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Abstract

Background: A trace element composition of rock samples is difficult to determine when they contain refractory
minerals that are hardly dissolved with conventional acid digestion techniques. Fused glass beads of rock samples
could be an adequate target to circumvent this problem. We here report inductively coupled plasma-mass spectrometry
(ICP-MS) results for geological reference materials (GRMs) prepared to normal- (sample/flux = 1:5) and low-dilution
(sample/flux = 1:2) glass beads by using Nd:YAG UV 213-nm laser ablation system.

Findings: Concentrations of 24 trace elements (Ba, Hf, Nb, Rb, Sr, Ta, Th, U, Y, Zr, and 14 rare earth elements (REEs))
were analyzed for three USGS GRMs (G-3 granite, AGV-2 andesite, and BHVO-2 basalt). Each analysis for the GRM beads
was performed as spot (ca. 55 μm diameter) analysis with 120-s ablation time. The depth-to-diameter ratio of the laser
spot was low (<4) enough to prevent significant elemental fractionation. The NIST612 glass and 29Si were employed as
the external standard and the internal standard element, respectively. When the middle half of time-integrated
data was taken to minimize the fractionation effect, the low-dilution fused glasses yielded reproducible and
accurate results for all analyzed elements. In the case of normal-dilution fused glasses, comparable precision and
accuracy were obtained only for elements with concentrations higher than 1 μg g−1, likely resulting from higher
dilution ratios.

Conclusions: Low-dilution glass beads can be an adequate target to analyze trace element composition of rock
samples by using the laser ablation ICP-MS. This simple and rapid technique can be applied directly to the same
glass beads prepared for major elemental analysis using the XRF.
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Introduction
Trace element data provide an efficient tool to investi-
gate various geologic issues such as the petrogenesis and
geotectonic discrimination of igneous rocks (e.g., Rollinson
1993). Inductively coupled plasma-mass spectrometry
(ICP-MS) is the most widely accepted analytical technique
for rock samples due to its low detection limit and high
sample throughput. However, the application of this
method requires complete dissolution of rock samples,
which is difficult for samples containing refractory min-
erals that are commonly enriched in Zr, Hf, and rare earth
elements (REEs). It is well known that open acid and

microwave-assisted digestion methods can not completely
dissolve the refractory minerals (Hall and Plant 1992,
Totland et al. 1992, 1995, Wu et al. 1996, Fan and Kerrich
1997, Yu et al. 2001, Navarro et al. 2008). Fused glass beads
can be an adequate target to overcome this problem (Park
et al. 2013 and references therein).
Laser ablation ICP-MS (LA-ICP-MS) has been

adopted as a rapid and simple technique for the micro-
analysis of trace elements (Jackson et al. 1992, Norman
et al. 1996, 1998, Horn et al. 1997). The first generation
of a widely used laser ablation (i.e., Nd:YAG 266 nm),
however, yielded relatively low precision and accuracy
(±20 to 30 % errors) on geological samples for both nor-
mal- (sample/flux = ca. 1:5) and lower dilution glass
beads (Lahaye et al. 1997, Taylor et al. 1997, Norman
et al. 1998, Chen et al. 2000, Orihashi and Hirata 2003,
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Kurosawa et al. 2006). In this note, we adopted Nd:YAG
UV 213 nm LA-ICP-MS to determine trace element
concentrations of glass beads prepared from a series of
geological reference materials (GRMs).

Experimental procedures
All experimental works, including sample preparation
and instrumental analysis, were performed at the Korea
Basic Science Institute in Ochang.

Samples and sample preparation
The samples analyzed in this study were fused glass
beads prepared from igneous silicate rock reference
powders provided by the USGS; AGV-2 (andesite),
BHVO-2 (basalt), and G-3 (granite). The rock powders
were dried overnight at 105 °C and oxidized in an elec-
tric muffle furnace at 950 °C for 30 min with a mixed fu-
sion flux consisting of pure-grade (>99.98 %) lithium
metaborate (LiBO2) and lithium tetraborate (Li2B4O7)
(Claisse, mixing proportion = 65 : 35 %, melting point =
825 °C). The normal-dilution glass beads were prepared
by mixing 1.2 g of sample powder with 6.0 g of fu-
sion flux. To prepare the low-dilution glass beads,
2.5 g of sample were mixed with 5.0 g of flux. The
sample and flux mixtures were made into glass beads
using a furnace-type automatic fusion machine (Katanax
K2) at 1020 °C for 10 min. The cooled low-dilution beads
were ground in an alumina ball mill and fused again for
10 min to secure the homogeneity of the sample matrices.

Instrumental analysis
The ICP-MS instrument used in this study was an X
series 2 quadrupole ICP-MS from Thermo Elemental.
The ICP-MS instrument was coupled to a frequency
quintuple Nd:YAG UV 213 nm laser. A total of 24
trace elements (Ba, Hf, Nb, Rb, Sr, Ta, Th, U, Y, Zr, and
14 REEs) were analyzed for this study. Laser ablation
parameters were as follows: spot diameter, 55 μm;
dwell time, 30 ms; pulse energy, 0.54 mJ; and pulse
repetition, 10 Hz. One analysis consists of pre-ablation
(30 s) for instrumental background, ablation and data
reduction (120 s), and wash out (30 s), leading to
complete analysis within approximately 3 min. Data re-
duction was performed using the Glitter software. The
NIST612 glass reference material was also analyzed as
an external standard.
Table 1 presents trace element composition of the

flux by using solution-ICP-MS. Measurable values
(>0.1 μg g−1) were detected for six elements. Final
concentrations were acquired by subtracting the back-
ground values of the flux from the calculated values
by the Glitter software.
LA-ICP-MS analysis with an area of a micrometer

scale may cause a problem with the homogeneity of the

glass beads. To check this problem, a total of 10 spot
analyses were performed with 500-μm intervals. Operat-
ing conditions and instrumental parameters are summa-
rized in Table 2.

Results and discussion
Oxide interference
It is well known that oxide interference (e.g., BaO+, LaO+,
CeO+, etc.) can cause large analytical errors on middle to
heavy REEs in the solution-ICP-MS technique. However, in
the case of laser ablation mode, the efficiency of oxide for-
mation is generally one tenth that of conventional solution
nebulization. Monitoring the ThO+/Th+ ratio is useful for
checking the oxide interference because there is no natur-
ally occurring isotope at the ThO+ mass (248), and the Th–
O bond is among the strongest known for oxides (Hu et al.
2008). In this study, the ThO+/Th+ ratio on the NIST612
standard could be controlled below 1 % during the analyses,
and thus, the oxide interference was negligible.

Elemental fractionation
For LA-ICP-MS, constant and homogeneous ablation
and aerosol transport is essentially required to obtain

Table 1 Trace element composition of the flux (μg g−1)

Element Measured value SD

As 0.3 0.16

Ba 0.22 0.04

Be 0.78 0.01

Cd 1.01 0.02

Ce 0.23 0.02

Co 0.04 0.01

Cr 1.76 0.07

Cs 0.22 0.01

Cu 0.35 0.03

Dy 0.002 0.001

Er 0.001 0.001

Ga 0.16 0.05

La 0.27 0.01

Nd 0.31 0.01

Ni 0.68 0.02

Pb 0.92 0.06

Pr 0.02 0.002

Sm 0.01 0.001

Sr 0.28 0.01

Th 0.02 0.003

U 0.02 0.002

V 6.11 0.27

Y 0.02 0.002

Zn 0.22 0.27
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high precision on elemental concentrations. Although
the 266 nm laser is known to reduce fractionation
compared with an infrared laser (1064 nm wavelength),
the fractionation still remained considerable compared
with shorter-wavelength laser systems (Gonzalez et al.
2002, Jochum et al. 2007). Relatively large analytical er-
rors (more than 20 %) reported from a UV 266 nm
laser could be attributed mainly to elemental fraction-
ation during laser ablation and to contamination or
loss of elements during glass preparation (Norman
et al. 1998).
We examined the capability of Nd:YAG UV 213 nm

laser to overcome the elemental fractionation. For accur-
ate quantitative analysis, the elemental ratios should be
stable over the entire reduction period. This stability was
checked using the 238U/232Th ratio in the NIST612 glass.
Because the first ionization potentials of U and Th are
similar to each other, this isotope ratio should approach
to the U/Th ratio of NIST612 (=ca. 1; Guillong et al.
2003). The 238U/232Th, and some other geochemically
important elemental ratios such as 139La/172Yb, 93Nb/
89Y, 85Rb/89Y, 90Zr/178Hf, and 90Zr/89Y of NIST612 are
listed in Table 3. As shown in Fig. 1, relative standard
deviations (RSDs) of these ratios were comparatively
high during the transient signal interval (the first 30 s),
and then the signals became stable. We therefore set
the reduction interval for a total of 60 s from 30 to 90 s
after ablation to minimize the fractionation effect.
The depth-to-diameter ratio of the laser spot is also an

important parameter governing elemental fractionation
(Eggins et al. 1998; Mank and Mason, 1999; Borisov
et al. 2000; Horn et al. 2000). Mank and Mason (1999)
showed that elemental fractionation becomes significant
for some elements when the depth/diameter ratio of the

Fig. 1 238U/232Th, 139La/172Yb, 93Nb/89Y, 85Rb/89Y, 90Zr/178Hf, and
90Zr/89Y ratios acquired during the ablation of NIST612

Table 3 Some elemental ratios for NIST 612 glass

Elemental ratio Initial 30 s Reduction interval (60 s) Final 30 s
238U/232Th Avg 1.05 1.02 1.02

SD 0.08 0.02 0.04

RSD (%) 7.62 2.09 3.60
139La/172Yb Avg 1.31 1.25 1.26

SD 0.25 0.04 0.05

RSD (%) 19.13 3.26 3.77
93Nb/89Y Avg 0.82 0.82 0.82

SD 0.08 0.03 0.03

RSD (%) 9.84 3.18 3.43
85Rb/89Y Avg 0.52 0.53 0.52

SD 0.03 0.01 0.02

RSD (%) 5.79 2.83 3.75
90Zr/178Hf Avg 0.85 0.86 0.87

SD 0.07 0.04 0.04

RSD (%) 8.33 4.18 4.34
90Zr/89Y Avg 0.52 0.50 0.50

SD 0.09 0.02 0.02

RSD (%) 18.19 3.12 3.39

Avg average; SD standard deviation; RSD relative standard deviation

Table 2 LA-ICP-MS operating conditions

ICP-MS

Model Thermo Elemental X series 2

Incident power 1200 W

Gas flows

Plasma 13 L min−1

Auxiliary 0.80 L min−1

Carrier 0.70 L min−1

Cones Platinum

Dwell time 30 ms

ThO+/Th+ <1 %

Laser ablation

Model New wave UP-213

Laser UV Nd:YAG 213 nm

Pulse energy 0.54 mJ

Repetition rate 10 Hz
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Table 4 Mean results ± standard deviation and reference values (μg g−1)

Element AGV-2 BHVO-2 G-3

[A] [B] [1] [A] [B] [2] [A] [B] [3]

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Rb 71.6 ± 2.9 71.6 ± 2.6 68.6 ± 2.3 10.0 ± 0.4 9.6 ± 0.6 9.2 ± 0.4 178.6 ± 6.9 174.3 ± 11.3 171 ± 6

Sr 682 ± 25 679 ± 28 658 ± 17 406 ± 12 406 ± 16 402 ± 18 469 ± 19 463 ± 19 463 ± 4

Y 19.9 ± 0.8 20.2 ± 0.9 20 ± 1 26.3 ± 0.9 25.8 ± 1.1 25.8 ± 1.2 10.4 ± 0.5 10.8 ± 0.5 9.9 ± 0.2

Zr 240 ± 10 238 ± 10 230 ± 4 176 ± 6 167 ± 5 166 ± 7 370 ± 15 369 ± 15 364 ± 8

Nb 14.1 ± 0.6 13.7 ± 0.7 15 ± 1 17.7 ± 0.6 18.4 ± 0.7 17.5 ± 0.3 13.4 ± 0.7 12.4 ± 0.7 13.9 ± 1.0

Ba 1139 ± 55 1151 ± 77 1140 ± 32 131 ± 5 131 ± 5 129 ± 4 1941 ± 76 1882 ± 80 1914 ± 58

La 39.7 ± 1.6 39.7 ± 1.8 38 ± 1 15.5 ± 0.5 15.2 ± 0.6 15.1 ± 0.5 93.4 ± 3.5 91.6 ± 3.2 91.0 ± 0.3

Ce 71 ± 3 71 ± 3 68 ± 3 38 ± 1 38 ± 2 37 ± 1 168 ± 6 163 ± 6 167 ± 2

Pr 8.1 ± 0.3 8.2 ± 0.4 8.3 ± 0.6 5.2 ± 0.2 5.3 ± 0.2 5.3 ± 0.1 16.6 ± 0.7 16.3 ± 0.7 16.9 ± 0.2

Nd 30.9 ± 1.3 31.1 ± 1.7 30 ± 2 25.0 ± 1.0 25.2 ± 1.5 24.2 ± 0.5 55.2 ± 2.7 54.7 ± 2.0 55.0 ± 0.7

Sm 5.7 ± 0.4 5.7 ± 0.4 5.7 ± 0.3 6.0 ± 0.3 6.3 ± 0.4 6.1 ± 0.2 7.4 ± 0.5 7.5 ± 0.5 7.4 ± 0.2

Eu 1.51 ± 0.09 1.49 ± 0.13 1.54 ± 0.10 2.00 ± 0.10 2.07 ± 0.13 2.07 ± 0.05 1.42 ± 0.09 1.35 ± 0.11 1.5 ± 0.1

Gd 4.65 ± 0.29 4.79 ± 0.39 4.69 ± 0.26 6.42 ± 0.34 6.41 ± 0.43 6.2 ± 0.2 4.42 ± 0.28 4.44 ± 0.36 4.0 ± 0.5

Tb 0.62 ± 0.04 0.66 ± 0.06 0.64 ± 0.04 0.91 ± 0.05 0.93 ± 0.07 0.93 ± 0.02 0.45 ± 0.03 0.47 ± 0.04 0.46 ± 0.04

Dy 3.69 ± 0.21 3.86 ± 0.31 3.6 ± 0.2 5.57 ± 0.26 5.71 ± 0.35 5.3 ± 0.1 2.17 ± 0.17 2.23 ± 0.19 2.17 ± 0.08

Ho 0.69 ± 0.04 0.71 ± 0.06 0.71 ± 0.08 1.02 ± 0.05 1.02 ± 0.07 0.99 ± 0.02 0.36 ± 0.03 0.37 ± 0.04 0.36 ± 0.07

Er 1.86 ± 0.13 1.92 ± 0.17 1.79 ± 0.11 2.52 ± 0.13 2.65 ± 0.18 2.53 ± 0.05 0.89 ± 0.08 0.97 ± 0.11 0.92 ± 0.06

Tm 0.26 ± 0.02 0.29 ± 0.04 0.26 ± 0.02 0.33 ± 0.02 0.34 ± 0.04 0.33 ± 0.01 0.12 ± 0.02 0.13 ± 0.02 0.12 ± 0.01

Yb 1.76 ± 0.15 1.88 ± 0.20 1.6 ± 0.2 2.12 ± 0.14 2.16 ± 0.18 1.96 ± 0.04 0.81 ± 0.09 0.87 ± 0.12 0.72 ± 0.10

Lu 0.27 ± 0.02 0.29 ± 0.03 0.25 ± 0.01 0.29 ± 0.02 0.32 ± 0.03 0.27 ± 0.01 0.10 ± 0.02 0.11 ± 0.02 0.12 ± 0.02

Hf 5.41 ± 0.27 5.42 ± 0.31 5.08 ± 0.20 4.60 ± 0.21 4.57 ± 0.28 4.4 ± 0.2 9.11 ± 0.42 9.37 ± 0.47 8.8 ± 0.5

Ta 0.92 ± 0.05 0.92 ± 0.07 0.89 ± 0.08 1.22 ± 0.06 1.26 ± 0.08 1.16 ± 0.05 0.95 ± 0.06 0.96 ± 0.06

Th 6.34 ± 0.25 6.47 ± 0.37 6.1 ± 0.6 1.28 ± 0.07 1.19 ± 0.08 1.22 ± 0.08 24.70 ± 0.89 25.34 ± 0.96 24.9 ± 0.5

U 1.97 ± 0.09 1.94 ± 0.15 1.88 ± 0.16 0.40 ± 0.03 0.37 ± 0.04 0.42 ± 0.01 2.21 ± 0.10 2.06 ± 0.12 2.14 ± 0.09

[A] Low-dilution glass bead (this study), [B] normal-dilution glass bead (this study), [1] recommended value (USGS), [2] Cotta and Enzweiler (2012),
[3] Park et al. (2013)

Fig. 2 Calculated fractionation of elements from the GRM beads. LD low-dilution glass bead; ND normal-dilution glass bead
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ablation pit is higher than six, which corresponds to a
50 % reduction in analyte response. For the BHVO-2
bead, we confirmed that the depth of laser pit was ca.
220 μm after the total ablation time (120 s). The spot
depth to the end of data reduction (90 s) was ca.
165 μm, corresponding to a depth/diameter ratio of ca.
3. Such a low depth/diameter ratio suggests that signifi-
cant elemental fractionation may not occur during the
laser ablation.
Elemental fractionation was calculated by dividing the

reduction interval across the time-resolved signal into
two equal parts. The difference between independently
calculated concentrations for each part (conc1 and conc2)
was compared with the results obtained using the entire
signal (conctotal):

Fractionation %ð Þ ¼ conc1− conc2ð Þ=conctotalð Þ
� 100

Assuming that no significant fractionation occurred for
a sample run, 99 % of data will plot below three (3 sigma).

Figure 2 shows that our results meet this criteria for all
analytes in the GRM beads.

Precision and accuracy
When the reduction interval is set for the middle half
(60 s) of the total integration and the NIST612 glass and
29Si are respectively used as the external standard and
the internal standard element, the GRM beads yield
trace element compositions listed in Table 4. The
NIST612 glass was analyzed in triplicate for each sample
analysis to calibrate the variation in signal intensity over
time. We employed Si instead of Ca, considering the
relatively low concentrations of Ca (<10 %) in the GRMs
analyzed here. Table 4 also presents recommended trace
element compositions of the GRMs. The minimum de-
tection limits (MDL) at the 99 % confidence level were
calculated based on Poisson counting statistics.

MDL ¼ 2:3 � 2Bð Þ0:5

Table 6 Relative standard deviation (RSD) of Si normalized
mean cps

Element AGV-2 BHVO-2 G-3

[A] [B] [A] [B] [A] [B]

Rb 2.4 2.3 3.5 4.2 1.5 2.0

Sr 2.5 1.2 2.3 1.8 1.3 1.6

Y 2.5 1.7 2.3 4.8 1.9 4.6

Zr 2.8 1.9 2.5 2.1 1.3 1.7

Nb 3.9 3.0 2.3 2.5 2.9 3.2

Ba 3.2 1.7 2.8 2.9 1.4 1.7

La 3.6 2.5 2.1 3.1 1.4 1.6

Ce 3.0 2.4 2.5 1.5 1.2 1.8

Pr 2.9 3.3 2.6 3.5 1.5 1.8

Nd 2.5 1.4 2.5 4.7 1.8 2.3

Sm 4.0 7.4 5.5 6.5 6.2 7.9

Eu 8.3 9.4 3.9 4.3 6.3 6.0

Gd 5.5 7.8 3.7 9.0 5.3 6.6

Tb 3.9 6.1 4.9 5.5 7.7 9.7

Dy 5.8 8.1 4.8 3.6 5.3 7.4

Ho 9.0 7.1 2.9 3.1 8.1 6.5

Er 7.3 8.6 4.3 6.8 8.8 11.6

Tm 9.5 17.3 5.2 9.0 7.1 27.4

Yb 8.5 9.9 5.7 6.0 7.9 17.0

Lu 8.6 7.0 6.7 9.7 9.1 20.8

Hf 6.0 6.5 3.1 4.3 2.1 3.7

Ta 8.2 6.0 3.2 4.2 4.3 6.0

Th 4.3 4.6 5.1 7.9 1.1 2.2

U 7.0 4.9 9.2 7.9 3.0 5.8

[A] Low-dilution glass bead, [B] normal-dilution glass bead

Table 5 Selected mass number and minimum detection limits
(MDL, 99 % confidence)

Element Mass MDL (μg g−1)

Rb 85 0.15

Sr 88 0.07

Y 89 0.06

Zr 90 0.11

Nb 93 0.08

Ba 137 0.28

La 139 0.07

Ce 140 0.04

Pr 141 0.22

Nd 146 0.22

Sm 147 0.20

Eu 153 0.04

Gd 157 0.23

Tb 159 0.10

Dy 163 0.10

Ho 165 <0.001

Er 166 <0.001

Tm 169 0.04

Yb 172 <0.001

Lu 175 <0.001

Hf 178 0.02

Ta 181 0.04

Th 232 <0.001

U 238 0.03
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where B is the total counts in the background interval.
Table 5 shows MDL of our LA-ICP-MS analysis.
As listed in Table 6 and graphically displayed in

Fig. 3, the RSDs (1 s) for counts per second (cps) nor-
malized to Si were within ± 10 % (mean), and no
marked chemical heterogeneity of the matrix compos-
ition was observed in low-dilution glass beads. How-
ever, in the case of normal-dilution glass beads, a large
scatter was shown for AGV-2 and G-3. Such a large
scatter (11.6–27.4 % RSD) at less than 50 cps could be
ascribed to low elemental concentrations, rather than
to real inhomogeneity.
The precision of 10 replicate analyses for the low-

dilution glass beads was acceptable, with the RSDs for
most elements being <10 %. The mean RSD values were
1.2–8.6 % at concentrations above 1 μg g−1 and 4.4–9.6 %
at concentrations below 1 μg g−1. On the other hand, the
mean RSD values for the normal-dilution glass beads were
1.0–13.5 and 5.4–20.7 % at concentrations above and

below 1 μg g−1, respectively. The large deviations (10.0–
20.7 % RSD) observed for heavy REEs in a normal-dilution
glass bead of G-3 might be due to their low concentrations
resulting from high dilution ratio.
The recoveries and accuracy were assessed by com-

paring our results with recommended values provided
by the supplier and/or literature data. Granite G-3 is
the successor of G-2, one of the best analyzed refer-
ence materials, but they differ significantly in the con-
tent of most elements (Meisel et al. 2002). Our results
for G-3 were compared with ICP-MS data reported
using low-dilution glass bead digestion (Park et al.
2013). BHVO-2 data were compared with previous re-
sults by high-pressure bomb digestion (Cotta and
Enzweiler 2012), and AGV-2 results were compared
with the USGS recommended values. As shown in
Fig. 4, our data for low-dilution glass beads were in
good agreement with the recommended values for
most elements but showed a slight deviation for Rb in

Fig. 3 Relative standard deviations (1 s) for counts per second (cps) normalized to 29Si. Red lines, data from low-dilution glass beads; blue lines,
data from normal-dilution glass beads
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BHVO-2 and Y in G-3. In the case of normal-dilution
glass beads, the results for Lu in BHVO-2 and Y and
Yb in G-3 were not consistent with the reference
values. Overall accuracy is clearly better in the low-
dilution glass beads.

Conclusion
In this study, we optimized experimental conditions for
minimizing elemental fractionation using a UV 213 nm
LA-ICP-MS and obtained improved results compared
to previous reports using the longer wavelength lasers.
Our trace element data for a series of GRMs show
good agreement with reference values, mostly within
10 % relative uncertainty. We confirm that the low-
dilution glass bead is a proper target material for trace
element analysis of rock samples using the laser abla-
tion technique. It is noted that this technique can be
applied directly to the same glass beads prepared for
the XRF analysis.
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