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Abstract

Exploiting the benefits of multiple antenna technologies is strongly conditioned on knowledge of the wireless
channel that affects the transmissions. To this end, various channel estimation algorithms have been proposed in the
literature for multiple-input multiple-output (MIMO) channels. These algorithms are typically studied from a
perspective that does not consider constraints on the energy consumption of their implementation. This article
proposes a methodology for evaluating the total energy consumption required for transmitting, receiving, and
processing a preamble signal in order to produce a channel estimate in multiple antenna systems. The methodology
is used for finding the training signals that minimize the energy consumption for attaining given mean square
estimation error. We show that the energy required for processing the preamble signal by executing the estimation
algorithms dominates the total energy consumed by the channel estimation process. Therefore, algorithm simplicity
is a key factor for achieving energy-efficient channel acquisition. We use our method for analyzing the widely used
least squares and minimummean square error (MSE) estimation algorithms and find that both have a similar energy
consumption when the same MSE estimation is targeted.
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1 Introduction
Multiple-input multiple-output (MIMO) communication
techniques have been incorporated into different wireless
systems due to their capability for allowing higher data
rates (multiplexing gain) or for increasing link reliability
(diversity gain). However, recent studies have shown that
MIMO techniques can be used alternatively for reduc-
ing energy consumption in comparison to a single-input
single-output (SISO) link that attains the same data rate
and link reliability. In [1], when the link distance is larger
than a given threshold, data transmission using a 2 × 2
MIMO system with Alamouti space–time coding was
shown to be more energy-efficient than an equivalent
SISO system. A detailed energy consumption model for
anN×N singular value decomposition-basedMIMO sys-
tem is proposed in [2]. Themodel includes retransmission
statistics and shows that for a given link distance and num-
ber of channels used exist a single optimal radiation power
level at which the mean energy consumption required to
transmit a bit correctly is minimized.
But the use of MIMO is strongly conditioned on know-

ing the wireless channel, which the above contributions
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assume perfectly known. This knowledge is typically
obtained by transmitting a known training preamble that
allows the receiver to estimate the channel by executing
an estimation algorithm.
The design of training preambles for channel estima-

tion has not yet been studied well in terms of energy
efficiency. Typically, the design of the preamble signals
focuses on minimizing the channel estimation error [3]
or on maximizing the channel capacity under imperfect
channel knowledge [4]. Furthermore, existing models of
MIMO energy consumption as the ones in [1,2] ignore
the energy required for transmitting, receiving, and pro-
cessing a preamble signal. In fact, MIMO channel estima-
tion can be a significant part of the baseband processing
energy consumption because the algorithms usually per-
form complex algebraic operations.
In this article, we present a method for comparing the

energy efficiency of different channel estimation algo-
rithms. We formulate an energy consumption model that
allows to find the training signals that minimize the energy
consumption of the algorithms given a mean square error
(MSE) of estimation. Particularly, we study the minimum
MSE (MMSE) and least squares (LS) channel estimation
algorithms and optimize their respective preambles for
minimum energy consumption at a given target MSE. We
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show that their optimal energy consumption difference is
negligible.
The rest of the article is organized as follows: Section 2

describes the energy consumption model for channel
estimation algorithms. Section 3 examines the LS and
MMSE algorithms and details their energy consumption
and MSE. Section 4 formulates and solves the optimiza-
tion problem that allows to find the optimal training
signals. Section 5 provides numerical results and Section 6
summarizes our conclusions.

Notation: xH denotes the conjugate transpose operation
over x, ‖x‖ is the norm of vector x, E{·} indicates expected
value and IM is theM×M identity matrix. The superscript
check ˇ denotes that the variable corresponds to a single
branch of either the transmitter or receiver.

2 Energy consumptionmodel
Our goal is to minimize the energy consumption required
for producing a channel estimate with a given estima-
tion quality. For this purpose, we formulate a model that
includes the energy consumption of all the components
involved in the channel estimation process.
We consider a generic low-power MIMO transceiver

architecture for the preamble communication as shown in
Figure 1, with Nt transmit and Nr receive antennas. It is

to be noted that data processing blocks such as channel
encoder, modulator, channel decoder, and demodulator
are not included because they do not participate in the
channel estimation process.
In the sequel, we detail each source of the energy con-

sumption.

1. Start-up energy consumption, EST
We assume that the transmitter and receiver are by
default in a low-power consumption (sleep) mode.
Hence, they must be brought online before they can
communicate the preamble. We denote as EST the
energy required to start-up the transceivers, which is
dominated by the stabilization of the frequency
synthesizer [5]. If this component consumes a power
Psyn has a settling time Ttr and is shared among all
branches (either transmitting or receiving), then the
start-up energy of two frequency synthesizers can be
expressed as

EST = 2PsynTtr. (1)

2. Energy consumption of the transmitter electronics,
Eel,tx
It represents the energy consumption of the
digital-to-analog converters (DAC), filters, and
mixers of the transmitter. These components
consume energy for each transmitted preamble

Figure 1 Block diagram of a generic MIMO transceiver used during the preamble communication (top, transmitter; bottom, receiver).
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symbol. We define a binary variable s(n,t) that
indicates if transmitter branch n transmits a
preamble symbol during symbol time t, with
n = 1, . . . ,Nt and t = 1, . . . ,Np. Thus, the total
energy consumed by these components is given by

Eel,tx = Ts

⎛
⎝P̌el,tx

Nt∑
n=1

Np∑
t=1

s(n,t) + PsynNp

⎞
⎠ , (2)

where Ts is the symbol period and
P̌el,tx = P̌DAC + P̌filter + P̌mixer represents the power
consumption of DAC, filters and mixer of each
transmitter branch. This model allows for each
antenna to transmit a different and arbitrary
sequences of training symbols, which can include
silences.

3. Energy consumption due to electromagnetic
radiation, EPA
Each preamble symbol is broadcast from a
transmitting antenna with a transmission power P̌tx
provided by the respective power amplifier (PA). The
PA’s power consumption is modeled by

P̌PA = ξ

η
P̌tx, (3)

where ξ is the peak-to-average ratio of the
transmitted signal and η is the drain efficiency of the
PA [5]. The energy consumed jointly by all PA’s is

EPA = ξ

η
Ts

Nt∑
n=1

Np∑
t=1

P̌tx(n,t)s(n,t), (4)

where P̌tx(n,t) is the irradiated power of the training
symbol transmitted by the antenna n during the
symbol time t, with n = 1, . . . ,Nt and t = 1, . . . ,Np.
This model allows for arbitrary transmission power
per preamble symbol.

4. Energy consumption of the receiver electronics, Eel,rx
It represents the energy consumption of the
components that remain energized during the
reception time of the preamble, which is equal to
NpTs. Thus,

Eel,rx = NpTs
(
P̌el,rxNr + Psyn

)
, (5)

where P̌el,rx = P̌ADC + P̌filter + P̌mixer + P̌LNA + P̌IFA
represents the power consumption of
analog-to-digital converter (ADC), filters, mixer,
low-noise amplifier (LNA) and intermediate
frequency amplifier (IFA) of each receiving branch.
We will assume that filters and mixers at the receiver
consume the same power as these components at the
transmitter.

5. Energy consumption due to channel estimation,
Eestim
Every time a packet is received, the channel
estimation engine performs K different kinds of
arithmetic operations, each of which has an energy
consumption Ek , with k = 1, . . . ,K and is performed
nk times during the execution of the entire channel
estimation algorithm. Thus,

Eestim =
K∑

k=1
nkEk . (6)

If the operations are performed by an arithmetic
processing unit (APU), the energy consumption of
the kth operation can be modeled as [6]

Ek = VddIo�tk , (7)

where Vdd is the APU operating voltage, Io is the
average current during the execution time of the
arithmetic operations. It is to be noted that Io
depends on Vdd and on the clock frequency, fAPU.
�tk is the time required for executing the kth
operation. It is related to the number of clock cycles,
ck , required by the operation and to fAPU as follows:

�tk = ck
fAPU

. (8)

Replacing these terms in (6), the energy required for
estimating the channel is given by

Eestim = VddIo
fAPU

K∑
k=1

nkck . (9)

The sum of the energies (1), (2), (4), (5), and (9) gives the
total energy consumed by the communication process in
order to produce a channel estimate. It is given by

Etotal =2PsynTtr + Ts

⎛
⎝P̌el,tx

Nt∑
t=1

Np∑
p=1

s(t,p) + PsynNp

⎞
⎠

+ TsNp(P̌el,rxNr + Psyn) + Ts
ξ

η

Nt∑
t=1

Np∑
p=1

P̌tx(t,p)s(t,p)

+ VddIo
fAPU

K∑
k=1

nkck .

(10)

We now turn our attention to the estimation problem,
focusing on the number of arithmetic operations required
by various common channel estimation algorithms.

3 Channel estimation algorithms
In this section, we characterize the LS andMMSE channel
estimation algorithms by their complexity of implemen-
tation and associated MSE performance. This requires to
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formulate a signal model that describes the communi-
cation of the preamble and to determine the arithmetic
operations that each algorithm performs.
It is to be noted that the problem of channel estimation

in aMIMO system withNt transmit andNr receive anten-
nas is, in practice, a set of Nt independent single-input
multiple-output problems, one per transmitter branch.
This follows from observing that it cannot be assumed a
priori that the Nr × Nt channel coefficients that compose
the MIMO channel are correlated in any particular fash-
ion. In the most unfavorable case, observations from one
transmitter branch contain no information about channel
parameters of another one, and transmitting information
simultaneously from more than one branch provides no
benefit and increases complexity. This implies that an
Nr × Nt channel matrix H can be estimated sequentially
by columns using a preamble in which only one antenna
simultaneously transmits a training sequence, as shown
in [7] (Figure 2). In this case, the condition

∑Np
t=1 s(n,t) =

Np/Nt must hold for each transmitter branch so that col-
umn of H is estimated using the same number of pilot
symbols.
The estimation of the jth column of H only requires the

information of the received signal that was generated dur-
ing the time when the jth branch transmitted its preamble.
The received signal can be expressed as

Yj = 1√
Adα

hjpj + Vj, (11)

where Adα represents the path loss, with d the link dis-
tance, α the path loss exponent, and A a parameter that
depends on the transmitter and receiver antenna gains
and the transmission wavelength (A may include shadow
fading) [8]. pj is the preamble sequence transmitted by the
jth branch. hj is the jth column ofH and its elements rep-
resent the small scale fading of the MIMO channel. We
assume that the wireless channel is static and flat fading.
Vj is a matrix of independent complex Gaussian random

variables with zero mean and variance σ 2
n , representing

additive white Gaussian noise. The variance σ 2
n depends

on the transmission bandwidth W, on the receiver noise
figure, Nf , and on the link marginMl [1].
The receiver compensates the path loss using an LNA.

Thus, the signal observed by the channel estimator is

Sj = hjpj +
√
AdαVj. (12)

In the following, we analyze the energy consumption
and MSE of the LS and MMSE algorithms.

3.1 LS algorithm
Given Sj and knowledge of pj, the LS estimator for the jth
column ofH is [9]

ĥjLS = Sj
pHj

‖pj‖2 . (13)

As pHj /‖pj‖2 is known a priori, the estimation only
requires the product between the Nr × Np

Nt
matrix Sj and

an Np
Nt

× 1 vector. This takes NrNp
Nt

complex products and

Nr
(
Np
Nt

− 1
)
complex sums each time a column of H is

estimated. Standard implementations of these complex
operations require four real products and two real sums
for each complex product, and two real sums for each
complex sum [10]. Then, performing the estimation (13)
forNt columns ofH requires 2Nr(2Np−Nt) real additions
and 4NrNp real multiplications.
Finally, assuming that every pilot symbol is transmitted

with power Ptx, the energy consumption model (10) for
the case of the LS algorithm becomes

ELS =2PsynTtr +
(
P̌el,tx + NrP̌el,rx + 2Psyn

)
TsNp

+ ξ

η
TsNpPtx + 2VddIoNr

fAPU
[(
2Np − Nt

)
csum + 2Npcprod

]
.

(14)

Np

Nt
pilot symbols

Np pilot symbols

Ant1

Ant2

AntN t

Figure 2 Distribution of pilot symbols per antenna, with a time-orthogonal preamble.
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The MSE of the LS algorithm is [9]

MSELS = Adασ 2
nNrN2

t
NpPtx

, (15)

which uses the fact that each column of H is estimated
with Np

Nt
equal power pilot symbols.

3.2 MMSE algorithm
The MMSE estimator for the jth column ofH is [9]

ĥjMMSE = SjpHj
R(j)
H

NrAdα · σ 2
n + R(j)

H · ‖pj‖2
, (16)

where R(j)
H is the jth element of the diagonal of the cor-

relation matrix RH = E{HHH}. We assume that RH and
σ 2
n are perfectly known but can change from one trans-

mission to the next. Therefore, the quotient in (16) has
to be calculated with each new estimation of ĥjMMSE. This
requires to perform two products, shown with ‘·’ in (16),
the sum in the denominator and the division plus the eval-
uation of SjpHj , as in the LS case. The total number of
real arithmetic operations required by this algorithm are
shown in Table 1.
Replacing the number of arithmetic operations of

Table 1 in (10), the energy consumption model for MMSE
algorithm is

EMMSE =2PsynTtr +
(
P̌el,tx + NrP̌el,rx + 2Psyn

)
TsNp

+ ξ

η
TsNpPtx + VddIo

fAPU
[(
4NrNp + 9Nt

)
csum

+ (
4NrNp + 4NrNt + 14Nt

)
cprod + 2Ntcdiv

]
.

(17)

where csum, cprod, and cdiv describe the number of cycles
required for performing a sum, product, and division,
respectively.
The MSE of the MMSE estimation algorithm is [9]

MSEMMSE = Adασ 2
nNrNt

Nt∑
j=1

R(j)
H

Adασ 2
nNrNt + R(j)

H NpPtx
.

(18)

It is to be noted that (14) and (17) share a common
structure, namely

E = k1 + k2Np + k3NpPtx, (19)

Table 1 Number of instructions required by theMMSE
estimator

Operation Number of instructions

Sum nsum = 4NrNp + 9Nt

Product nprod = 4NrNp + 4NrNt + 14Nt

Division ndiv = 2Nt

with k1, k2, and k3 given in Table 2. The constant k1 is
a base energy consumption independent of the number
of pilot symbols transmitted. This constant is larger in
the case of MMSE algorithm. The term k2Np represents
the energy consumption due to electronics and baseband
processing and depends linearly on the number on pilot
symbols transmitted. k3NpPtx represents the energy con-
sumption due to electromagnetic radiation. The energy
consumption increases as a function of Np and Ptx has the
same slope for MMSE and LS estimation because k2 and
k3 are equal in both cases.

4 Minimization of the channel estimation energy
consumption

In this section, we formulate and solve the optimiza-
tion problem of minimizing the total energy consumption
required for carrying out the LS and MMSE channel esti-
mation algorithms as a function of the number of pilot
symbolsNp and of the transmission power Ptx. Expression
(19) is the objective function of theminimization problem.
We assume the following

A1: The transceivers have Nr = Nt = N antennas and
Psyn, Ttr, P̌el,tx, P̌el,rx, Vdd, Io, fAPU, csum, cprod, cdiv, η,
and W are known parameters.

A2: The path loss parameter A, link distance d, and path
loss exponent α are given and the matrix H is an
uncorrelated flat fading MIMO Rayleigh channel
with RH = E{HHH} = NIN .

In addition, we consider the following restrictions:

R1: In order to ensure a given estimation error,
expressions (15) and (18) are upper-bounded by εmax.

R2: The number of pilot symbols Np should be equal or
greater than N, so that at least one pilot symbol is
transmitted by each antenna.

R3: Transmission power is constant Ptx (thus, ξ = 1) and
limited to Pmax.

Considering these assumptions and restrictions along
with the expressions (15), (18), and (19), our optimization
problem can be written in general as

minimize
Np,Ptx

k1 + k2Np + k3NpPtx (20a)

subject to − NpPtx + k4 ≤ 0 (20b)

−Np + N ≤ 0 (20c)

Ptx − Pmax ≤ 0, (20d)
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Table 2 Constants of the energymodel (19)

LS MMSE

k1 2PsynTtr − 2 Vdd Io
fAPU

NrNtcsum 2PsynTtr + Vdd Io
fAPU

Nt
[
9csum + (4Nr + 14)cprod + 2cdiv

]
k2 Ts(P̌el,tx + NrP̌el,rx + 2Psyn) + 4Vdd IoNr

fAPU

(
csum + cprod

)
Ts(P̌el,tx + NrP̌el,rx + 2Psyn) + 4Vdd IoNr

fAPU
(csum + cprod)

k3 Ts
ξ
η

Ts
ξ
η

k4
Adασ 2

n NrN
2
t

εmax

Adασ 2
n Nr

εmax
(N2

t − εmax)

where k1 through k4 are given in Table 2. This opti-
mization problem has a quadratic objective function with
restrictions forming a convex domain. It is to be noted
that (20a) is to be solved as an integer optimization prob-
lem, because Np

N ∈ Nmust be satisfied. We do this by first
solving (20a) by means of Lagrange multipliers [11] in its
continuous variable form (see Appendix) and then analyze
the integer solution requirement.
The optimal values of the number of pilot symbols N∗

p
and transmission power P∗

tx depend on constant k4:

• If NPmax ≥ k4, then the constraints (20b) and (20c)
are active. Therefore,

N∗
p = N (21a)

P∗
tx = k4

N
(21b)

• If NPmax ≤ k4, then the constraints (20b) and (20d)
are active for the non-integer optimization problem,
so that Ptx = Pmax and Np = k4

Pmax
. By imposing the

integer constraint over Np, we find

N∗
p = N

⌈
k4

NPmax

⌉
(22a)

P∗
tx = k4

N∗
p
, (22b)

where �x	 denotes the smallest integer larger than x.

The MSE constraint (20b) is active in both cases above
because it locks the trade-off between the optimal trans-
mission power P∗

tx and the optimal number of pilot sym-
bols N∗

p .
The condition k4 = NPmax separates the optimal solu-

tion into the two regions described above. As shown in
Table 2, k4 depends on several parameters and the depen-
dence of the optimality of Np and Ptx on them may be
analyzed for each one. For illustration, we provide the
analysis for how N∗

p and P∗
tx vary with distance. Consider-

ing d as a variable, condition k4 = NPmax defines a critical
distance dc. For d ≤ dc the optimal solution is to transmit
the minimum number of pilot symbols (N∗

p = N), and for
d > dc, the solution is to use Ptx ≈ Pmax (this relationship

is approximated because of the ceiling function in (22a)).
For the LS algorithm, the critical distance is

dc,LS =
(
Pmaxεmax
Aσ 2

nN2

) 1
α

(23)

and for the MMSE algorithm it is

dc,MMSE =
(

Pmaxεmax
Aσ 2

n (N2 − εmax)

) 1
α

. (24)

5 Numerical evaluation
In order to provide numerical examples that allow for
comparing the minimum energy consumption of each
estimator, we use the parameters given in [5] for a generic
low-power transceiver (summarized in Table 3) and the
parameters given in [12,13] for a standard APU (Table 4).
Finally, we choose N = 4 antennas for both transceivers.
Figures 3 and 4 show the optimal number of pilot sym-

bols and transmitted power for a maximum estimation
MSE of −10 dB for each algorithm. For this estimation
error, the critical distance for the LS and the MMSE algo-
rithms is about 42m (dashed line). In both cases, the
number of pilot symbols remains constant (Figure 3) while

Table 3 Generic low-power device parameters

Parameter Description Value

W Bandwidth 10 kHz

Ts Symbol period 100μs

Psyn Frequency synthesizer power
consumption

50mW

Ttr Frequency synthesizer settling
time

5 μs

P̌el,tx Tx electric power consumption 98.2mW

P̌el,rx Rx electric power consumption 112.5mW

α Path loss coefficient 3.5

A Channel path loss 30 dB

N0 Noise power density −174 dBm/Hz

Nf Receiver noise figure 10 dB

Ml Link margin 40 dB

η PA drain efficiency 0.35
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Table 4 Technical parameters of an arithmetic and logic
unit (ALU)

Parameter Description Value

fALU ALU frequency 20MHz

Vdd ALU voltage 3 V

Io(Vdd, fALU) Average current 6.37mA

csum Adding cost 6 cycles

cprod Product cost 13 cycles

cdiv Division cost 21 cycles

the transmitted power increases (Figure 4). At the criti-
cal distance, N∗

p steps up to the next integer multiple of N,
as described by (22a). At that point, the optimal transmis-
sion power steps back as shown by the sawtooth curves
in Figure 4. As the distance increases further, the optimal
transmitted power tends to Pmax.
In order to compare the energy required by both algo-

rithms, we evaluate (14) and (17) at N∗
p and P∗

tx (Figure 5).
The energy consumption of both algorithms is identical
for any practical purpose. However, the LS algorithm is
simpler to implement because it does not require knowl-
edge of the channel statistics and of the power of the
noise. Therefore, it is the preferred choice for attain-
ing a given estimation quality (MSE) at minimum energy
consumption.
For a standard low-power device, the maximum oper-

ation distance is about 50m [14]. Figure 5 shows that at
this distance each antenna must send two pilot symbols in
order to estimate the channel with anMSE of−10 dB with

minimum energy consumption. On the other hand, given
that each antenna transmits two preamble symbols, the
maximum link distance (which is achieved maximizing
the transmission power) is about 53m.
If we consider a minimum detectable signal-to-noise

ratio (SNR) of 7 dB, the maximum link distance allowed
by the generic system used here as example is about 123m
(Figure 6). At this distance, the channel estimators require
128 pilot symbols for an estimation MSE of −10 dB, and
they consume 10 times more energy than in the 53-m link
case. This suggests that under certain conditions, it may
be more efficient in terms of energy consumption to use
multi-hop MIMO communications. However, that analy-
sis must incorporate the energy consumption required for
transmitting correctly a message [2] and lies beyond the
scope of this study.
Figure 7 shows the minimum energy consumption of

each algorithm as a function of the estimation MSE. As
expected, the minimum energy drops in steps as the
error tolerance grows. It is to be noted that near each
energy step, slight estimation performance degradation—
and hence slight error rate degradation—can be traded for
significant reduction in energy consumption for channel
estimation.

6 Conclusions
In this study, we present a methodology for determin-
ing the length and transmission power of training signals
that allow for producing estimates of MIMO channels
with a given estimation error and minimal joint energy
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Figure 3 Optimal number of pilot symbols versus distance for the LS andMMSE algorithms with estimation MSE of−10dB.
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Figure 4 Optimal transmission power versus distance for the LS andMMSE algorithms with estimation MSE of −10 dB.

consumption among transmitter and receiver. We develop
a general energy consumption model for the complete
process of channel estimation. The model includes energy
consumption due to transmission and reception of the
training signals and due to the processing required to
obtain the channel estimates.
The model was used for studying and optimizing the

energy consumption of the LS and MMSE channel esti-
mation algorithms. Both algorithms consume virtually

the same energy when operated at their respective opti-
mal training signal configurations of length and trans-
mission power. However, the LS algorithm does not
require the knowledge of the channel statistics and of the
power of the noise, which makes the LS algorithm the
preferred choice.
For link distances of about 50m, our results show that

the channel estimation with minimum energy is achieved
using two preamble symbols per transmit antenna when
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Figure 5Minimum energy consumed by the LS andMMSE algorithms, with estimation MSE of−10dB.
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Figure 6 SNR at the input of the channel estimator. The vertical dashed line shows the maximum distance for an SNR of 7 dB.

the target estimation MSE is −10 dB. For distances of
approximately 120m, the minimum energy consumption
required to achieve the same estimation quality increases
tenfold for both algorithms due to path loss. This indicates
that longer range MIMO communications can be per-
formed more energy-efficiently by multi-hop routes than
over single-hop links.

7 Appendix
7.1 Optimization problem

We define an auxiliary variable Nu = Np
N ∈ N. The

Lagrangian of the optimization problem (20a) is

L = k1 + k2NNu + k3NNuPtx + λ1 (−NNuPtx + k4)
+ λ2 (−Nu + 1) + λ3 (Ptx − Pmax)

(25)
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Figure 7Minimum energy consumed by the LS andMMSE algorithms versus mean square estimation error for a link distance of 30m.
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with multipliers λ1, λ2, and λ3. After taking derivative ofL
with respect to λ1, λ2, λ3, Nu, and Ptx we find two feasible
solutions:

• Case I, λ1 �= 0, λ2 �= 0, λ3 = 0
The R1 (20b) and R2 (20c) constraints are active,
therefore

N∗
u = 1 (26a)

P∗
tx = k4

N
. (26b)

This occurs when k4 ≤ NPmax. In this case, N∗
p = N

is a feasible integer solution.
• Case II, λ1 �= 0, λ2 = 0, λ3 �= 0

The R1 (20b) and R3 (20d) constraints are active,
therefore, Ptx = Pmax and Nu = k4

NPmax
. This occurs

when k4 ≥ NPmax, but now Nu is not necessarily a
natural number. Incorporating this constraint, we
obtain N∗

u =
⌈

k4
NPmax

⌉
. Therefore,

N∗
p = N

⌈
k4

NPmax

⌉
(27a)

P∗
tx = k4

N∗
p
. (27b)
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