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Abstract
In this paper we consider a certain quasilinear parabolic variational problem with
identically zero constraint. By using intrinsic scaling, the exact growth of the solution
near the free boundary is established. A consequence of this is that the time level of
the free boundary is porous (in N dimensions) and therefore its Hausdorff dimension
is less than N. In particular, the N-dimensional Lebesgue measure of the free
boundary is zero for each time level.

MSC: 35K86; 35K92; 35K65; 35K67

Keywords: parabolic equation; obstacle problem; free boundary; porosity

1 Introduction and main theorem
In this paper we consider a variational inequality for the quasilinear parabolic operator

div a(x,∇u) – ∂tu,

giving rise to a free boundary. Our purpose is to analyze the free boundary for a large
class of obstacle problems associated with degenerate ( < p < ∞) and non-degenerate
( < p ≤ ) parabolic equations. Therefore, let us start with the formulation of the problem
in the weak sense. Let � be an open bounded domain of RN (N ≥ ), �T = � × (, T).
Denote the parabolic space by V ,p(�T ), see [],

V ,p(�T ) = L∞(
, T ; L(�)

) ∩ Lp(, T ; W ,p(�)
)

( < p < ∞).

The Steklov average vh of a function is defined by

vh(x, t) =

h

∫ t+h

t
v(x, τ ) dτ for t ∈ (, T – h],

and vh =  for t > T – h. Let the function a(x,η) : �×R
N →R

N be Lipschitz continuous in
x ∈ � and continuously differentiable in η ∈ R

N \ {}. Given bounded functions f , θ and
the obstacle , the variational problems are to find a function

u ∈Kθ := Kθ (p) =
{

w : w ∈ V ,p(�T ),∀t w = θ on ∂p�T , w ≥  a.e. in �T
}

,
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where ∂p�T = (� × {}) ∪ (∂� × (, T]), such that (for h >  and  < t < t + h < T )

∫

�

∂tuh(w – u) dx +
∫

�

(
a(x,∇u)

)
h · ∇(w – u) dx +

∫

�

fh(w – u) dx ≥ , ()

a.e. in t ∈ (, T), and for all w ∈Kθ .
Under certain conditions on f and θ , we will show that the free boundary of the solution

to the variational problems () is porous for each t-level cut, which implies that the t-cuts
of the free boundary has Lebesgue measure zero.

As is well known, in the obstacle problems associated with elliptic operators, to obtain
the porosity of the free boundary one needs to prove that every solution has a certain
growth rate near the free boundary; see [–] for instance. When focusing on p-parabolic
variational problem ( < p < ∞), we remark that due to the lack of the strong minimum
principle or the Harnack inequality one cannot inherit each technique from the elliptic
obstacle problems, and we need further arguments to establish the growth rate of solu-
tions near the free boundary. In p-parabolic variational problems (p ≥ ), Shahgholian
overcame this difficulty by using Hölder’s estimates for solutions of parabolic equations.
As a by-product, the author obtained the porosity of the free boundary for p ≥ ; see [].
A fact that should be noticed is: although neither the technique of Hölder’s estimates nor
Harnack inequality can be applied to get the growth of solutions in the case of  < p < 
in [], a ‘minimum principle (in spatial variables)’ for singular parabolic equations given
in [] (Lemma .) may be used in our problem as a substitute tool at this step. Thus in
this paper, using the main idea of [] and techniques of compactness, we are interested
in studying the porosity of the free boundary in a large class of variational problems gov-
erned by quasilinear parabolic operators. Our result contains not only the case of p ≥ ,
but the singular case of  < p <  as well, which is naturally an extension of [].

Throughout this paper, unless specified, we always assume  < p < ∞. We make the
standard structural conditions on the function a(x,η) for some positive constants γ, γ,
namely,

(a) ai(x, ) = ,
(a)

∑N
i,j=

∂ai
∂ηj

(x,η)ξiξj ≥ γ|η|p–|ξ |,

(a)
∑N

i,j= | ∂ai
∂ηj

(x,η)| ≤ γ|η|p–,

(a)
∑N

i,j= | ∂ai
∂xj

(x,η)| ≤ γ|η|p–,

for a.e. x ∈ �, all η ∈R
N\{}, and all ξ ∈R

N .

Remark . Assumptions (a)-(a) imply that (see [, ] for instance)

a(x,η)η ≥ γ

p – 
|η|p,

∣∣a(x,η)
∣∣ ≤ γ

p – 
|η|p–,

〈
a(x,η) – a(x,η),η – η

〉 ≥ ,

for a.e. x ∈ � and all η,η,η ∈R
N . Thus the structural conditions for quasilinear operators

in [] are satisfied, which are needed in this paper.
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Suppose that f and θ are bounded continuous functions on the closure of �T . To es-
tablish the results obtained in this paper, further conditions on f and θ are imposed as
follows.

(f )  < λ ≤ f ≤ 
 in �T , f (x, t) is monotone non-increasing in t;
(θ ) θ (x, ) = , θ (x, t) is monotone non-decreasing in t.

Let us gather some properties (needed here) for the solution u to the variational inequality
(). The following theorem can be proven by classical techniques; we refer the reader to
[, , ] for sketches of the proofs.

Classical theorem There exists a unique solution u to the variational problem () in Kθ

with

 ≤ u ≤ ‖θ‖∞,�T in �T ,

∂tu ≥  in {u > }.

Moreover, u satisfies

div a(x,∇u) – ∂tu = g in {u > }.

weakly in �T with g ∈ L∞(�T ) satisfying

f χ{u>} ≤ g ≤ f χ{u>} a.e. in �T .

We recall the concept of porosity; see [, ].

Porosity A set E in R
N is called porous with porosity constant δ if there is an r >  such

that for each x ∈ E and  < r < r there is a point y such that Bδr(y) ⊂ Br(x) \ E.

According to [], a porous set has Hausdorff dimension not exceeding N – CδN ; thus, it
is of Lebesgue measure zero.

Now we state the main theorem in this paper.

Theorem . Let u be the solution to problem () inKθ . Then for every compact set K ⊂ �T

cr
p

p– ≤ sup
Br (x)

u(·, t) ≤ Cr
p

p– , ∀(x, t) ∈ ∂{u > } ∩ K .

Furthermore, the intersection ∂{u > } ∩ K ∩ {t = t} is porous (in R
N ) with the porosity

constant

δ = δ
(‖θ‖∞,�T ,λ,
, dist(K , ∂p�T ),γ,γ, p

)
.

Here c depends on p, λ, γ, and C depends on p, λ, 
, γ, γ, ‖θ‖∞,�T .
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2 A class of functions on the unit cylinder
We first let q = p

p– and Qr(z, s) = Br(z) × (–rq + s, rq + s) be the cylinder in R
N+. Write Q =

Q(, ), the unit cylinder. Due to the local character of the results obtained in this paper
(Theorem .), we may consider the following local formulation. We say that a function u
is in W ,p(Q) belongs to the class Ga = Ga(p,γ,γ) if

∥
∥div a(x,∇u) – ∂tu

∥
∥∞,Q

≤ ; (a)

 ≤ u ≤ , a.e. in Q; (b)

u(, ) = ; (c)

∂tu ≥  a.e. in Q. (d)

Condition (a) should be understood in the weak sense, i.e., div a(x,∇u) – ∂tu = h weakly
for h ∈ L∞(Q) with ‖h‖∞,Q ≤ . Condition (c) makes sense since (a) and (b) provide
that u ∈ C,α

x ∩ C,α
t (Q 


) and u ∈ C,α(Q 


) for some α ∈ (, ) in the case of p ≥  and

 < p < , respectively (see e.g. Chapter IX of []).
In this section, we discuss the behavior of solutions to problem () and functions in Ga

near the free boundary.

2.1 Non-degeneracy of the solution near the free boundary
The following result gives a description of the solution u to problem () showing that it
cannot grow too slowly near the free boundary. This property and the growth rate of the
elements in Ga will pave the way to establish the porosity of the free boundary.

Lemma . Let u ∈ W ,p(Q) be a non-negative continuous function in Q, satisfying

div a(x,∇u) – ∂tu = f

weakly in U+ = {u > }. Then for every (z, s) ∈ U+ and r >  with Qr(z, s) ⊂ Q

sup
(x,t)∈∂pQ–

r (z,s)
u(x, t) ≥ cr

p
p– + u(z, s),

where Q–
r (z, s) = Br(z) × (s – rq, s), c is a positive constant depending only on p, λ, γ.

Proof First suppose that (z, s) ∈ U+, and for small ε >  set

uε(x, t) = u(x, t) – ( – ε)u(z, s)

and

v(x, t) = C|x – z| p
p– – C(t – s),

where C, C are positive constants, depending only on p, λ, γ, such that

γCp–


(
p

p – 

)p

+ C ≤ λ.
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We claim that for C, C

div a(x,∇v) – ∂tv ≤ λ, ∀(x, t) ∈ U+ ∩ Q–
r (z, s). ()

To prove (), we need to calculate ∇v and the divergence of a(x,∇v). Indeed,

∇v(x, t) =
pC

p – 
|x – z| –p

p– (x – z),
∣∣Dijv(x, t)

∣∣ ≤ pC

(p – ) |x – z| –p
p– .

One may verify that

div a(x,∇v) – ∂tv =
N∑

i=

∂ai

∂xi
(x, w) +

N∑

i,j=

∂ai

∂ηj
(x, w)

∂wj

∂xi
(x) + C

≤ γ|w|p– + γ|w|p– pC

(p – ) |x – z| –p
p– + C

≤ γ

(
pC

p – 

)p–(
|x – z| +


p – 

)
+ C

≤ γ

(
pC

p – 

)p–(
 +


p – 

)
+ C

≤ λ,

where w(x, t) = ∇v(x, t) = pC
p– |x – z| –p

p– (x – z).
Notice that div a(x,∇u) – ∂tu = div a(x,∇uε) – ∂tuε in U+ ∩ Q–

r (z, s). Recall condition (f ),
it follows that

div a(x,∇v) – ∂tv ≤ div a(x,∇uε) – ∂tuε in �+ ∩ Q–
r (z, s).

It is easy to see uε(x, t) = –( – ε)u(z, s) ≤  on ∂U+ and v(x, t) ≥  for any t ≤ s, thus uε ≤ v
on ∂U+ ∩Q–

r (z, s). If also uε ≤ v on ∂Q–
r (z, s)∩U+, then we get by the comparison principle

uε ≤ v in Q–
r (z, s) ∩ U+.

But uε(z, s) = εu(z, s) >  = v(z, s), which is a contradiction. Therefore there exists some
point (y, τ ) ∈ ∂Q–

r (z, s) such that

uε(y, τ ) ≥ v(y, τ ) = cr
p

p– ,

where c = min{C, C}. Letting ε →  we obtain the desired result for all (z, s) ∈ U+, and
by continuity for all (z, s) ∈ U+. �

2.2 Growth rate of the function u in Ga

In this subsection we prove that every function u in Ga cannot grow too fast near the free
boundary but has a growth rate of order q = p

p– (Theorem .).
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First we define the supremum norm of u over the cylinder Q–
r (z, s) as [] by setting

S(r, u, z, s) = sup
x∈Q–

r (z,s)
u(x, t), and S(r, u) = sup

x∈Q–
r (,)

u(x, t).

For each u ∈ Ga, define the set Ma(u, z, s) by setting

Ma(u, z, s) =
{

j ∈N; AS
(
–j–, u, z, s

) ≥ S
(
–j, u, z, s

)}
,

where A = q max{, 
c

} with q = p
p– , and c as in Lemma .. For simplicity, we write

Ma(u) = Ma(u, , ).
It should be noticed that Ma(u) = ∅ for all u ∈ Ga since  ∈ Ma(u). Indeed, it follows

from Lemma . that S(, u) ≤  = ( 
c–q )c–q ≤ ( 

c–q )S(–, u) = AS(–, u).
Now we state the growth property of the elements in the class Ga.

Theorem . There is a positive constant M = M(p,γ,γ) such that, for every u ∈ Ga,

∣
∣u(x, t)

∣
∣ ≤ M

(
d(x, t)

)q ∀(x, t) ∈ Q 


,

where d(x, t) = sup{r; Qr(x, t) ⊂ U+} for (x, t) ∈ U+, and d(x, t) =  otherwise.

To prove this theorem we need the following lemma.

Lemma . There is a positive constant M = M(p,γ,γ) such that

S
(
–j–, u

) ≤ M
(
–j)q,

for all u ∈ Ga and j ∈Ma(u).

Proof Arguing by contradiction, we assume that for every k ∈ N, there exists uk ∈ Ga and
jk ∈Ma(uk) such that

S
(
–jk –, uk

) ≥ k
(
–jk

)q. ()

Observe that by the uniform boundedness of uk and () it follows that jk → ∞ as k → ∞.
Consider the function

ũk(x, t) =
uk(–jk x,αkt)
S(–jk–, uk)

defined in the unit cylinder, where αk = (–jk )p(S(–jk–, uk))–p. Note that by () we have

αk ≤ 
kp–

(
S
(
–jk –, uk

))p– · (S
(
–jk –, uk

))–p

=


kp– S
(
–jk –, uk

)

≤ 
kp– →  as k → ∞.
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By the definition of Ma(uk) and Ga it follows that

 ≤ ũk ≤ A in Q–
 ,

sup
Q–




ũk ≥ 
(
by (d) and

(
–)q

αk ≥ (
–jk –)q),

ũk(, ) = ,

∂t ũk ≥  in Q–
 .

Now, define for (x,η) ∈ B ×R
N

ak(x,η) =
(

–jk

S(–jk–, uk)

)p–

· a
(

–jk x,
S(–jk–, uk)

–jk
η

)
.

We claim that ak(x,η) satisfies the same structural conditions as a(x,η) for large k. Indeed,
letting sk = –jk

S(–jk –,uk )
, one may verify directly that

N∑

i,j=

∂ak
i

∂ηj
(x,η)ξiξj =

N∑

i,j=

sp–
k

∂ai

∂ηj

(
–jk x, s–

k η
)
ξiξj

≥ γsp–
k

∣
∣s–

k η
∣
∣p–|ξ |

= γ|η|p–|ξ |,

N∑

i,j=

∣∣∣
∣
∂ak

i
∂ηj

(x,η)
∣∣∣
∣ =

N∑

i,j=

sp–
k

∣∣∣
∣
∂ai

∂ηj

(
–jk x, s–

k η
)
∣∣∣
∣

≤ γsp–
k

∣
∣s–

k η
∣
∣p–

= γ|η|p–,

N∑

i,j=

∣∣
∣∣
∂ak

i
∂xj

(x,η)
∣∣
∣∣ =

N∑

i,j=

sp–
k –jk

∣∣
∣∣
∂ai

∂xj

(
–jk x, s–

k η
)
∣∣
∣∣

≤ –jk γ|η|p–

≤ γ|η|p–.

()

Now by (a) and () we obtain

∥
∥div ak(x,∇ũk(x, t)

)
– ∂t ũk(x, t)

∥
∥∞ = –jk sp–

k
∥
∥(Auk – ∂tuk)

(
–jk x,αkt

)∥∥∞

≤ –jk
(

–jk

S(–jk–, uk)

)p–

≤ 
kp– →  as k → ∞,

where (Au)(x, t) is defined by (Au)(x, t) = div a(x,∇u(x, t)).
Observe that by (), for any M >  we have

∣
∣∣
∣
∂ak

i
∂xj

(x,η)
∣
∣∣
∣ →  as k → ∞,
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uniformly in (x,η) ∈ B × BM . Therefore the pointwise limit of ak(x,η) does not depend
on x:

ak(x,η) → ã(η),

with ã satisfying the same structural conditions as (a)-(a). Then invoking compactness
arguments (see Lemma . on p. and -(iii) on p. of []), we deduce that, up to a
subsequence, ũk converges locally uniformly in Q–

 to a function u. Moreover, the limit
function u satisfies

div ã(∇u) – ∂tu = , u ≥ , u(, ) = ,

sup
Q–




u ≥ , ∂tu ≥  in Q–
 . ()

To get a contradiction, we divide our problem into two cases.

-Case  ( < p ≤ ). In this case, we need the following lemma originating from [], where
the authors stated it for p-parabolic equations ( < p < ). One should pay attention to the
fact that the proof of the following lemma can be repeated as in [] with slight modifica-
tions. Moreover, the result is valid for p =  since the process is ‘stable’ as p ↗  so that one
may recover the regularity results by letting p ↗  (see the proofs of Theorems  and , or
the remarks in -(iii) on p. of []).

Lemma . (Theorem  []) Let � be a region of R
N , �∞ = � × (,∞) and u ∈

C(, T ; L(�)) ∩ L(, T ; W ,p(�)) be any non-negative local solution of

div ã(∇u) – ∂tu =  in �∞.

Suppose u(x, t) >  for some (x, t) ∈ �∞. Then, for any ball Bρ(x) ⊂ �,

u(x, t) >  ∀x ∈ Bρ(x).

Now notice that supB 


u(x, ) ≥  by ∂tu ≥  and (). One may find x ∈ B 


() such that

u(x, ) ≥ 
 . On the other hand, since, for any Q′ ⊂ Q, u ∈ C,α(Q′) for some α ∈ (, )

(see Chapter IX of []), and then Lemma . gives u(, ) ≥ 
 , which is a contradiction.

Indeed, in Lemma ., one may let ρ = 
 ∈ (|x|,  – |x|) and � = Br ⊂ B with r =


 +|x|+

 .
Therefore Bρ(x) ⊂ � and  ∈ Bρ(x).

-Case  ( < p < ∞). In this case, due to the lack of a strong minimum principle, we need
further discussion to get a contradiction. At this point, we show that u is time independent,
i.e.,

∂tu =  in Q–
 .

Then u is a nonzero, non-negative harmonic function in the unit ball and it vanishes at
the origin. Indeed, this is a contradiction to the strong minimum principle; see [] for
instance. To this end, choosing (x, t), (x′, t′) ∈ Q–




and using the definition of Ma(uk) and
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Hölder’s estimates for solutions with GT = Q–
–jk

and K = Q–
–jk – (see Theorem . on p.

of []), we arrive at

∣∣̃uk(x, t) – ũk
(
x, t′)∣∣ =

|uk(–jk x,αkt) – uk(–jk x,αkt′)|
S(–jk–, uk)

≤ A
|uk(–jk x,αkt) – uk(–jk x,αkt′)|

S(–jk , uk)

≤ Aγ
‖uk‖∞,GT

S(–jk , uk)

(‖uk‖
p–

p
∞,GT

α

p
k |t – t′| 

p

distp(K , ∂pGT ; p)

)α

,

where distp(K , ∂pGT ; p) = inf(x,t)∈K ,(y,s)∈∂pGT (|x–y|+‖u‖
–p

p
∞,GT

|t – s| 
p ), α ∈ (, ) is the Hölder

exponent, the constant γ does not depend on ‖uk‖∞,GT .

Now observe that distp(K , ∂pGT ; p) ≥ (–jk –)
q
p ‖u‖

–p
p

∞,GT
. It follows that

∣
∣̃uk(x, t) – ũk

(
x, t′)∣∣ ≤ Aγ

∣
∣t – t′∣∣ α

p
(
αk · (jk +)q) α

p

= Aγ
∣∣t – t′∣∣ α

p
[(

–jk
)p · (S

(
–jk –, uk

))–p · (jk +)q] α
p

≤ Aγ
∣
∣t – t′∣∣ α

p
[(

–jk
)p– · k–p · (–jk

)q(–p) · (jk
)q · q] α

p

= 
α

p– Aγ
∣∣t – t′∣∣ α

p k–p →  as k → ∞.

Hence u is t-independent, and the proof is completed. �

Proof of Theorem . The proof of this theorem is standard (see []). For convenience, we
recover the process. Let us take j for which

S
(
–j, u

)
> qM–qj.

It follows that

S
(
–j+, u

) ≤ qM–q(j–) < qS
(
–j, u

) ≤ AS
(
–j, u

)
, ()

i.e. j –  ∈ Ma(u), so Lemma . holds for j – . Now we arrive at the following obvious
contradiction to ():

S
(
–j, u

) ≤ S
(
–j+, u

) ≤ M–q(j–) = qM–qj.

Therefore

S
(
–j, u

) ≤ qM–qj, ∀j,

which implies

sup
Q–

r (,)
u ≤ qM–qj, ∀r ≤ .
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To obtain a similar estimate for u over the whole cylinder (and not only over the lower half
part) we use an upper barrier. Define w(x, t) = C|x|q + Ct where C =  + γ(qC)p–( +


p– ) and C > . Let now Q+

 = B() × (, ). Then proceeding as Lemma ., we deduce

div a(x,∇w) – ∂tw ≤ γ(qC)p–
(

 +


p – 

)
– C

= – ≤ div a(x,∇u) – ∂tu in Q+
 .

Since by choosing C large, we will have w ≥ u on ∂pQ+
 , where for the estimate on {t = }

we have sued the previous discussion, i.e., S(r, u) ≤ Crq. Hence by the comparison princi-
ple we have w ≥ u in Q+

 . Therefore

sup
Qr(,)

u ≤ Mrq.

The proof is completed. �

3 Proof of the main theorem
Having the estimates from below and above for the function u, one can prove our main
result as in []. For completeness we carry out the minor changes in the proof of [].

Proof of the main theorem Without loss of generality, we assume that the compact set K
in the main theorem is the closed unit cylinder Q, and, moreover, that Q ⊂ �T .

For (x, t) ∈ U+ ∩ Q, let d(x, t) be defined as in Theorem . and take (x, t) ∈ ∂U+ ∩
Q which realizes this distance. Next define ũ(y, s) = u(x + y, t + s) in Q. Let M =
max{‖θ‖∞,�T ,
}, ã(y,η) = a(x+y,Mη)

M and Ãv(y, s) = div ã(y,∇v(y, s)). We claim that ũ
M ∈

Gã. Indeed, one may verify directly that ã satisfies all structural conditions (not necessar-
ily with the same constants as a). Furthermore, we have

Ã
(

ũ
M

)
– ∂s

(
ũ
M

)
=


M

[
div a

(
x + y,∇u

(
x + y, t + s

))
– ∂su

(
x + y, t + s

)]

=


M
[
(Au) – ∂su

](
x + y, t + s

)

≤ 


M
≤ ,

and

 ≤ ũ
M

≤ ‖θ‖∞,�T

M
≤  and

ũ(, )
M

= .

Therefore we infer by Theorem . that

u(x, t) = ũ
(
x – x, t – t) ≤ MM

(
d(x, t)

) p
p– . ()

Let (z, τ ) ∈ ∂U+ ∩ Q. Then, for  < r < , by Lemma ., there exists x ∈ ∂Br(z) such that

u
(
x) ≥ cr

p
p– .
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It follows from () that

cr
p

p– ≤ u
(
x, τ

) ≤ MM
(
d(x, τ )

) p
p– .

Let δ = ( c
MM

)
p–

p . Then d(x, τ ) ≥ δr, and  < δ ≤ . Therefore

Bδr
(
x) ∩ Br(z) ⊂ U+.

Now choose y ∈ [z, x] such that |y – x| = δr
 . Then we have

B δr


(y) ⊂ Bδr
(
x) ∩ Br(z) ⊂ Br(z) \ ∂U+.

Indeed, for any y ∈ B δr


(y), we have

∣∣y – x∣∣ ≤ |y – y| +
∣∣y – x∣∣ <

δr


+
δr


= δr.

Moreover, since |y – z| = |z – x| – |y – x|, we have

|y – z| ≤ |y – y| +
(∣∣z – x∣∣ –

∣
∣y – x∣∣) ≤ δr


+

(
r –

δr


)
= r.

This shows that ∂U+ ∩ {t = τ } ∩ B is porous with the porosity constant δ
 . �
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