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Abstract
In the present paper, the positivity of a multi-dimensional difference operator in the
half-space is considered. The structure of fractional spaces generated by this operator
is investigated. The equivalence of the norms of these fractional spaces and Hölder
spaces is proved. In applications, the stability of difference schemes for elliptic
differential equations is presented.
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1 Introduction
The role played by the positivity of differential and difference operators in Banach spaces
in the study of the stability of solutions of boundary value problems for partial differential
equations and the stability of difference schemes for partial differential equations, and of
summation Fourier series converging in C-norm is well known (see [–]).

Recall that an operator A densely defined in a Banach space E with domain D(A) is called
positive in E, if its spectrum σA lies in the interior of the sector of angle ϕ,  < ϕ < π ,
symmetric with respect to the real axis, and, moreover, on the edges of this sector S(ϕ) =
{ρeiϕ :  ≤ ρ ≤ ∞} and S(ϕ) = {ρe–iϕ :  ≤ ρ ≤ ∞}, and outside of the sector the resolvent
(A – λI)– is subject to the bound (see [])

∥
∥(A – λI)–∥∥

E→E ≤ M
 + |λ| ,

where I is the identity operator. The infimum of all such angles ϕ is called the spectral
angle of the positive operator A and is denoted by ϕ(A) = ϕ(E, A).

Throughout the present work, we will indicate with M positive constants which can be
different from time to time and we are not interested in precise. We will write M(α,β , . . .)
to express the fact that the constant depends only on α,β , . . . .

The theory of differential and difference operators in Banach spaces and their related
applications have been investigated by many scientists (see, for example, [–]).

Great progress has been made in the study of structure of interpolation spaces generated
by positive operators from the view-point of the stability analysis of high-order accuracy
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difference schemes for various partial differential equations. However, the positivity of
difference operators and structure of fractional spaces generated by these operators in
Banach spaces are not well investigated in general. Therefore, the investigation of structure
of fractional spaces generated by positive difference operators in Banach spaces and its
applications to the stability of difference schemes for various partial differential equations
is an important subject.

For a positive operator A in the Banach space E, let us introduce the fractional spaces
Eα = Eα(E, A) ( < α < ) consisting of those v ∈ E for which the norms

‖v‖Eα = sup
λ>

λα
∥
∥A(A + λI)–v

∥
∥

E

are finite. Clearly, the positive operator commutes A and its resolvent (A – λI)–. By the
definition of the norm in the fractional space Eα = Eα(E, A) ( < α < ), we get

∥
∥(A – λI)–∥∥

Eα→Eα
≤ ∥

∥(A – λI)–∥∥
E→E . ()

Thus, from the positivity of operator A in the Banach space E follows the positivity of this
operator in fractional spaces Eα = Eα(E, A) ( < α < ).

In [], Simirnitskii and Sobolevskii considered the difference operator Ax
h which is an

elliptic difference operator of an arbitrary high order of accuracy approximating the multi-
dimensional elliptic operator Ax

 = Bx + δI .
Let us define the grid space R

n–
h ( < h ≤ h) as the set of all points of the Euclidean

space R
n– whose coordinates are given by

xk = skh, sk = ,±,±, . . . , k = , . . . , n – .

The number h is called the step of the grid space. A function defined on R
n–
h will be called

a grid function. To the differential operator B with constant coefficients of the form

Bx =
∑

|r|=m

br
∂r+···+rn–

∂xr


· · · ∂xrn–
n–

,

we assign the difference operator

Bx
h = h–m

∑

m≤|s|≤S

ds�
s
–�

s
+ · · ·�sn–

(n–)–�
sn–
(n–)+, ()

which acts on functions defined on the entire space Rn–
h . Here, s ∈R

(n–) is a vector with
nonnegative integer coordinates,

�k±f h(x) = ±(

f h(x ± ekh) – f h(x)
)

,

and ek is the unit vector of the axis xk .
An infinitely differentiable function of the continuous argument y ∈ R

n– that is con-
tinuous and bounded together with all its derivatives is said to be smooth. Let ϕ(y) be a
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smooth function on R
n–. Using the Taylor expansion of ϕ(y), one can show that

sup
x∈Rn–

h

∣
∣
∣
∣
h–�k±ϕ(x) –

∂

∂yk
ϕ(x)

∣
∣
∣
∣
≤ M(ϕ)h.

Here, the grid function ϕ(x) and ∂
∂yk

ϕ(x) are the traces of the functions ϕ(y) and ∂
∂yk

ϕ(y),
respectively. The last inequality means that the difference operator h–�k± is a first-order
approximation for the differential operator ∂

∂yk
.

We say that the difference operator Bx
h is a λth-order (λ > ) approximation of the dif-

ferential operator Bx if the inequality

sup
x∈Rn–

h

∣
∣Bx

hϕ(x) – Bxϕ(x)
∣
∣ ≤ M(ϕ)hλ

holds for any smooth function ϕ(y). We shall assume that the operator Bx
h approximates

the differential operator Bx with any prescribed order.
A function of a continuous [resp., discrete] argument that decays at infinity faster than

any negative power of |y| [resp., |x|] is said to be rapidly decreasing. Let us define the
Fourier transform of a grid function f h(x) by the formula

f̃ (ξ ) = (π )–(n–)
∑

x∈Rn–
h

exp
{

–i(x, ξ )
}

f h(x)hn–, ξ ∈R
n–. ()

This formula defines a πh–-periodic smooth function of the continuous argument ξ

whenever f h(x) is a rapidly decreasing grid function. In this last case, () is just a Fourier
series expansion of the function f̃ (ξ ) and the numbers f h(x) are the Fourier coefficients,
given by the formula

f h(x) =
∫

|ξ|≤πh–
· · ·

∫

|ξn–|≤πh–
exp

{

i(x, ξ )
}

f̃ (ξ ) dξ · · · dξn–. ()

The inverse Fourier transform of a πh–-periodic function ϕ(ξ ) is defined to be the grid
function ϕ̃h(x) given by the formula

ϕ̃h(x) =
∫

|ξ|≤πh–
· · ·

∫

|ξn–|≤πh–
exp

{

i(x, ξ )
}

ϕ(ξ ) dξ · · · dξn–. ()

Equations () and () establish a one-to-one correspondence between rapidly decreasing
grid functions of a continuous argument. In particular, if f h(x) is a rapidly decreasing grid
function, then

̂[f̃ ]
h
(x) = f h(x).

If f h(x) is a rapidly decreasing grid function, then the grid function Bx
hf h(x) exists and is

given by () and we have the equality

B̃xhf (ξ ) = B(ξh, h)f̃ (ξ ).
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The function B(ξh, h) is obtained by replacing the operator �k± in the right-hand side of
equality () with the expression ±(exp{±iξkh}– ), respectively, and is called the symbol of
the difference operator. Since exp{±iξkh} is a bounded analytic πh–-periodic function,
the symbol B(ξh, h) is a bounded analytic πh–-periodic function. It follows that for large
|ξ | one has the estimate

∣
∣B(ξh, h)

∣
∣ ≤ M(h)|ξ |m, |ξ | = |ξ| + · · · + |ξn–|.

Let us give the difference operator Ax
h by the formula

Ax
huh(x) =

∑

m≤|r|≤S

ax
r Dr

huh(x) + δuh(x). ()

The coefficients are chosen in such a way that the operator Ax
h approximates in a specified

way the operator

∑

|r|=m

ar(x)
∂ |r|

∂xr
 · · · ∂xrn–

n–
+ δ.

We shall assume that for |ξkh| ≤ π and fixed x the symbol Ax
 (ξh, h) of the operator Ax

h – δ

satisfies the inequalities

(–)mAx
(ξh, h) ≥ M|ξ |m,

∣
∣arg Ax

 (ξh, h)
∣
∣ ≤ φ < φ ≤ π


.

In [], Danelich considered the difference elliptic operator Ax
h which is to an arbitrary

high order of accuracy approximating the multi-dimensional elliptic operator Ax defined
by

Ax =
∑

|r|=m

ar(x)
∂ |r|

∂xr
 · · · ∂xrn–

n–
+ (–)ma(x)

∂m

∂xm
n

+ δI ()

with the domain

D
(

Ax) =
{

u ∈ Cm(

R
+
n
)

: u(x)|xn= =
∂u(x)
∂N

∣
∣
∣
xn=

= · · · =
∂m–u(x)
∂Nm–

∣
∣
∣
xn=

= 
}

.

Here, δ >  is the sufficiently large number and a(x) is a continuous function defined on
R

+ = {x : x ≥ } with

 < s ≤ a(x) ≤ s < ∞. ()

Let us define the grid space R+
hn ( < h ≤ h) as the set of all points of the space R+

n whose
coordinates are given by

x = (jh, . . . , jnh) ∈R
+
n , jk ∈ Z, k = , n, jn = , , , . . . .
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The number h is called the step of the grid space. A function ϕh(x) defined on R
+
hn will be

called a grid function. To the differential operator Ax defined by (), we assign the differ-
ence operator

Ax
hϕ

h(x) = Ax
hϕ

h(x) + Ax
hϕ

h(x) + δϕh(x), x ∈R
+
hn,

Ax
hϕ

h(x) = h–m
∑

m≤|p|≤S

ax
r�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ϕh(x), x ∈ R

+
hn, ()

Ax
hϕ

h(x) = (–)mh–m
∑

m≤r+s≤S
s≤m

ax
r,s�

r
n+�s

n–ϕh(x), x ∈ R
+
hn,

which acts on functions defined on the entire space R
+
hn. Here, p ∈ R

+
n– is a vector with

nonnegative integers coordinates. The coefficients ax
r are chosen in such a way that the

operator Ax
h approximates in a specified way the operator

∑

|r|=m

ar(x)
∂ |r|

∂xr
 · · · ∂xrn–

n–
.

We shall assume that for |ξkh| ≤ π and fixed x the symbol Ax
 (ξh, h) of the operator Ax

h
satisfies the inequalities

(–)mAx

(

ξ ′h, h
) ≥ M

∣
∣ξ ′∣∣m,

∣
∣arg Ax


(

ξ ′h, h
)∣
∣ ≤ φ < φ < π , ξ ′ = (ξ, . . . , ξn–).

()

For the definition of the operator Ax
h, we will define ϕh(x) which is extended to ϕh(x)

defined on R
+
hn and additionally on the points

(

x′, xk
)

=
(

x′, kh
)

/∈R
+
hn, x′ ∈ Rh(n–), k = –, –, . . . , –(m – ),

and

ϕh(x′, 
)

= , h–k
∑

–k≤s≤sk

αs,kϕ
h(x′, sh

)

= , k = , m – ,α–k,k 	= . ()

The coefficients αs,k are chosen in such a way that the expression

h–k
∑

–k≤s≤sk

αs,kϕ
h(x′, sh

)

approximates in a specified way the expression ϕ(k)(x′, ). The coefficients ax
r,s are chosen in

such a way that the operator h–k ∑

–k≤s≤sk
αs,kϕ

h(x′, sh) approximates in a specified way the
operator Ax

. We shall assume that the operator Ax
h approximates the differential operator

Ax
 with any prescribed order.
In the present paper, a Green’s function is assigned. The organization of the present

paper is as follows. In Section , the main theorem on the structure of fractional spaces
Eα(Ċh(R+

hn), Ax
h) generated by Ax

h is investigated. In Section , applications on theorems on
well-posedness in a Hölder space of parabolic and elliptic problems are presented. Finally,
the conclusion is given.
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2 Green’s function
Theorem  [] Suppose that assumptions (). Let the function a(x) satisfy the estimate

∣
∣a(x) – a(y)

∣
∣ ≤ s|x – y|α (

 < α ≤ ; x, y ∈R
+
h

)

. ()

Then, for sufficiently large positive δ and Reλ ≥ , there exists a unique solution of the
resolvent equation

Ax
huh(x) + λuh(x) = f h(x), x ∈R

+
hn ()

and the following formula:

f h(y)hn(Ax
h + λI

)–f h(x) =
∑

y∈R+
hn

Gh(x, y;λ) ()

holds. Here, Gh(x, y;λ) is the Green’s function of the resolvent equation ().

Lemma  The following identities hold:

∑

y∈R+
hn

Gh(, y;λ)hn = , ()

∑

y∈R+
hn

Gh(x, y;λ)hn =


δ + λ

(

 – vh(x)
)

, xn > h, x ∈R
+
hn, ()

where vh(x) is the solution of the following problem:
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h–m ∑

m≤|p|≤S ax
r�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+vh(x)

+ (–)mh–m ∑

m≤r+s≤S
s≤m

ax
r,s�

r
+�s

–vh(x) + (δ + λ)vh(x) = , x ∈R
+
hn,

vh(x′, ) = , h–k ∑

–k≤s≤sk
αs,kvh(x′, sh) = , k = , m – ,α–k,k 	= ,

x′ ∈ Rh(n–).

()

Proof We consider the problem
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h–m ∑

m≤|p|≤S ax
r�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+vh(x)

+ (–)mh–m ∑

m≤r+s≤S
s≤m

ar,s�
r
+�s

–uh(x) + (δ + λ)uh(x) = f h(x), x ∈R
+
h,

uh(x′, ) = , h–k ∑

–k≤s≤sk
αs,kuh(x′, sh) = , k = , m – ,α–k,k 	= ,

x′ ∈ Rh(n–).

We have

uh(x) =
∑

y∈R+
hn

Gh(x, y;λ)f h(y)hn + vh(x)


δ + λ
, x ∈R

+
hn.

Since for f h(x) = , uh(x) = 
δ+λ

is the solution of (), we get


δ + λ

=
∑

y∈R+
hn

Gh(x, y;λ)hn + vh(x)


δ + λ
, x ∈ R

+
hn.
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Then

∑

y∈R+
hn

Gh(x, y;λ)hn =


δ + λ

(

 – vh(x)
)

, x ∈R
+
hn.

Identity () is proved. Since vh() = , we have


δ + λ

=
∑

y∈R+
hn

Gh(, y;λ)hn +


δ + λ
.

Thus follows (). Lemma  is proved. �

For any x ∈R
+
hn, we have

Gh(x, y;λ) = Gx
h (x, y;λ) +

∑

y∈R+
hn

Gh(x, z;λ)
[

Ax
h – Az

h
]

Gx
h (z, y;λ)hn, ()

where Gx
h (x, y;λ) is the Green’s function of the operator Ax

h .
Moreover, applying (), (), (), and () conditions, one proved the following point-

wise estimates of the Green’s function Gh(x, y;λ) of the resolvent equation and its differ-
ence derivatives:

∣
∣Gh(x, y;λ)

∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}|λ + δ|np– ()

for m > n,

∣
∣Gh(x, y;λ)

∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}[ + ln
{(|x – y||λ + δ|p)– + 

}]

()

for m = n,

∣
∣Gh(x, y;λ)

∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}|x – y|m–n ()

for m < n, and its derivatives respect to x

∣
∣Dr

hGh(x, y;λ)
∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}|λ + δ|(n+r)p– ()

for m – r > n,

∣
∣Dr

hGh(x, y;λ)
∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}[ + ln
{(|x – y||λ + δ|p)– + 

}]

()

for m – r = n,

∣
∣Dr

hGh(x, y;λ)
∣
∣ ≤ M exp

{

–b|λ + δ|p|x – y|}|x – y|m–n–r ()

for m – r < n, where p = 
m , a > , M >  for  < |λ| ≤ Lh–m, λ ∈ Qψ ∪ {}, and

∣
∣Gh(x, y;λ)

∣
∣ ≤ M exp

{

–bh–|x – y|}hm–n(|δ + λ|hm + 
)–, ()
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∣
∣Dr

hGh(x, y;λ)
∣
∣ ≤ M exp

{

–bh–|x – y|}hm–n–r(|δ + λ|hm + 
)– ()

for |λ| > Lh–m. Here p = 
m , b > , M > .

Note that under assumptions () and () there exists a unique solution vh(x) of problem
() and the following estimate holds:

∣
∣vh(x)

∣
∣ ≤ M exp

{

–b|λ + δ|p|x|}, ()

for  < |λ| ≤ Lh–m, λ ∈ Qψ ∪ {} and

∣
∣vh(x)

∣
∣ ≤ M exp

{

–bh–|x|}(|δ + λ|hm + 
)–, ()

for |λ| > Lh–m.

Lemma  [] |λ| > Lh–m, where L >  large enough. Then

∣
∣Gh(x, y;λ)

∣
∣ ≤ M exp

{

–bh–|x – y|}hm(|δ + λ|hm + 
)–|x – y|–n, x 	= y. ()

By () and (), we obtain the estimate

∣
∣Gh(x, y;λ)

∣
∣

≤ M exp
{

–bh–|x – y|}h–+m(+μ)

× (|δ + λ|hm + 
)–(+mμ)|x – y|–mμ, x 	= y. ()

Moreover, applying the Green’s function of Ax
h the following results were proved.

Theorem  [] Ax
h is a positive operator in the space Ċ(R+

hn) of all mesh functions ϕh(x)
defined on R

+
hn with the norm

∥
∥ϕh∥∥

Ċh
= sup

x∈R+
hn

∣
∣ϕh(x)

∣
∣

with the spectral angle ϕ(Ax
h, Ċh) = π – ψ .

Let Cβ

h = Cβ (R+
hn) be the Hölder space of all mesh functions ϕh(x) defined on R

+
hn satis-

fying a Hölder condition with the indicator β ∈ (, ) with the norm

∥
∥ϕh∥∥

Cβ
h

=
∥
∥ϕh∥∥

Ch
+ sup

x,y∈R+
hn

x 	=y

|ϕh(x) – ϕh(y)|
|x – y|β .

One proved the strong positivity of Ax
h in the Banach space Ċh = Ċ(R+

hn) (difference ana-
log of Ċ(R+

n)) for sufficiently large positive δ. Passing to limit when h → , we can get the
strong positivity of differential operator Ax in the Banach space Ċ(R+

n).
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3 The structure of fractional spaces Eα(Ċh(R+
hn), Ax

h)
Theorem  Suppose mα ∈ (, ). Then the norms of the spaces Eα(Ċh, Ax

h) and Ċmα(R+
hn)

are equivalent. Here,

Ċmα
h =

{

ϕh : ϕh ∈ Cmα
h ,ϕh(x′, 

)

= , h–k
∑

–k≤s≤sk

αs,kϕ
h(x′, sh

)

= ,

k = , m – ,α–k,k 	= , x′ ∈Rh(n–)

}

.

Proof Assume that f h ∈ Ċmα(R+
hn). Let x ∈ R

+
hn and λ >  be fixed. Using equation ()

and identity (), we can write

Ax
h
(

Ax
h + λ

)–f h(x)

=
δ

λ + δ
f h(x) + λ

∑

y∈R+
n

Gh(x, y;λ)
[

f h(x) – f h(y)
]

hn

+
λ

λ + δ
vh(x)

(

f h(x) – f h(x, . . . , xn–, )
)

+
λ

λ + δ
vh(x)f h(x, . . . , xn–, ).

Since f h(x, . . . , xn–, ) = , we have

Ax
h
(

Ax
h + λ

)–f h(x) =
δ

λ + δ
f h(x) + λ

∑

y∈R+
n

Gh(x, y;λ)
[

f h(x) – f h(y)
]

hn

+
λ

λ + δ
vh(x)

(

f h(x) – f h(x, . . . , xn–, )
)

. ()

Using equation () and the triangle inequality, and the definition of the Ċmα(R+
hn)-norm,

we have

∣
∣λαAx

h
(

Ax
h + λ

)–f h(x)
∣
∣

≤
[

λαδ

λ + δ
+ λα+

∑

y∈R+
n

∣
∣Gh(x, y;λ)

∣
∣|x – y|mαhn +

λα+

λ + δ

∣
∣v(x)

∣
∣|x|mα

]
∥
∥f h∥∥

Ċmα (R+
hn)

= [I + I + I]
∥
∥f h∥∥

Ċmα (R+
hn).

We will estimate Ii, i = , , , separately. First, let us estimate I. Clearly, using the estimate

λαδ–α

λ + δ
≤ 

we get

I ≤ δα ()

for any λ > .
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We will consider two cases: λ > Lh–m and λ ≤ Lh–m. First, let λ > Lh–m. Using estimate
(), we have

I ≤ Mλ
α+

∑

y∈R+
n

e–bh–|x–y|h–n+m(+α)((λ + δ)hm + 
)–(+mα)hn

≤ M
(λhm)αλ

((λ + δ)hm)mα(λ + δ)
≤ M ()

for any λ >  and x ∈ R
+
hn. From estimate () and the following inequality:

(at)θ e–at ≤ M, a > , θ ∈ [, ], ()

it follows that

I ≤ M
λα+

λ + δ
e–ah–|x|((λ + δ)hm + 

)–|x|mα

≤ M
λα+hmα

(λ + δ)((λ + δ)hm + )
≤ M ()

for any λ >  and x ∈ R
+
hn. Combining estimates ()-(), we get

∣
∣λαAx

h
(

Ax
h + λ

)–f h(x)
∣
∣ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn.

Second, let λ ≤ Lh–m. We consider three cases: m > n, m = n, and m < n.
In the first case, using estimate (), applying inequality (), and the definition of the

Ċmα(R+
hn)-norm, we have

I ≤ Mλ
α+

∑

y∈R+
hn

e–b(λ+δ)


m |x–y|(λ + δ)
n

m –

≤ M
λα+

(λ + δ)– n
m +α+ β

m + n
m

≤ M ()

for any λ >  and x ∈ R
+
hn.

In the second case, applying estimate (), and inequality (), we have

I ≤ Mλ
α+

∑

y∈R+
hn

e–b(λ+δ)


m |x–y|[ + ln
{(|x – y|(λ + δ)


m

)– + 
}]|x – y|mα+βhn

≤ M
λα+

(λ + δ)α+ n
m + β

m
≤ M ()

for any λ >  and x ∈ R
+
hn.

In the third case, using estimate () we obtain

I ≤ Mλ
α+

∑

y∈R+
hn

e–b(λ+δ)


m |x–y|(λ + δ)
n

m –|x – y|m–n|x – y|mα+βhn

≤ M
λα+

(λ + δ)
m–n+mα+β

m – n
m

≤ M ()
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for any λ >  and x ∈ R
+
hn. Estimates ()-() result in

I ≤ M ()

for any λ >  and x ∈ R
+
hn. From estimate () and inequality () it follows that

I ≤ M
λα+

λ + δ
e–b(λ+δ)


m |x||x|mα+β ≤ M ()

for any λ >  and x ∈ R
+
hn. Combining estimates (), (), and (), we have

∣
∣λαAx

h
(

Ax
h + λ

)–f h(x)
∣
∣ ≤ M(α)

∥
∥f h∥∥

Ċmα ()

for any λ >  and x ∈ R
+
hn.

Combining estimates () and (), we get

sup
λ>

sup
x∈R+

hn

∣
∣λαAx

h
(

Ax
h + λ

)–f h(x)
∣
∣ ≤ M(α)

∥
∥f h∥∥

Ċmα . ()

Now, we will prove the opposite inequality. Using the definition of Eα(Ċh, Ax
h), we obtain

sup
x∈R+

n

∣
∣f h(x)

∣
∣ ≤ ∥

∥f h∥∥
Eα (Ċh ,Ax

h) ()

for any x ∈ R
+
hn. By Theorem , Ax

h is a positive operator in the Banach space Eα(Ċh, Ax
h).

Hence, for f h ∈ Eα(Ċh, Ax
h), we have

f h =
∫ ∞


Ax

h
(

Ax
h + λ

)–V dλ. ()

It follows from equation () and equation () that

f h(x) =
∫ ∞



(

Ax
h + λ

)–Ax
h
(

Ax
h + λ

)–f h(x) dλ

=
∫ ∞



∑

y∈R+
hn

Gh(x, y;λ)Ax
h
(

Ax
h + λ

)–f h(y)hn dλ. ()

Let x, τ ∈ R
+
hn be fixed. We will consider two cases: λ > Lh–m and λ ≤ Lh–m. First, let

λ > Lh–m. Using equation () and Lemma , we have

f h(x + τ ) – f h(x)
|τ |mα

=
∫ ∞



∑

y∈R+
hn

[Gh(x + τ , y;λ) – Gh(x, y;λ)]
|τ |mαλα

Ax
h
(

Ax
h + λ

)–f h(y)hn dλ.
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From the triangle inequality and the definition of the Eα(Ċh, Ax
h)-norm it follows that

∣
∣
∣
∣

f h(x + τ ) – f h(x)
|τ |mα

∣
∣
∣
∣
≤

[∫ 
|τ |m



∑

y∈R+
hn

|Gh(x + τ , y;λ) – Gh(x, y;λ)|
|τ |mαλα

hn dλ

+
∫ ∞


|τ |m

∑

y∈R+
hn

|Gh(x + τ , y;λ) – Gh(x, y;λ)|
|τ |mαλα

hn dλ

]
∥
∥f h∥∥

Eα (Ċh ,Ax
h)

= [L + L]
∥
∥f h∥∥

Eα (Ċh ,Ax
h).

We will estimate L and L. Let us estimate L. From the Lagrange theorem and estimate
(), we have, for some x∗ between x, x + τ ,

L ≤ M

∫ 
|τ |m



∑

y∈R+
hn

|τ |D
hGh(x∗, y;λ)
|τ |mαλα

hn dλ

≤ M

∫ 
|τ |m



∑

y∈R+
hn

|τ |e–bh–|x∗–y|hm––n((λ + δ)hm + )–

|τ |mαλα
hn dλ

≤ M(α)
∫ 

|τ |m



|τ |
|τ |mαλα+– 

m
dλ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. Let us estimate L. The Lagrange theorem, estimate (), and

the inequality () yield

L ≤ M

[∫ ∞


|τ |m

∑

y∈R+
hn

e–bh–|x+τ–y|hm–n((λ + δ)hm + )–

|τ |mαλα
hn dλ

+
∫ ∞


|τ |m

∑

y∈R+
hn

e–bh–|x–y|hm–n((λ + δ)hm + )–

|τ |mαλα
hn dλ

]

≤ M

∫ ∞


|τ |m


|τ |mαλα+ dλ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. Then, combining estimates () and (), we get

∣
∣
∣
∣

f h(x + τ ) – f h(x)
|τ |mα

∣
∣
∣
∣
≤ M

∥
∥f h∥∥

Eα
. ()

Second, let λ ≤ Lh–m. We will estimate L and L. Let us estimate L. We consider three
cases: m > n, m = n, and m < n. When m > n we consider two separate cases: m –  =
n and m –  > n. First, let m –  > n. From the Lagrange theorem, estimate (), the
inequality () we have, for some x∗ between x, x + τ ,

L ≤ M

∫ 
|τ |m



∑

y∈R+
hn

|τ |e–a(λ+δ)


m |x∗–y|

|τ |mαλα(λ + δ)– n+
m

hn dλ

≤ M

∫ 
|τ |m



|τ |
|τ |mαλα+– 

m
dλ ≤ M(α) ()
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for any λ >  and x ∈ R
+
hn. Second, let m –  = n. From the Lagrange theorem, estimate

(), and the inequality (), we have, for some x∗ between x, x + τ ,

L ≤ M

∫ 
|τ |m



∑

y∈R+
hn

|τ |
|τ |mαλα

e–b(λ+δ)


m |x∗–y|[ + ln
{(∣

∣x∗ – y
∣
∣(λ + δ)


m

)– + 
}]

hn dλ

≤ M

∫ 
|τ |m



|τ |
|τ |mαλα+– n

m
dλ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. In the cases m = n and m < n, we have a situation where

m –  < n. Using the Lagrange theorem, estimate (), we have, for some x∗ between x,
x + τ ,

L ≤ M

∫ 
|τ |m



|τ |
|τ |mαλα

∑

y∈R+
hn

e–a(λ+δ)


m |x∗–y|∣∣x∗ – y
∣
∣
m–n–hn dλ

≤ M

∫ 
|τ |m



|τ |
|τ |mαλα+– 

m
dλ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. Then, combining estimates ()-(), we get

L ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. Let us estimate L. We consider three cases: m > n, m = n,

and m < n. First, let m > n. Using the triangle inequality, estimate (), we get

L ≤ M

[∫ ∞


|τ |m

∑

y∈R+
hn

e–b(λ+δ)


m |x+τ–y|

|τ |mαλα(λ + δ)– n
m

hn dλ

+
∫ ∞


|τ |m

∑

y∈R+
hn

e–b(λ+δ)


m |x–y|

|τ |mαλα(λ + δ)– n
m

hn dλ

]

≤ M

∫ ∞


|τ |m


|τ |mαλα+ dλ ≤ M(α) ()

for any λ >  and x ∈ R
+
hn. Second, let m = n. From the triangle inequality, estimate ()

it follows that

L ≤ M

[∫ ∞


|τ |m

∑

y∈R+
hn


|τ |mαλα

e–b(λ+δ)


m |x+τ–y|

× [

 + ln
{(|x + τ – y|(λ + δ)


m

)– + 
}]

hn dλ

+
∫ ∞


|τ |m

∑

y∈R+
hn


|τ |mαλα

e–b(λ+δ)


m |x–y|[ + ln
{(|x – y|(λ + δ)


m

)– + 
}]

hn dλ

]

≤ M

∫ ∞


|τ |m


|τ |mαλα+ dλ ≤ M(α) ()
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for any λ >  and x ∈ R
+
hn. Third, let m < n. Using the triangle inequality, estimate (),

we have

L ≤ M

[∫ ∞


|τ |m

∑

y∈R+
hn

e–b(λ+δ)


m |x+τ–y|

|τ |mαλα
|x + τ – y|m–nhn dλ

+
∫ ∞


|τ |m

∑

y∈R+
hn

e–b(λ+δ)


m |x–y|

|τ |mαλα
|x – y|m–nhn dλ

]

≤ M

∫ ∞


|τ |m


|τ |mαλα+ dλ ≤ M(α). ()

Then, combining estimates ()-(), we have

L ≤ M(α). ()

Estimates () and () yield

∣
∣
∣
∣

f h(x + τ ) – f h(x)
|τ |mα

∣
∣
∣
∣
≤ M(α)

∥
∥f h∥∥

Eα
. ()

Combining estimates () and (), we obtain

sup
x∈R+

hn
τ 	=(,...,)

∣
∣
∣
∣

f h(x + τ ) – f h(x)
|τ |mα

∣
∣
∣
∣
≤ M(α)

∥
∥f h∥∥

Eα
. ()

From estimates () and () it follows that

Eα

(

Ċh, Ax
h
) ⊂ Ċmα

(

R
+
hn

)

.

This is the end of the proof of Theorem . �

From Theorem  and Theorem  follows the following result.

Theorem  Ax
h is a positive operator in the space Ċβ (R+

hn), β ∈ (, ).

4 Applications
Now, we present some applications of Theorems -.

First, we consider the difference schemes for the approximate solution of problem

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– ∂u(t,x)
∂t +

∑

|r|=m ar(x) ∂ |r|u(t,x)
∂xr

 ···∂xrn–
n–

+ (–)ma(x) ∂mu(t,x)
∂xm + δu(t, x) = f (t, x),  < t < T , x ∈R

+
n ,

u(, x) = ϕ(x), u(T , x) = ψ(x), x ∈R
+
n ,

u(t, x)|xn= = ∂u(t,x)
∂N |xn= = · · · = ∂m–u(t,x)

∂Nm– |xn= = , x ∈R
+
n ,  ≤ t ≤ T .

()

Here, ar(x), a(x), ϕ(x), ψ(x), and f (t, x) are sufficiently smooth functions and they satisfy all
compatibility conditions which guarantee that problem () has a smooth solution u(t, x).
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Assume that uniform ellipticity holds. Note that problem () can be written in the form
of the abstract boundary value problem

⎧

⎨

⎩

–u′′(t) + Au(t) = f (t),  < t < T ,

u() = ϕ, u(T) = ψ
()

in a Banach space E = Ċh with positive operator A = Ax
h defined by () and (). The dis-

cretization of problem () is carried out in two steps. In the first step, let us give the
difference operator Ax

h by equation (). With the help of Ax
h we arrive at the boundary

value problem

⎧

⎨

⎩

– duh(t,x)
dt + Ax

huh(t, x) = f h(t, x),  < t < T , x ∈R
+
hn,

uh(, x) = ϕh(x), uh(T , x) = ψh(x), x ∈ R
+
hn,

()

for an infinite system of ordinary differential equations.
In the second step, we replace problem () by the difference scheme

⎧

⎪⎪⎨

⎪⎪⎩

– 
τ (uh

k+(x) – uh
k(x) + uh

k–(x)) + Ax
huh

k(x) = f h
k (x),

f h
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , Nτ = T , x ∈ R

+
hn,

uh
(x) = ϕh(x), uh

N (x) = ψh(x), x ∈R
+
hn,

()

for the approximate solution of boundary value problem ().

Theorem  Let  ≤ μ < . Then the solution of difference scheme () satisfies the following
stability estimate:

max
≤k≤N

∥
∥uh

k
∥
∥

Ċμ
h

≤ M(μ)
[∥
∥ϕh∥∥

Ċμ
h

+
∥
∥ϕh∥∥

Ċμ
h

+ max
≤k≤N–

∥
∥f h

k
∥
∥

Ċμ
h

]

.

The proof of Theorem  is based on Theorem  and Theorem , on the positivity of the
difference operator Ax

h in the Banach space Ċμ

h for  ≤ μ < , and on the following abstract
theorem on the stability of the difference scheme

⎧

⎨

⎩

– 
τ (uk+ – uk + uk–) + Auk = fk ,

fk = f (tk), tk = kτ ,  ≤ k ≤ N – , Nτ = T , u = ϕ, uN = ψ ,
()

for the approximate solution of the abstract boundary value problem ().

Theorem  [] Let A be a positive operator in a Banach space E. Then, for the solution of
difference scheme (), the following stability inequality holds:

max
≤k≤N

‖uk‖Eα ≤ M(α)
[

‖ϕ‖Eα + ‖ψ‖Eα + max
≤k≤N–

‖fk‖Eα

]

.



Ashyralyev and Akturk Advances in Difference Equations  (2015) 2015:384 Page 16 of 21

Theorem  The solution of difference scheme () satisfies the following almost coercive
stability estimate:

max
≤k≤N–

∥
∥
∥
∥


τ 

(

uh
k+ – uh

k + uh
k–

)
∥
∥
∥
∥

Ċh

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċh
+ h–m

∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċh

≤ M ln

h

[

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ϕh∥∥

Ċh

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ϕh∥∥

Ċh
+ h–m

∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ψh∥∥

Ċh

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ψh∥∥

Ċh

]

+ M ln


τ + h
max

≤k≤N–

∥
∥f h

k
∥
∥

Ċh
.

The proof of Theorem  is based on Theorem  on the positivity of an elliptic difference
operator Ax

h in the Banach space Ċh and on the estimate

min

{

ln

τ

,  +
∣
∣ln

∥
∥Ax

h
∥
∥

Ċh→Ċh

∣
∣

}

≤ M ln


τ + h
()

and on the following theorems on the almost coercive stability of difference scheme ()
and on the almost coercive stability of the elliptic difference problem.

Theorem  [] Let A be a positive operator in a Banach space E. Then, for the solution of
difference scheme (), the following almost coercive stability inequality holds:

max
≤k≤N–

∥
∥
∥
∥


τ  (uk+ – uk + uk–)

∥
∥
∥
∥

E
+ max

≤k≤N
‖Auk‖E

≤ M
[

‖Aϕ‖E + ‖Aψ‖E + min

{

ln

τ

,  +
∣
∣ln‖A‖E→E

∣
∣

}

max
≤k≤N–

‖fk‖E

]

.

Theorem  Under assumptions () and (), the solution of the difference elliptic problem

Ax
huh(x) = f h(x), x ∈R

+
hn, ()

satisfies the following almost coercive inequality:

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċh
+ h–m

∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċh

≤ M ln

h
∥
∥f h∥∥

Ċh
.

The proof of Theorem  uses the techniques introduced in [] and it is based on esti-
mates for the Green’s function of the operator Ax

h defined by ().
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Theorem  Let  < mα < . Then, for the solution of difference scheme (), the following
coercive stability estimate holds:

max
≤k≤N–

∥
∥
∥
∥


τ 

(

uh
k+ – uh

k + uh
k–

)
∥
∥
∥
∥

Ċmα
h

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċmα
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċmα
h

≤ M(α)
[

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ϕh∥∥

Ċmα
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ϕh∥∥

Ċmα
h

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ψh∥∥

Ċmα
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ψh∥∥

Ċmα
h

+ M(α) max
≤k≤N–

∥
∥f h

k
∥
∥

Ċmα
h

]

.

The proof of Theorem  is based on Theorem  on the structure of the fractional spaces
Eα(Ċh, Ax

h), on Theorem  on the positivity of an elliptic difference operator Ax
h in the

Banach space Ċh, and on the following theorems on the structure of the fractional space
E′

α = Eα(E, A/), on the coercive stability of difference scheme (), and on the coercive
stability of the elliptic difference problem.

Theorem  [] The spaces Eα(E, A) and E′
α(A/, E) coincide for any  < α < 

 , and their
norms are equivalent.

Theorem  [] Let A be a strongly positive operator in a Banach space E. Then, for the
solution of difference scheme (), the following coercive stability inequality:

max
≤k≤N–

∥
∥
∥
∥


τ  (uk+ – uk + uk–)

∥
∥
∥
∥

Eα

+ max
≤k≤N

‖Auk‖Eα

≤ M(α)
[

‖Aϕ‖Eα + ‖Aψ‖Eα + max
≤k≤N–

‖fk‖Eα

]

is valid.

Theorem  Let  < μ < . Then, under assumptions () and () for the solution of differ-
ence elliptic problem (), we have the following coercive inequality:

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċμ
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċμ
h

≤ M(μ)
∥
∥f h∥∥

Ċμ
h

.
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The proof of Theorem  uses the techniques introduced in [] and it is based on esti-
mates for the Green’s function of operator Ax

h defined by ().
Second, we consider the difference schemes for the approximate solution of problem

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– ∂u(t,x)
∂t +

∑

|r|=m ar(x) ∂ |r|u(t,x)
∂xr

 ···∂xrn–
n–

+ (–)ma(x) ∂mu(t,x)
∂xm + δu(t, x) = f (t, x),  < t < T , x ∈R

+
n ,

u(, x) = u(T , x), ut(, x) = ut(T , x), x ∈R
+
n ,

u(t, x)|xn= = ∂u(t,x)
∂N |xn= = · · · = ∂m–u(t,x)

∂Nm– |xn= = , x ∈R
+
n ,  ≤ t ≤ T .

()

Here, ar(x), a(x), and f (t, x) are sufficiently smooth functions and they satisfy every com-
patibility conditions which guarantee that problem () has a smooth solution u(t, x). As-
sume that the assumption of the uniform ellipticity holds. The discretization of problem
() is carried out in two steps. In the first step, let us give the difference operator Ax

h by
equation (). With the help of Ax

h we arrive at the boundary value problem

⎧

⎨

⎩

– duh(t,x)
dt + Ax

huh(t, x) = f h(t, x),  < t < T , x ∈R
+
hn,

uh(, x) = uh(T , x), uh
t (, x) = uh

t (T , x), x ∈R
+
hn,

()

for an infinite system of ordinary differential equations.
In the second step, we replace problem () by the first order of approximation in the t

difference scheme

⎧

⎪⎪⎨

⎪⎪⎩

– 
τ (uh

k+(x) – uh
k(x) + uh

k–(x)) + Ax
huh

k(x) = f h
k (x),

f h
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , Nτ = T , x ∈ R

+
hn,

uh
(x) = uh

N (x), uh
 (x) – uh

(x) = uh
N (x) – uh

N–(x), x ∈R
+
hn,

()

and the second order of approximation in the t difference scheme

⎧

⎪⎪⎨

⎪⎪⎩

– 
τ (uh

k+(x) – uh
k(x) + uh

k–(x)) + Ax
huh

k(x) = f h
k (x),

f h
k (x) = f h(tk , x), tk = kτ ,  ≤ k ≤ N – , Nτ = T , x ∈ R

+
hn, uh

(x) = uh
N (x),

–uh
(x) + uh

 (x) – uh
(x) = uh

N–(x) – uh
N–(x) + uh

N (x), x ∈ R
+
hn,

()

for the approximate solution of boundary value problem ().

Theorem  Let  ≤ μ < . Then the solution of the difference schemes () and () sat-
isfies the following stability estimate:

max
≤k≤N

∥
∥uh

k
∥
∥

Ċμ
h

≤ M(μ)
[∥
∥ϕh∥∥

Ċμ
h

+
∥
∥ϕh∥∥

Ċμ
h

+ max
≤k≤N–

∥
∥f h

k
∥
∥

Ċμ
h

]

.

The proof of Theorem  is based on Theorems  and , on the positivity of the differ-
ence operator Ax

h in the Banach space Ċμ

h , μ ∈ [, ), and on the following abstract theorem,
and on the stability of the difference schemes () and ().
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Theorem  [] Let A be a positive operator in a Banach space E. Then, for the solution
of difference schemes () and (), the following stability inequality holds:

max
≤k≤N

‖uk‖Eα ≤ M(α)
[

‖ϕ‖Eα + ‖ψ‖Eα + max
≤k≤N–

‖fk‖Eα

]

.

Theorem  For the solution of difference schemes () and (), the following almost
coercive stability estimate holds:

max
≤k≤N–

∥
∥
∥
∥


τ 

(

uh
k+ – uh

k + uh
k–

)
∥
∥
∥
∥

Ċh

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċh
+ h–m

∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċh

≤ M ln

h

[

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ϕh∥∥

Ċh

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ϕh∥∥

Ċh
+ h–m

∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ψh∥∥

Ċh

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ψh∥∥

Ċh

]

+ M ln


τ + h
max

≤k≤N–

∥
∥f h

k
∥
∥

Ċh
.

The proof of Theorem  is based on Theorem , on the positivity of an elliptic difference
operator Ax

h in the Banach space Ċh, on the estimate

min

{

ln

τ

,  +
∣
∣ln

∥
∥Ax

h
∥
∥

Ċh→Ċh

∣
∣

}

≤ M ln


τ + h
, ()

and on the following theorem on the almost coercive stability of difference schemes ()
and () and on Theorem  on the almost coercive stability of elliptic difference problem
().

Theorem  [] Let A be a positive operator in a Banach space E. Then, for the solution of
difference schemes () and (), the following almost coercive stability inequality holds:

max
≤k≤N–

∥
∥
∥
∥


τ  (uk+ – uk + uk–)

∥
∥
∥
∥

E
+ max

≤k≤N
‖Auk‖E

≤ M min

{

ln

τ

,  +
∣
∣ln‖A‖E→E

∣
∣

}

max
≤k≤N–

‖fk‖E .

Theorem  Let  < mα < . Then, the solution of the difference schemes () and ()
satisfies the following coercive stability estimate:

max
≤k≤N–

∥
∥
∥
∥


τ 

(

uh
k+ – uh

k + uh
k–

)
∥
∥
∥
∥

Ċmα
h

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+uh∥∥

Ċmα
h
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+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–uh∥∥

Ċmα
h

≤ M(α)
[

h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ϕh∥∥

Ċmα
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ϕh∥∥

Ċmα
h

+ h–m
∑

m≤|p|≤S

∥
∥�

p
–�

p
+ · · ·�pn–

(n–)–�
pn–
(n–)+ψh∥∥

Ċmα
h

+ h–m
∑

m≤r+s≤S
s≤m

∥
∥�r

+�s
–ψh∥∥

Ċmα
h

]

+ M(α) max
≤k≤N–

∥
∥f h

k
∥
∥

Ċmα
h

.

The proof of Theorem  is based on Theorem , on the structure of the fractional spaces
Eα(Ċh, Ax

h), on Theorem , on the structure of the fractional space E′
α = Eα(E, A/), on

Theorem , on the positivity of an elliptic difference operator Ax
h in the Banach space Ċh,

and on the following theorem on the coercive stability of difference schemes () and ()
and on Theorem  on the coercive stability of elliptic difference problem ().

Theorem  [] Let A be a strongly positive operator in a Banach space E. Then, for the
solution of difference schemes () and (), the following coercive stability inequality:

max
≤k≤N–

∥
∥
∥
∥


τ  (uk+ – uk + uk–)

∥
∥
∥
∥

Eα

+ max
≤k≤N

‖Auk‖Eα ≤ M(α) max
≤k≤N–

‖fk‖Eα

is valid.

5 Conclusion
In the present article, the structure of the fractional spaces Eα(Ċ(R+

hn), Ax
h) generated by

the multi-dimensional elliptic difference operator Ax
h is investigated.
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