halpern’s methods, who introduced viscosity approximation methods. Suzuki [] estab-
lished a strong convergence theorem by using Halpern’s method to averaged mapping
Tλ = λI + (–λ)T , λ ∈ (, ) for nonexpansive mappings T in certain Banach spaces. Taka-
hashi [] proved a strong convergence theorem of the following iterative algorithm for
countable families of nonexpansive mappings in certain Banach spaces:

xn+ = tnfxn + ( – tn)Tnxn, n ∈N. (.)

Recently, Yao and Xu [] introduced and studied strong convergence of the following
modified methods:

xn+ = PC
[
tnfxn + ( – tn)Txn

]
, n ∈N, (.)

where f : C → H is a fixed non-self contraction and {tn} is a sequence in (, ) satisfying
the conditions:
(S) limn→∞ tn =  and

∑∞
n= tn =∞,

(S) either
∑∞

n= |tn+ – tn| < ∞ or tn+/tn →  as n→ ∞.
One can easily see that (.) is a regularized iterative algorithm.
Motivated by [, , ], we study the followingmore general non-regularized algorithm,

called variable KM-like algorithmwhich generates a sequence {xn} according to the recur-
sive formula:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = αnfnxn + ( – αn)Tnxn,
xn+ = ( – βn)xn + βn ProjC[yn] for all n ∈N,

where {αn} and {βn} are sequences in (, ), {Tn} is a sequence of nonexpansive self-
mappings of C and {fn} is a sequence of (not necessarily contraction) mappings from C
into H .
In the present paper, we will study the strong convergence of the proposed variable KM-

like algorithm in the framework of Hilbert spaces. The paper is organized as follows. The
next section contains preliminaries. In Section , we will study the convergence analysis
of our variable KM-like algorithm for fixed point problem (.) without the assumption
(S). This result will be applied to prove convergence of some perturbed algorithms for the
SFP (.) and the multiple-sets split feasibility problem under some weaker assumptions.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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As special cases, we obtain algorithms which converge strongly to the minimum norm
solutions of the split feasibility problem and the multiple-sets split feasibility problem.
Our results are new and interesting in the following contexts:

(i) Our algorithm (.) is not regularized by contractions.
(ii) fn is not necessarily contraction. In the existing literature, anchoring function f is a

fixed contraction mapping [, –] or strongly pseudo-contraction mapping
[].

(iii) In the convergence analysis of (.) for fixed point problem (.), the assumption
(S) is not required.

(iv) A fixed ρ >  for a (C)-like condition is adopted.

2 Preliminaries
Let C be a nonempty subset of a Hilbert space H . Throughout the paper, we denote by
Br[x] the closed ball defined by Br[x] = {y ∈ C : ‖y – x‖ ≤ r}. Let T,T : C → H be two
mappings. We denote by B(C) the collection of all bounded subsets of C. The deviation
between T and T on B ∈ B(C) [], denoted by DB(T,T), is defined by

DB(T,T) = sup
{‖Tx – Tx‖ : x ∈ B

}
.

Let T : C →H be amapping. Then T is said to be a κ-contraction if there exists κ ∈ [, )
such that ‖Tx – Ty‖ ≤ κ‖x – y‖ for all x, y ∈ C. Furthermore, it is called nonexpansive if
‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
Let {fn} be a sequence of mappings from C into H . Following [–], we say {fn} is a

sequence of nearly contractionmappings with sequence {(kn,an)} if there exist a sequence
{kn} in [, ) and a sequence {an} in [,∞) with an →  such that

‖fnx – fny‖ ≤ kn‖x – y‖ + an for all x, y ∈ C and n ∈ N.

One can observe that a sequence of contraction mappings is essentially a sequence of
nearly contraction mappings.
We now construct a sequence of nearly contractions.

Example . Let H = R and C = [, ]. Let {fn} be a sequence of mappings fn : C → H
defined by

fn(x) =

{
x

n+ , if ≤ x ≤ 
 ;


n+ , if 

 < x≤ .
(.)

Set kn := 
n+ . We consider the following cases:

Case : If x, y ∈ [,  ], then

fnx – fny = kn(x – y) for all n ∈N.

Case : If x, y ∈ (  , ], then

fnx – fny =  for all n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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Case : If x ∈ [,  ] and y ∈ (  , ], then

|fnx– fny| =
∣∣∣∣ x
n + 

–


n + 

∣∣∣∣ ≤ 
n + 

|x– y|+ 
n + 

|y–| ≤ kn|x– y|+ 
(n + )

, n ∈N.

Therefore, for all x, y ∈ [, ], we have

|fnx – fny| ≤ kn|x – y| + an for all n ∈N,

where an := 
(n+) . Therefore, {fn} is a sequence of nearly contraction mappings with se-

quence {(kn,an)}.

Let C be a nonempty closed convex subset of a Hilbert space H . We use PC to denote
the (metric) projection from H onto C; namely, for x ∈ H , PC(x) is the unique point in C
with the property

∥∥x – PC(x)
∥∥ = inf

{‖x – z‖ : z ∈ C
}
.

The following is a useful characterization of projections.

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H and let PC

be the metric projection from H onto C. Given x ∈H and z ∈ C. Then z = PC(x) if and only
if

〈x – z, y – z〉 ≤  for all y ∈ C.

Lemma . [, Corollary ..] Let C be a nonempty closed convex subset of H and T :
C → C a nonexpansive mapping. Then I – T is demiclosed at zero, that is, if {xn} is a
sequence in C weakly converging to x and if {(I – T)xn} converges strongly to zero, then
(I – T)x = .

Lemma . [] Let {an} and {cn} be two sequences of nonnegative real numbers and let
{bn} be a sequence in R satisfying the following condition:

an+ ≤ ( – αn)an + bn + cn for all n ∈N,

where {αn} is a sequence in (, ]. Assume that
∑∞

n= cn < ∞. Then the following statements
hold:
(a) If bn ≤ Kαn for all n ∈N and for some K ≥ , then

an+ ≤ δna + ( – δn)K +
n∑
j=

cj for all n ∈N,

where δn =	n
j=( – αj) and hence {an} is bounded.

(b) If
∑∞

n= αn =∞ and lim supn→∞(bn/αn) ≤ , then {an}∞n= converges to zero.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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3 Convergence analysis of a variable KM-like algorithm
First, we prove the following.

Proposition . Let C be a nonempty closed convex subset of a real Hilbert space H , T :
C → C a nonexpansive mapping with F(T) �= ∅ and f : C →H a κ-contraction. Then there
exists a unique point x∗ ∈ C such that x∗ = PF(T)f (x∗).

Proof Since f : C → H is a κ-contraction, it follows that PF(T)f is a κ-contraction from C
onto itself. Then there exists a unique point x∗ ∈ C such that x∗ = PF(T)f (x∗). �

3.1 A variable KM-like algorithm
Let C be a nonempty closed convex subset of a real Hilbert spaceH . Let {fn} be a sequence
of nearly contractions from C into H such that {fn} converges pointwise to f and let {Tn}
be a sequence of nonexpansive self-mappings of C which are viewed as perturbations. For
computing a common fixed point of the sequence {Tn} of nonexpansive mappings, we
propose the following variable KM-like algorithm:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = αnfnxn + ( – αn)Tnxn,
xn+ = ( – βn)xn + βnPC[yn] for all n ∈N,

(.)

where {αn} and {βn} are sequences in [, ].
We investigate the asymptotic behavior of the sequence {xn} generated, from an arbi-

trary x ∈ C, by the algorithm (.) to a common fixed point of the sequence {Tn}.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , T : C →
C be a nonexpansive mapping such that F(T) �= ∅, and let f : C → H be a κ-contraction
with κ ∈ [, ) such that PF(T)f (x∗) = x∗ ∈ F(T). Let {fn} be a sequence of nearly contraction
mappings from C into H with the sequence {(kn,an)} in [, ) × [,∞) such that kn → κ ,
and let {Tn} be a sequence of nonexpansive mappings from C into itself. For given x ∈ C,
let {xn} be a sequence in C generated by (.), where {αn} is a sequence in (, ] and {βn} is
a sequence in (, ). Assume that the following conditions are satisfied:
(C) limn→∞ αn =  and

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(C) limn→∞ fnx∗ = fx∗,
(C)

∑∞
n=( – αn)‖Tnx∗ – x∗‖ <∞.

Define

R :=max
{∥∥x – x∗∥∥,K∗} + ∞∑

n=

( – αn)
∥∥Tnx∗ – x∗∥∥ and

K∗ := sup
n∈N

‖fnx∗ – x∗‖ + an
 – kn

.

(.)

Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗].
(b) If the following assumption holds:

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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(C) limn→∞ ‖Tnvn – Tvn‖ =  for all {vn} in BR[x∗],
then {xn} converges strongly to x∗.

Proof (a) Set zn := PC[yn]. Observe that

∥∥zn – x∗∥∥ =
∥∥PC[yn] – PC

[
x∗]∥∥

≤ ∥∥yn – x∗∥∥
≤ αn

∥∥fnxn – x∗∥∥ + ( – αn)
∥∥Tnxn – x∗∥∥

≤ αn
(∥∥fnxn – fnx∗∥∥ +

∥∥fnx∗ – x∗∥∥)
+ ( – αn)

(∥∥Tnxn – Tnx∗∥∥ +
∥∥Tnx∗ – x∗∥∥)

≤ αn
(
kn

∥∥xn – x∗∥∥ +
∥∥fnx∗ – x∗∥∥ + an

)
+ ( – αn)

(∥∥xn – x∗∥∥ +
∥∥Tnx∗ – x∗∥∥)

=
(
 – ( – kn)αn

)∥∥xn – x∗∥∥ + αn
(∥∥fnx∗ – x∗∥∥ + an

)
+ ( – αn)

∥∥Tnx∗ – x∗∥∥.
From (.), we have

∥∥xn+ – x∗∥∥ =
∥∥βn

(
xn – x∗) + βn

(
zn – x∗)∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥zn – x∗∥∥
≤ ( – βn)

∥∥xn – x∗∥∥ + βn
[(
 – ( – kn)αn

)∥∥xn – x∗∥∥
+ αn

(∥∥fnx∗ – x∗∥∥ + an
)
+ ( – αn)

∥∥Tnx∗ – x∗∥∥]
=

(
 – ( – kn)αnβn

)∥∥xn – x∗∥∥ + αnβn
(∥∥fnx∗ – x∗∥∥ + an

)
+ ( – αn)βn

∥∥Tnx∗ – x∗∥∥
≤ (

 – ( – kn)αnβn
)∥∥xn – x∗∥∥ + ( – kn)αnβnK∗ + ( – αn)

∥∥Tnx∗ – x∗∥∥
≤ max

{∥∥x – x∗∥∥,K∗} + n∑
j=

( – αj)
∥∥Tjx∗ – x∗∥∥.

Since
∑∞

n=( – αn)‖Tnx∗ – x∗‖ < ∞, by Lemma ., we find that {‖xn – x∗‖} is bounded.
Moreover,

∥∥xn+ – x∗∥∥ ≤max
{∥∥x – x∗∥∥,K∗} + ∞∑

n=

( – αn)
∥∥Tnx∗ – x∗∥∥ = R, ∀n ∈N.

Therefore, {xn} is well defined in the ball BR[x∗].
(b) Assume that limn→∞ ‖Tnvn–Tvn‖ =  for all {vn} in BR[x∗]. Set γn := 〈x∗– fx∗,x∗–zn〉.

We now proceed with the following steps:
Step : {fnxn} and {Tnxn} are bounded.
Without loss of generality, wemay assume that β ≤ βn for all n ∈N for some β > . From

(C), we have

∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥ < ∞,

which implies that limn→∞( – αn)‖Tnx∗ – x∗‖ = . Since αn → , it follows that

lim
n→∞

∥∥Tnx∗ – x∗∥∥ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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Since

∥∥Tnxn – x∗∥∥ ≤ ∥∥Tnxn – Tnx∗∥∥ +
∥∥Tnx∗ – x∗∥∥

≤ ∥∥xn – x∗∥∥ +
∥∥Tnx∗ – Tx∗∥∥,

and {‖Tnx∗ – x∗‖} converges to , we conclude that {Tnxn} is bounded. Moreover,

∥∥fnxn – x∗∥∥ ≤ ∥∥fnxn – fnx∗∥∥ +
∥∥fnx∗ – x∗∥∥

≤ kn
∥∥xn – x∗∥∥ +

∥∥fnx∗ – x∗∥∥ + an,

it follows that {fnxn} is bounded.
Step : limn→∞ ‖xn – xn+‖ = .
Set un := fnxn. We write

xn+ = ( – βn)xn + βnzn.

Observe that

‖zn+ – zn‖ ≤ ‖yn+ – yn‖
=

∥∥αn+un+ + ( – αn+)Tn+xn+ –
(
αnun + ( – αn)Tnxn

)∥∥
=

∥∥αn+un+ – αnun + ( – αn+)(Tn+xn+ – Tn+xn)

+ ( – αn+)Tn+xn – ( – αn)Tnxn
∥∥

= ( – αn+)‖xn+ – xn‖ + ‖Tn+xn – Tnxn‖
+ αn+

(‖Tn+xn‖ + ‖un+‖
)
+ αn

(‖Tnxn‖ + ‖un‖
)
,

which gives

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤ ‖Tn+xn – Tnxn‖ + αn+
(‖Tn+xn‖ + ‖un+‖

)
+ αn

(‖Tnxn‖ + ‖un‖
)
.

As we have shown in Step , {Tnxn} and {un} are bounded. Observe that

∥∥Tn+xn – x∗∥∥ ≤ ∥∥Tn+xn – Tn+x∗∥∥ +
∥∥Tn+x∗ – x∗∥∥

≤ ∥∥xn – x∗∥∥ +
∥∥Tn+x∗ – x∗∥∥

and

∥∥fn+xn – x∗∥∥ ≤ ∥∥fn+xn – fn+x∗∥∥ +
∥∥Tn+x∗ – x∗∥∥

≤ ∥∥xn – x∗∥∥ +
∥∥fn+x∗ – x∗∥∥ + an.

Thus, {fn+xn} and {Tn+xn} are bounded. Hence,

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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By [, Lemma .], we obtain

lim
n→∞‖zn – xn‖ = ,

which implies that

lim
n→∞‖xn+ – xn‖ = lim

n→∞βn‖zn – xn‖ = .

Step : limn→∞ ‖xn – Txn‖ = .
Note

‖yn – Tnxn‖ =
∥∥αnfnxn + ( – αn)Tnxn – Tnxn

∥∥ = αn‖fnxn – Tnxn‖,

and hence

‖xn – Txn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – xn+‖ + ( – βn)‖xn – Tnxn‖ + βn‖zn – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – xn+‖ + ( – βn)‖xn – Tnxn‖ + βn‖yn – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – xn+‖ + ( – βn)‖xn – Tnxn‖ + αnβn‖fnxn – Tnxn‖ + ‖Tnxn – Txn‖
≤ ‖xn – xn+‖ + ( – βn)

(‖xn – Txn‖ + ‖Txn – Tnxn‖
)

+ αnβn‖fnxn – Tnxn‖ + ‖Tnxn – Txn‖,

which implies that

βn‖xn – Txn‖ ≤ ‖xn – xn+‖ + αnβn‖fnxn – Tnxn‖ + ‖Tnxn – Txn‖.

Note αn →  and ‖Tnxn – Txn‖ → , we conclude that limn→∞ ‖xn – Txn‖ = .
Step : lim supn→∞ γn ≤ .
Note that

‖zn – Tzn‖ ≤ ‖zn – xn‖ + ‖xn – Txn‖ + ‖Txn – Tzn‖
≤ ‖zn – xn‖ + ‖xn – Txn‖ →  as n → ∞.

We take a subsequence {zni} of {zn} such that

lim sup
n→∞

〈
fx∗ – x∗, zn – x∗〉 = lim

n→∞
〈
fx∗ – x∗, zni – x∗〉 and zni ⇀ z ∈ C as i → ∞.

Since {zn} is in C and ‖zn –Tzn‖ → , we conclude, from Lemma . that z ∈ F(T). Since
x∗ = PF(T)f (x∗), we obtain from Lemma . that

lim sup
n→∞

γn = lim sup
n→∞

〈
fx∗ – x∗, zni – x∗〉 = 〈

fx∗ – x∗, z – x∗〉 ≤ .

Step : xn → x∗.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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Since {‖zn – x∗‖} is bounded, there exists R >  such that ‖zn – x∗‖ ≤ R for all n ∈ N.
Noting that zn = PC[yn]. Hence, from (.), we have

∥∥zn – x∗∥∥ =
〈
zn – yn + yn – x∗, zn – x∗〉

≤ 〈
yn – x∗, zn – x∗〉

=
〈
αn

(
fnxn – fnx∗ + fnx∗ – fx∗ + fx∗ – x∗)

+ ( – αn)
(
Tnxn – Tnx∗ + Tnx∗ – x∗), zn – x∗〉

≤ [
αn

(∥∥fnxn – fnx∗∥∥ +
∥∥fnx∗ – fx∗∥∥)

+ ( – αn)
(∥∥Tnxn – Tnx∗∥∥ +

∥∥Tnx∗ – Tx∗∥∥)]∥∥zn – x∗∥∥
+ αn

〈
fx∗ – x∗, zn – x∗〉

≤ [
αn

(
kn

∥∥xn – x∗∥∥ +
∥∥fnx∗ – fx∗∥∥ + an

)
+ ( – αn)

(∥∥xn – x∗∥∥ +
∥∥Tnx∗ – Tx∗∥∥)]∥∥zn – x∗∥∥ + αnγn

=
(
 – ( – kn)αn

)∥∥xn – x∗∥∥∥∥zn – x∗∥∥ +
[
αn

(∥∥fnx∗ – fx∗∥∥ + an
)

+ ( – αn)
∥∥Tnx∗ – Tx∗∥∥]∥∥zn – x∗∥∥ + αnγn

≤  – ( – kn)αn


(∥∥xn – x∗∥∥ +

∥∥zn – x∗∥∥) + [
αn

(∥∥fnx∗ – fx∗∥∥ + an
)

+ ( – αn)
∥∥Tnx∗ – Tx∗∥∥]

R + αnγn

≤  – ( – kn)αn


∥∥xn – x∗∥∥ +



∥∥zn – x∗∥∥ +

[
αn

(∥∥fnx∗ – fx∗∥∥ + an
)

+ ( – αn)
∥∥Tnx∗ – Tx∗∥∥]

R + αnγn,

which implies that

∥∥zn – x∗∥∥ ≤ (
 – ( – kn)αn

)∥∥xn – x∗∥∥ + 
[
αn

(∥∥fnx∗ – fx∗∥∥ + an
)

+ ( – αn)
∥∥Tnx∗ – Tx∗∥∥]

R + αnγn.

From (.), we have

∥∥xn+ – x∗∥∥ =
∥∥( – βn)

(
xn – x∗) + βn

(
zn – x∗)∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥zn – x∗∥∥

≤ (
 – ( – kn)αnβn

)∥∥xn – x∗∥∥ + 
[
αnβn

(∥∥fnx∗ – fx∗∥∥ + an
)

+ ( – αn)
∥∥Tnx∗ – Tx∗∥∥]

R + αnβnγn.

Since limn→∞ ‖fnx∗–fx∗‖
–kn =  and

∑∞
n=( – αn)‖Tnx∗ – Tx∗‖ < ∞, we conclude from

Lemma .(b) that xn → x∗. �

Remark . Theorem . has the following characterization for convergence analysis of
(.):
(a) Iterates of (.) remains in the closed ball BR[x∗].
(b) The assumption (S) is not required.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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(c) (C) is adopted for only for x∗ ∈ F(T). In particular, the condition
‘
∑∞

n= ‖Tnz – Tz‖ < ∞ for all z ∈ F(T)’ is adopted in [, Theorem .].
Thus, Theorem . is more general by nature. Therefore, Theorem . significantly ex-
tends and improves [, Theorem .] and [, Theorem .].

Theorem . remains true if condition (C) is replaced with the condition that the map-
pings {Tn} and T have common fixed points. In fact, we have

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , T :
C → C a nonexpansive mapping such that F(T) �= ∅, and f : C → H be a κ-contraction
with κ ∈ [, ) such that PF(T)f (x∗) = x∗ ∈ F(T). Let {fn} be a sequence of nearly contraction
mappings fromC intoH with sequence {(kn,an)} in [, )×[,∞) such that kn → κ .Let {Tn}
be a sequence of nonexpansive mappings from C into itself such that F(T) =

⋂
n∈N F(Tn).

For given x ∈ C, let {xn} be a sequence in C generated by (.), where {αn} is a sequence
in (, ] and {βn} is a sequence in (, ) satisfying (C), (C), and (C). Then the following
statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max{‖x – x∗‖,K∗} and K∗ is given in (.).
(b) If the assumption (C) holds, then {xn} converges strongly to x∗.

We now prove strong convergence of the sequence {xn} generated by (.) under condi-
tion (C).

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , T : C →
C be a nonexpansive mapping such that F(T) �= ∅, and {Tn} be a sequence of nonexpansive
mappings from C into itself. Let f : C → H be a κ-contraction with κ ∈ [, ) such that
PF(T)f (x∗) = x∗ ∈ F(T) and {fn} be a sequence of kn-contraction mappings from C into H
such that kn → κ . For given x ∈ C, let {xn} be a sequence in C generated by (.), where
{αn} is a sequence in (, ] and {βn} is a sequence in (, ) satisfying (C), (C), (C), and
(C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max

{∥∥x – x∗∥∥, sup
n∈N

‖fnx∗ – x∗‖
 – kn

}
+

∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥.

(b) If the following assumption holds:
(C)

∑∞
n=DBR[x∗](Tn,T) < ∞,

then {xn} converges strongly to x∗.

Proof We show that
∑∞

n=DBR[x∗](Tn,T) < ∞ implies that limn→∞ ‖Tnvn –Tvn‖ =  for all
{vn} in BR[x∗]. Let {wn} be a sequence in BR[x∗]. Then

∞∑
n=

‖Tnwn – Twn‖ ≤
∞∑
n=

DBR[x∗](Tn,T) < ∞.

It follows that limn→∞ ‖Tnwn –Twn‖ = . Thus, the condition (C) in Theorem . holds.
Therefore, Theorem . follows from Theorem .. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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For a sequence {un} in H with un → u ∈H , define fn : C →H by

fnx = un, ∀x ∈ C.

Then each fn is -contraction with fnx → fx = u. In this case algorithm (.) with Tn = T
reduces to

xn+ = ( – βn)xn + βnPC
[
αnun + ( – αn)Txn

]
, ∀n ∈N. (.)

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C → C be a nonexpansive mapping such that F(T) �= ∅. Let {un} be a sequence in H
such that un → u ∈ H and PF(T)(u) = x∗ ∈ F(T). For given x ∈ C, let {xn} be a sequence
in C generated by (.), where {αn} is a sequence in (, ] and {βn} is a sequence in (, )
satisfying (C) and (C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max{‖x – x∗‖, supn∈N ‖un – x∗‖}.
(b) {xn} converges strongly to x∗.

Remark . If u =  in Corollary ., then {xn} generated by Algorithm . converges
strongly to the minimum norm solution of the FPP (.). Corollary . also provides a
closed ball in which {xn} lies. Therefore, Corollary . significantly extends and improves
[, Theorem .].

3.2 The split feasibility problem
In this section we apply Theorem . to solve the SFP (.). We begin with the ρ-distance:

Definition . Let C and Q be two closed convex subsets of a Hilbert space H and let ρ

be a positive constant. The ρ-distance between C and Q is defined by

dρ(C,Q) = sup
‖x‖≤ρ

‖PCx – PQx‖.

By employingTheorem., we present a variable KM-likeCQalgorithm (.) for finding
solutions of the SFP (.) and prove its strong convergence.

Theorem . Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and H, respectively, and let {Cn} and {Qn} be sequences of closed convex subsets of
H and H, respectively. Let f : C → H be a κ-contraction and {fn} be a sequence of kn-
contraction mappings from C into H such that kn → κ . Let A : H → H be a bounded
linear operator with the adjoint A∗. For γ ∈ (, /L), define

T = PC
(
I – γA∗(I – PQ)A

)
, (.)

and

Tn = PCn

(
I – γA∗(I – PQn )A

)
, ∀n ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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Assume that SFP (.) is consistent with PF(T)fx∗ = x∗ ∈ F(T). For given x ∈ C, let {xn} be a
sequence in C generated by the following variable KM-like CQ algorithm:

xn+ = ( – βn)xn + βnPC
[
αnfnxn + ( – αn)PCn

(
I – γA∗(I – PQn )A

)
xn

]
, ∀n ∈N, (.)

where {αn} is a sequence in (, ] and {βn} is a sequence in (, ) satisfying (C), (C), (C),
and (C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max
{∥∥x – x∗∥∥, sup

n∈N

(∥∥fnx∗ – x∗∥∥/( – kn)
)}

+
∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥.

(b) If ρ =max{‖Ax‖,‖(I – γA∗(I – PQ)A)x‖ : x ∈ BR[x∗]} and the following assumption
holds:
(C)

∑∞
n= dρ(Cn,C) <∞ and

∑∞
n= dρ(Qn,Q) < ∞,

then {xn} converges strongly to x∗.

Proof (a) Since γ ∈ (, /L), T and Tn for all n ∈ N are nonexpansive mappings and F(T) �=
∅ because SFP (.) is consistent. Hence this part follows from Theorem .(a).
(b) Assume that

ρ =max
{‖Ax‖,∥∥(

I – γA∗(I – PQ)A
)
x
∥∥ : x ∈ BR

[
x∗]}.

Now, let x ∈ H be such that x ∈ BR[x∗]. Since each PCn is the nonexpansive, we have

‖Tnx – Tx‖ =
∥∥PCn

(
I – γA∗(I – PQn )A

)
x – PC

(
I – γA∗(I – PQ)A

)
x
∥∥

≤ ∥∥PCn

(
I – γA∗(I – PQn )A

)
x – PCn

(
I – γA∗(I – PQ)A

)
x
∥∥

+
∥∥PCn

(
I – γA∗(I – PQ)A

)
x – PC

(
I – γA∗(I – PQ)A

)
x
∥∥

≤ γ
∥∥A∗(PQnAx – PQAx)

∥∥
+

∥∥PCn

(
I – γA∗(I – PQ)A

)
x – PC

(
I – γA∗(I – PQ)A

)
x
∥∥

≤ γ ‖A‖‖PQnAx – PQAx‖ + dρ(Cn,C)

≤ γ ‖A‖dρ(Qn,Q) + dρ(Cn,C).

Thus,

∞∑
n=

DBR[x∗](Tn,T) =
∞∑
n=

sup
x∈BR[x∗]

‖Tnx – Tx‖

≤
∞∑
n=

dρ(Cn,C) + γ ‖A‖
∞∑
n=

dρ(Qn,Q) < ∞.

Hence condition (C) in Theorem. holds. Therefore, Theorem.(b) follows fromThe-
orem .(b). �

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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For a sequence {un} in H with un →  ∈H, define fn : C →H by

fnx = un, ∀x ∈ C.

Then each fn is -contraction with fnx → fx = . In this case variable KM-like CQ algo-
rithm (.) reduces to the following variable KM-like CQ algorithm:

xn+ = ( – βn)xn + βnPC
[
αnun + ( – αn)PCn

(
I – γA∗(I – PQn )A

)
xn

]
, ∀n ∈N. (.)

We now present strong convergence of the variable KM-like CQ algorithm (.) to the
minimum norm solution of the SFP (.).

Corollary . Let C and Q be two nonempty closed convex subsets of real Hilbert spaces
H and H, respectively, and let {Cn} and {Qn} be sequences of closed convex subsets of H

and H, respectively. Let A : H → H be a bounded linear operator with the adjoint A∗.
For γ ∈ (, /L), define T and Tn by (.) and (.), respectively. Assume that the SFP (.)
is consistent with PF(T)() = x∗ ∈ F(T). For given x ∈ C and a sequence {un} in H with
un →  ∈ H, let {xn} be a sequence in C generated by a variable KM-like CQ algorithm
(.), {αn} is a sequence in (, ] and {βn} is a sequence in (, ) satisfying (C), (C), and
(C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max
{∥∥x – x∗∥∥,∥∥x∗∥∥}

+
∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥.

(b) If ρ =max{‖Ax‖,‖(I – γA∗(I – PQ)A)x‖ : x ∈ BR[x∗]} and the assumption (C) holds,
then {xn} converges strongly to x∗.

Corollary . significantly extends and improves [, Theorem .].

3.3 The constrainedmultiple-sets split feasibility problem
In this section, we consider the followingmultiple-sets split feasibility problemwhichmod-
els the intensity-modulated radiation therapy [] and has recently been investigated by
many researchers, see, for example, [, , , –] and the references therein.
LetH andH be twoHilbert spaces and let r and p be two natural numbers. For each i ∈

{, , . . . ,p}, letCi be a nonempty closed convex subset ofH and for each j ∈ {, , . . . , r}, let
Qj be a nonempty closed convex subset ofH. Further, for each j ∈ {, , . . . , r}, letAj :H →
H be a bounded linear operator and� be a closed convex subset ofH. The (constrained)
multiple-sets split feasibility problem (MSSFP) is to find a point x∗ ∈ � such that

x∗ ∈ C :=
p⋂
i=

Ci and Ajx∗ ∈Qj, j ∈ {, , . . . , r}. (.)

When p = r = , then the MSSFP (.) reduces to the SFP (.).
The split feasibility problem (SFP) and multiples-set split feasibility problem (MSSFP)

model image retrieval [] and intensity-modulated radiation therapy [], and they have
recently been investigated by many researchers.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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For each i ∈ {, , . . . ,p} and j ∈ {, , . . . , r}, let αi and β j be two positive numbers. Let
B :H → H be the gradient ∇ψ of a convex and continuously differentiable function ψ :
H →R defined by

ψ(x) :=



p∑
i=

αi‖x – PCix‖ +



r∑
j=

β j‖Ajx – PQjAjx‖, ∀x ∈H. (.)

Following [], we see that

Bx :=
p∑
i=

αi(I – PCi )x +
r∑
j=

β jA∗
j (I – PQj )Ajx, ∀x ∈ H, (.)

where A∗
j is the adjoint of Aj, j ∈ {, , . . . , r}. The nonexpansivity of I –PC implies that B is

a Lipschitzian mapping with Lipschitz constant

L∗ :=
p∑
i=

αi +
r∑
j=

β j‖Aj‖. (.)

Thus, variable KM-like CQ algorithm can be developed to solve the MSSFP (.). Let
{�n}, {Cn,i} and {Qn,j} be the sequences of closed convex sets, which are viewed as pertur-
bations for the closed convex sets �, {Ci} and {Qj}, respectively.
We now present an iterative algorithm for solving the MSSFP (.).

Theorem . Let f : � → H be a κ-contraction and let {fn} be a sequence of kn-
contraction mappings from � into H such that kn → κ . For γ ∈ (, /L∗), define

Tx = P�n

(
x – γ

( p∑
i=

αi(I – PCi )x +
r∑
j=

β jA∗
j (I – PQj )Ajx

))
(.)

and

Tnx = P�n

(
x – γ

( p∑
i=

αi(I – PCi,n )x +
r∑
j=

β jA∗
j (I – PQj,n )Ajx

))
, n ∈N. (.)

Assume that the MSSFP (.) is consistent with PF(T)fx∗ = x∗ ∈ F(T). For given x ∈ �, let
{xn} be a sequence in � generated by

xn+ = ( – βn)xn + βnPC
[
αnfnxn + ( – αn)Tnxn

]
, ∀n ∈N,

where {αn} is a sequence in (, ] and {βn} is a sequence in (, ) satisfying (C), (C), (C),
and (C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max
{∥∥x – x∗∥∥, sup

n∈N

(∥∥fnx∗ – x∗∥∥/( – kn)
)}

+
∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥.

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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(b) If ρ =max{max≤j≤p ‖Ajx‖,‖(I – γ∇ψ)x‖ : x ∈ BR[x∗]} and for each i ∈ {, , . . . ,p}
and j ∈ {, , . . . , r}, the following assumption holds:
(C)

∑∞
n= dρ(�n,�) < ∞,

∑∞
n=DBR[x∗](PCi,n ,PCi ) <∞ and

∑∞
n= dρ(Qn,i,Q) < ∞,

then {xn} converges strongly to x∗.

Proof (a) Define

ψn(x) :=



p∑
i=

αi‖x – Pi,nx‖ + 


r∑
j=

β j‖Ajx – PQj,nAjx‖.

The gradients of ψ and ψn are given by

∇ψ(x) =
p∑
i=

αi(I – PCi )x +
r∑
j=

β jA∗
j (I – PQj )Ajx

and

∇ψn(x) =
p∑
i=

αi(I – PCi,n )x +
r∑
j=

β jA∗
j (I – PQj,n )Ajx.

Hence, from (.) and (.), we have

Tx = P�

(
x – γ∇ψ(x)

)
,

and

Tnx = P�n

(
x – γ∇ψn(x)

)
, n ∈N.

Since γ ∈ (, /L∗), T and Tn, for all n ∈ N, are nonexpansive mappings, and F(T) �= ∅
because the MSSFP (.) is consistent. Hence, this part follows from Theorem .(a).
(b) Assume that

ρ =max
{
max
≤j≤p

‖Ajx‖,
∥∥(I – γ∇ψ)x

∥∥ : x ∈ BR
[
x∗]}.

Let x ∈H be such that x ∈ BR[x∗]. Since each PCn is the nonexpansive, we have

‖Tnx – Tx‖ =
∥∥P�n (I – γ∇ψn)x – P�(I – γ∇ψ)x

∥∥
≤ ∥∥P�n (I – γ∇ψn)x – P�n (I – γ∇ψ)x

∥∥
+

∥∥P�n (I –∇ψ)x – P�(I – γ∇ψ)x
∥∥

≤ γ
∥∥∇ψn(x) –∇ψ(x)

∥∥ +
∥∥P�n (I – γ∇ψ)x – P�(I – γ∇ψ)x

∥∥
≤ γ

p∑
i=

αi‖PCi,nx – PCix‖ +
p∑
j=

β j
∥∥A∗

j
∥∥‖PQj,nAjx – PQjAjx‖ + dρ(�n,�)

≤ γ

p∑
i=

αiDBR[x∗](PCi,n ,PCi ) +
p∑
j=

‖Aj‖β jdρ(PQj,n ,PQj ) + dρ(�n,�).

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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By the assumptions, we have

∞∑
n=

DBR[x∗](Tn,T) =
∞∑
n=

sup
x∈BR[x∗]

‖Tnx – Tx‖

≤ γ

p∑
i=

αi

∞∑
n=

DBR[x∗](PCi,n ,PCi )

+
p∑
j=

‖Aj‖β j

∞∑
n=

dρ(PQj,n ,PQj ) +
∞∑
n=

dρ(�n,�) < ∞.

Hence condition (C) in Theorem. holds. Therefore, Theorem.(b) follows fromThe-
orem .(b). �

Theorem . significantly extends and improves [, Theorem ].
Finally, we present strong convergence of variable KM-like CQ algorithm (.) to the

minimum norm solution of the MSSFP (.).

Corollary . Define T and Tn by (.) and (.), respectively.Assume that theMSSFP
(.) is consistent with PF(T)() = x∗ ∈ F(T). For given x ∈ C and a sequence {un} in H with
un →  ∈ H, let {xn} be a sequence in C generated by the following variable KM-like CQ
algorithm:

xn+ = ( – βn)xn + βnPC
[
αnun + ( – αn)Tnxn

]
for all n ∈N,

where  < γ < /L∗, {αn} is a sequence in (, ] and {βn} is a sequence in (, ) satisfying
(C), (C), and (C). Then the following statements hold:
(a) The sequence {xn} generated by (.) remains in the closed ball BR[x∗], where

R =max
{∥∥x – x∗∥∥,∥∥x∗∥∥}

+
∞∑
n=

( – αn)
∥∥Tnx∗ – x∗∥∥.

(b) If ρ =max{max≤j≤p ‖Ajx‖,‖(I – γ∇ψ)x‖ : x ∈ BR[x∗]} and for each i ∈ {, , . . . ,p}
and j ∈ {, , . . . , r}, the assumption (C) holds, then {xn} converges strongly to x∗.

4 Numerical examples
In order to demonstrate the effectiveness, realization, and convergence of algorithm of
Theorem ., we consider the following example.

Example . LetH =R and C = [, ]. Let T be a self-mapping on C defined by Tx = – x
for all x ∈ C. Define {αn} in (, ) by αn = 

n+ and {βn} by βn = 
 for all n ∈ N. For each

n ∈ N, define fn : C → H by (.). It is shown in Example . that {fn} is a sequence of
nearly contraction mappings from C into H with sequence {(kn,an)}, where kn = 

n+ and
an = 

(n+) . It is easy to see that {fn} converges pointwise to f , where f (x) =  for all x ∈ C.
Note kn → κ = , F(T) = {x∗} = {/}, and limn→∞ fnx∗ = fx∗. It can be observed that all the
assumptions of Theorem . are satisfied and the sequence {xn} generated by (.) with
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Table 1 The numerical results for initial guess x1 = 0, 0.2, 0.8, 1

n x1 = 0 x1 = 0.2 x1 = 0.8 x1 = 1

5 0.452291666666667 0.452604166666667 0.514843750000000 0.514947916666667
10 0.476041066961784 0.476041067553836 0.476047944746260 0.476047944894273
15 0.483829591828978 0.483829591828978 0.483829591829845 0.483829591829845
20 0.487787940564059 0.487787940564059 0.487787940564059 0.487787940564059
25 0.490187554131032 0.490187554131032 0.490187554131032 0.490187554131032
30 0.491798400218960 0.491798400218960 0.491798400218960 0.491798400218960
35 0.492954698188619 0.492954698188619 0.492954698188619 0.492954698188619
40 0.493825130132048 0.493825130132048 0.493825130132048 0.493825130132048
45 0.494504074844059 0.494504074844059 0.494504074844059 0.494504074844059
50 0.495048473664881 0.495048473664881 0.495048473664881 0.495048473664881

Figure 1 The convergence comparison of different initial values x1 = 0,0.2, 0.8, 1.

Tn = T converges to 
 . In fact, under the above assumptions, the algorithm (.) can be

simplified as follows:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = αnfnxn + ( – αn)( – xn),
xn+ = xn+PC [yn]

 for all n ∈N.
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/211
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The projection point of yn onto C can be expressed as

PC[yn] =

⎧⎪⎨
⎪⎩
, if yn < ;
yn, if yn ∈ C;
, if yn > .

The iterates of algorithm (.) for initial guess x = , ., .,  are shown in Table . From
Table , we see that the iterations converge to / which is the unique fixed point of T . The
convergence of each iteration is also shown in Figure  for comparison.
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