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1 Introduction and main results
Consider the second order Hamiltonian system

⎧
⎨

⎩

ü(t) = ∇F(t, u(t)),

u(T) – u() = u̇(T) – u̇() = ,
(.)

where T >  and F : [, T] ×R
N →R satisfies the following assumption:

(A) F(t, x) is measurable in t for every x ∈ R
N , continuously differentiable in x for a.e.

t ∈ [, T], and there exist a ∈ C(R+,R+), b ∈ L([, T];R+) such that

∣
∣F(t, x)

∣
∣ ≤ a

(|x|)b(t),
∣
∣∇F(t, x)

∣
∣ ≤ a

(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [, T].

The corresponding functional ϕ : H
T →R,

ϕ(u) =



∫ T



∣
∣u̇(t)

∣
∣ dt +

∫ T


F
(
t, u(t)

)
dt,

is continuously differentiable and weakly lower semi-continuous on H
T , where H

T is the
usual Sobolev space with the norm

‖u‖ =
(∫ T



∣
∣u(t)

∣
∣ dt +

∫ T



∣
∣u̇(t)

∣
∣ dt

)/

for u ∈ H
T , and

〈
ϕ′(u), v

〉
=

∫ T



[(
u̇(t), v̇

)
+

(∇F
(
t, u(t)

)
, v(t)

)]
dt
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for all u, v ∈ H
T , It is well known that the solutions of problem (.) correspond to the

critical points of ϕ.
The existence of periodic solutions for problem (.) is obtained in [–] with many

solvability conditions by using the least action principle and the minimax methods, such
as the coercive type potential condition (see []), the convex type potential condition (see
[]), the periodic type potential conditions (see []), the even type potential condition
(see []), the subquadratic potential condition in Rabinowitz’s sense (see []), the bounded
nonlinearity condition (see []), the subadditive condition (see []), the sublinear nonlin-
earity condition (see [, ]), and the linear nonlinearity condition (see [, , , ]).

In particular, when the nonlinearity �F(t, x) is bounded, that is, there exists g(t) ∈
L([, T],R+) such that |�F(t, x)| ≤ g(t) for all x ∈R

N and a.e. t ∈ [, T], and that
∫ T


F(t, x) dt → ±∞ as |x| → ∞,

Mawhin and Willem [] proved that problem (.) has at least one periodic solution.
In [, ], Han and Tang generalized these results to the sublinear case:

∣
∣�F(t, x)

∣
∣ ≤ f (t)|x|α + g(t) for all x ∈R

N and a.e. t ∈ [, T] (.)

and

|x|–α

∫ T


F(t, x) dt → ±∞ as |x| → ∞, (.)

where f (t), g(t) ∈ L([, T],R+) and α ∈ [, ).
Subsequently, when α =  Zhao and Wu [, ] and Meng and Tang [, ] also proved

the existence of periodic solutions for problem (.), i.e. ∇F(t, x) was linear:
∣
∣�F(t, x)

∣
∣ ≤ f (t)|x| + g(t) for all x ∈R

N and a.e. t ∈ [, T],

where f (t), g(t) ∈ L([, T],R+).
Recently, Wang and Zhang [] used a control function h(|x|) instead of |x|α in (.) and

(.) and got some new results, where h satisfied the following conditions:
(B) h ∈ C([,∞), [,∞)) and there exist constants C > , K > , K > , α ∈ [, ) such

that
(i) h(s) ≤ h(t) ∀s ≤ t, s, t ∈ [,∞),

(ii) h(s + t) ≤ C(h(s) + h(t)) ∀s, t ∈ [,∞),
(iii)  ≤ h(s) ≤ Ksα + K ∀s ∈ [,∞),
(iv) h(s) → ∞ as s → ∞.
Motivated by the results mentioned above, we will consider the periodic solutions for

problem (.). The following are our main results.

Theorem . Suppose that F(t, x) = F(t, x) + F(x), where F and F satisfy assumption (A)
and the following conditions:

() there exist f , g ∈ L([, T];R+) such that

∣
∣∇F(t, x)

∣
∣ ≤ f (t)h

(|x|) + g(t),

for all x ∈ R
N and a.e. t ∈ [, T], here h satisfies (B);
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() there exist constants r >  and γ ∈ [, ) such that

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|γ ,

for all x, y ∈R
N ;

()

lim inf|x|→∞ h–(|x|)
∫ T


F(t, x) dt >

TC


π

∫ T


f (t) dt.

Then problem (.) has at least one periodic solution which minimizes ϕ on H
T .

Theorem . Suppose that F(t, x) = F(t, x) + F(x), where F and F satisfy assumption
(A), (), (), and the following conditions:

() there exist δ ∈ [, ) and μ >  such that

(∇F(x) – ∇F(y), x – y
) ≤ μ|x – y|δ ,

for all x, y ∈ RN ;
()

lim sup
|x|→∞

h–(|x|)
∫ T


F(t, x) dt < –

TC


π

∫ T


f (t) dt.

Then problem (.) has at least one periodic solution which minimizes ϕ on H
T .

Theorem . Suppose that F(t, x) = F(t, x) + F(x), where F and F satisfy assumption
(A), (), and the following conditions:

() there exists a constant  < r < π/T, such that

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|,

for all x, y ∈ RN ;
()

lim inf|x|→∞ h–(|x|)
∫ T


F(t, x) dt >

T

(π – rT)

∫ T


f (t) dt.

Then problem (.) has at least one periodic solution which minimizes ϕ on H
T .

Theorem . Suppose that F = F + F, where F and F satisfy assumption (A), (), and
the following conditions:

() there exist k ∈ L([, T];R+) and (λ,μ)-subconvex potential G : RN →R with λ > /
and  < μ < λ, such that

(∇F(t, x), y
) ≥ –k(t)G(x – y),

for all x, y ∈R
N ;
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()

lim sup
|x|→∞

h–(|x|)
∫ T


F(t, x) dt < –

TC


π

∫ T


f (t) dt,

lim sup
|x|→∞

|x|–β

∫ T


F(t, x) dt ≤ –μmax

|s|≤
G(s)

∫ T


k(t) dt,

where β = logλ(μ).
Then problem (.) has at least one periodic solution which minimizes ϕ on H

T .

Remark . Theorems .-. extend some existing results: (i) [], Theorems .-., are
special cases of Theorems .-. with control function h(t) = tα ,α ∈ [, ), t ∈ [, +∞);
(ii) if F = , [], Theorems  and , are special cases of Theorem . and Theorem .,
respectively; (iii) If F = , Theorem . and Theorem . extend [], Theorems . and
., since we weaken the so-called Ahmad-Lazer-Paul type conditions with the control
function h(t).

2 Proof of theorems
For u ∈ H

T , let ū = 
T

∫ T
 |u̇(t)|dt and ũ(t) = u(t) – ū. Then one has

‖ũ‖
∞ ≤ T



∫ T



∣
∣u̇(t)

∣
∣ dt (Sobolev’s inequality),

‖ũ‖
L ≤ T

π

∫ T



∣
∣u̇(t)

∣
∣ dt (Wirtinger’s inequality).

For the sake of convenience, we denote M = (
∫ T

 f (t) dt)/, M =
∫ T

 f (t) dt, M =
∫ T

 g(t) dt.

Proof of Theorem . Due to (), we can choose an a > T/(π) such that

lim inf|x|→∞ h–(|x|)
∫ T


F(t, x) dt >

aC



M

 . (.)

For (B) and the Sobolev inequality, for any u ∈ H
T we have

∣
∣
∣
∣

∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ T



∫ 



(∇F
(
t, ū + sũ(t)

)
, ũ(t)

)
ds dt

∣
∣
∣
∣

≤
∫ T



∫ 


f (t)h

(∣
∣ū + sũ(t)

∣
∣
)∣
∣ũ(t)

∣
∣ds dt +

∫ T



∫ 


g(t)

∣
∣ũ(t)

∣
∣ds dt

≤
∫ T



∫ 


Cf (t)

(
h
(|ū|) + h

(∣
∣ũ(t)

∣
∣
))∣

∣̃u(t)
∣
∣ds dt + M‖ũ‖∞

≤ Ch
(|ū|)

(∫ T


f (t) dt

)/(∫ T



∣
∣ũ(t)

∣
∣ dt

)/

+ C

∫ T


f (t)h

(∣
∣ũ(t)

∣
∣
)∣
∣ũ(t)

∣
∣dt + M‖ũ‖∞
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≤ CMh
(|ū|)‖ũ‖L + C

∫ T


f (t)

(
K

∣
∣ũ(t)

∣
∣α + K

)∣
∣ũ(t)

∣
∣dt + M‖ũ‖∞

≤ CMh
(|ū|)‖ũ‖L + CMK‖ũ‖+α

∞ + CMK
∥
∥ũ(t)

∥
∥∞ + M

∥
∥ũ(t)

∥
∥∞

≤ 
a

‖̃u‖
L +

a(CM)


h(|ū|) + CMK‖ũ‖+α

∞

+ CMK
∥
∥ũ(t)

∥
∥∞ + M

∥
∥ũ(t)

∥
∥∞

≤ T

πa
‖u̇‖

L +
a(CM)


h(|ū|) +

(
T


)(+α)/

CMK‖u̇‖+α
L

+
(

T


)/

CMK‖u̇‖L +
(

T


)/

M‖u̇‖L. (.)

Similarly, from () and the Sobolev inequality, for any u ∈ H
T we get

∫ T



[
F

(
u(t)

)
– F(ū)

]
dt

=
∫ T



∫ 




s
(∇F

(
ū + sũ(t)

)
– ∇F(ū), sũ(t)

)
ds dt

≥ –
∫ T



∫ 


rsγ –∣∣ũ(t)

∣
∣γ ds dt

≥ –
rT
γ

‖̃u‖γ
∞

≥ –
rT
γ

(
T


)γ /

‖u̇‖γ

L . (.)

From (.) and (.) we have

ϕ(u) =


‖u̇‖

L +
∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt

+
∫ T



[
F

(
u(t)

)
– F(ū)

]
dt +

∫ T


F(t, ū) dt

≥
(




–
T

πa

)

‖u̇‖
L –

a(CM)


h(|ū|) –

(
T


) +α


CMK‖u̇‖+α
L

–
(

T


)/

CMK‖u̇‖L –
(

T


)/

M‖u̇‖L

–
rT
γ

(
T


)α/

‖u̇‖γ

L +
∫ T


F(t, ū) dt

≥
(




–
T

πa

)

‖u̇‖
L + h(|ū|)

(

h–(|ū|)
∫ T


F(t, ū) dt –

a(CM)



)

–
(

T


)/

(CMK + M)‖u̇‖L

–
(

T


) +α


CMK‖u̇‖+α
L –

rT
γ

(
T


)γ /

‖u̇‖γ

L ,

for all u ∈ H
T . So, by (.) we get ϕ(u) → ∞ as ‖u‖ → ∞.
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Hence, applying the least action principle (see [], Theorem . and Corollary .), the
proof is complete. �

Proof of Theorem . Step . First, we assert that ϕ satisfies the (PS) condition. Suppose
that {un} is a (PS) sequence, that is, ϕ′(un) →  as n → ∞ and {ϕ(un)} is bounded. For (),
we can choose an a > T/(π) such that

lim sup
|x|→∞

h–(|x|)
∫ T


F(t, x) dt < –

(
a


+

√aT
π

)

C


∫ T


f (t) dt. (.)

Similar to the proof of Theorem ., we have

∣
∣
∣
∣

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

∣
∣
∣
∣

≤ T

πa
‖u̇n‖

L +
a(CM)


h(|ūn|

)
+

(
T


)(+α)/

CMK‖u̇n‖+α
L

+
(

T


)/

(CMK + M)‖u̇n‖L (.)

and

∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt ≥ –

rT
γ

(
T


)γ /

‖u̇‖γ

L ,

for all n. Hence we have

‖ũn‖ ≥ 〈
ϕ′(un), ũn

〉

= ‖u̇n‖
L +

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≥
(

 –
T

πa

)

‖u̇n‖
L –

a(CM)


h(|ūn|

)

–
(

T


) +α


CMK‖u̇n‖+α
L

–
(

T


)/

(CMK + M)‖u̇n‖L –
rT
γ

(
T


)γ /

‖u̇n‖γ

L , (.)

for large n. So, by Wirtinger’s inequality we get

∥
∥(ũn)

∥
∥ ≤ (T + π)/

π
‖u̇n‖L . (.)

From (.) and (.),

a(CM)


h(|ūn|

)

≥
(

 –
T

πa

)

‖u̇n‖
L – CMK

(
T


) +α
 ‖u̇n‖+α

L
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–
(

T


)/

(CMK + M)‖u̇n‖L

– ‖ũn‖ –
rT
γ

(
T


)γ /

‖u̇n‖γ

L ≥ 

‖u̇n‖

L + C, (.)

where

C = min
s∈[,+∞]

{
πa – T

πa
s –

(
T


) +α


CMKs+α

–
[

(T + π)/

π
+ CMK

(
T


)/

+
(

T


)/

M

]

s –
rT
γ

(
T


)γ /

sγ

}

.

Note that a > T/(π) implies –∞ < C < . Hence, it follows from (.) that

‖u̇n‖
L ≤ aC

M
 h(|un|

)
– C, (.)

and then

‖u̇n‖L ≤ √
aCMh

(|un|
)

+ C, (.)

where  < C < +∞. Similar to the proof of Theorem ., we have

∣
∣
∣
∣

∫ T



[
F

(
t, un(t)

)
– F(t, ūn)

]
dt

∣
∣
∣
∣

≤ CMh
(|ūn|

)‖ũn‖L + CMK‖ũn‖+α
∞ + (CMK + M)‖ũn‖∞

≤ π√aT
‖ũn‖

L +
√aTC


π

M
 h(|ūn|

)

+ CMK‖ũn‖+α
∞ + (CMK + M)‖ũn‖∞

≤ T
π

√a
‖u̇n‖

L +
√aTC


π

M
 h(|ūn|

)
+

(
T


)(+α)/

CMK‖u̇n‖+α
L

+
(

T


)/

(CMK + M)‖u̇n‖L . (.)

By (), we obtain

∫ T



[
F

(
un(t)

)
– F(ūn)

]
dt

=
∫ T



∫ 




s
(∇F

(
ūn + sũn(t)

)
– ∇F(ūn), sũn(t)

)
ds dt

≤
∫ T



∫ 


μsδ–∣∣ũn(t)

∣
∣δ ds dt ≤ μT

δ
‖ũn‖δ

∞

≤ μT
δ

(
T


)δ/

‖u̇n‖δ
L .
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From the boundedness of ϕ(un) and (.)-(.), we have

C ≤ ϕ(un)

=


‖u̇n‖

L +
∫ T



[
F

(
t, un(t)

)
– F(t, ūn)

]
dt +

∫ T



[
F

(
un(t)

)
– F(ūn)

]
dt

+
∫ T


F
(
t, ūn(t)

)
dt

≤
(




+
T

π
√a

)

‖u̇‖
L +

√aTC


π
M

 h(|ū|) + CMK

(
T


)(+α)/

‖u̇n‖+α
L

+
(

T


)/

(CMK + M)‖u̇n‖L +
∫ T


F(t, ūn) dt +

μT
δ

(
T


)δ/

‖u̇n‖δ
L

≤
(




+
T

π
√a

)
(
aC

M
 h(|ūn|

)
– C

)
+

√aTC


π
M

 h(|ū|)

+ CMK

(
T


)(+α)/(√
aCMh

(|ūn|
)

+ C
)+α

+
(

T


)/

(CMK + M)
(√

aCMh
(|ūn|

)
+ C

)

+
∫ T


F(t, ūn) dt +

μT
δ

(
T


)δ/

‖u̇n‖δ
L

≤
(

a


+

√aT
π

)

C
M

 h(|ūn|
)

–
(

 +
T

π
√a

)

C

+
(

T


)(+α)/

αCMK
[
(
√

aCM)+αh
(|ūn|

)+α + C+α


]

+
(

T


)/

(CMK + M)
(√

aCMh
(|ūn|

)
+ C

)

+
∫ T


F(t, ūn) dt +

μT
δ

(
T


)δ/

δ–((
√

aM)δhδ
(|un|

)
+ Cδ


)

= h(|ūn|
)
[

h–(|ūn|
)
∫ T


F(t, ūn) dt +

(
a


+

√aT
π

)

C
M



+
(

T


)(+α)/

αC+α
 MM+α

 Khα–(|ūn|
)

+
(

T


)/

(CMK

+ M)
(√

aCMh–(|ūn|
))

+
μT
δ

(
T


)δ/

δ–(
√

aM)δhδ–(|un|
)
]

+
(

T


)(+α)/

αCMKC+α
 +

(
T


)/

(CMK

+ M)C –
(

 +
T

π
√a

)

C +
μT
δ

(
T


)δ/

δ–Cδ
,

for large n. So, by (.) we see that |ū| is bounded. Hence {un} is bounded by (.). Arguing
as in the proof of Proposition . of [], we conclude that the (PS) condition is satisfied.
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Step . Let H̃
T = {u ∈ H

T : ū = }. We assert that for u ∈ H̃
T ,

ϕ(u) → +∞, ‖u‖ → ∞. (.)

In fact, from () and Sobolev’s inequality, we get

∣
∣
∣
∣

∫ T



[
F

(
t, u(t)

)
– F(t, )

]
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ T



∫ 



(∇F
(
t, su(t)

)
, u(t)

)
ds dt

∣
∣
∣
∣

≤
∫ T


f (t)h

(∣
∣u(t)

∣
∣
)∣
∣u(t)

∣
∣dt +

∫ T


g(t)

∣
∣u(t)

∣
∣dt

≤
∫ T


f (t)

(
K

∣
∣u(t)

∣
∣α + K

)∣
∣u(t)

∣
∣dt + M‖u‖∞

≤ MK‖u‖+α
∞ + MK‖u‖∞ + M‖u‖∞

≤
(

T


) +α


MK‖u̇‖+α

L +
(

T


)/

(MK + M)‖u̇‖L ,

for all u ∈ H̃
T . It follows from () that

∫ T



[
F

(
u(t)

)
– F()

]
dt

=
∫ T



∫ 




s
(∇F

(
sũ(t)

)
– ∇F(), su(t)

)
ds dt

≥ –
∫ T



∫ 


rsγ –|u|γ ds dt

≥ –
rT
γ

‖u̇‖γ
∞

≥ –
rT
γ

(
T


)γ /

‖u̇‖γ

L .

So, we get

ϕ(u) =


‖u̇‖

L +
∫ T



[
F
(
t, u(t)

)
– F(t, )

]
dt +

∫ T


F(t, ) dt

≥ 

‖u̇‖

L –
(

T


) +α


MK‖u̇‖+α
L –

(
T


)/

(MK + M)‖u̇‖L

–
rT
γ

(
T


)γ /

‖u̇‖γ

L +
∫ T


F(t, ) dt.

By Wirtinger’s inequality, ‖u‖ → ∞ if and only if ‖u̇‖L → ∞ in H̃
T . Hence (.) holds.

Step . By (), we can easily see that
∫ T

 F(t, x) dt → –∞ as |x| → ∞ for all x ∈R
N . Thus,

for all u ∈ (H̃
T )⊥ = R

N ,

ϕ(u) =
∫ T


F(t, u) dt → –∞ as |u| → ∞.



Wang and Yang Boundary Value Problems  (2015) 2015:199 Page 10 of 14

Now, by saddle point theorem (see, [], Theorem .), the proof is completed. �

Proof of Theorem . By (), we can choose an a > T

π–rT such that

lim inf|x|→∞ h–(|x|)
∫ T


F(t, x) dt >

a


M

 C
. (.)

By () and the Sobolev inequality, we have

∫ T



[
F

(
u(t)

)
– F(ū)

]
dt

=
∫ T



∫ 




s
(∇F

(
ū + sũ(t)

)
– ∇F(ū), sũ(t)

)
ds dt

≥ –
∫ T



∫ 


rs

∣
∣ũ(t)

∣
∣ ds dt ≥ –

rT

π ‖u̇‖
L .

By a similar method to that of the proof of Theorem ., we get

ϕ(u) =


‖u̇‖

L +
∫ T


F
(
t, u(t)

)
dt

=


‖u̇‖

L +
∫ T



[
F

(
t, u(t)

)
– F(t, u)

]
dt

+
∫ T



[
F

(
u(t)

)
– F(u)

]
dt +

∫ T


F(t, u) dt

≥
(




–
T

πa
–

rT

π

)

‖u̇‖
L –

(
T


)(+α)/

CMK‖u̇‖+α
L

–
(

T


)/(

M +
CMK



)

‖u̇‖L –
aC

M



h(|ū|) +

∫ T


F(t, u) dt

=
(




–
T

πa
–

rT

π

)

‖u̇‖
L –

(
T


)/(

M +
CMK



)

‖u̇‖L

–
(

T


)(+α)/

CMK‖u̇‖+α
L + h(|ū|)

(

h–(|ū|)
∫ T


F(t, ū) dt –

aC
M




)

,

for all u ∈ H
T , which implies that ϕ(u) → ∞ as ‖u‖ → ∞ by (.), due to the facts that

r < π

T and ‖u‖ → ∞ if and only if (|ū| + ‖u̇‖
L )/ → ∞. So, applying the least action

principle, Theorem . holds. �

Proof of Theorem . First, we assert that ϕ satisfies the (PS) condition. Suppose that {un}
satisfies ϕ′(un) →  as n → ∞ and {ϕ(un)} is bounded. By (), we can choose an a > T

π

such that

lim sup
|x|→∞

h–(|x|)
∫ T


F(t, x) dt < –

(
a


+

√aT
π

)

C
M

 . (.)

By the (λ,μ)-subconvexity of G(x), we have

G(x) ≤ (
μ|x|β + 

)
G (.)
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for all x ∈R
N , and a.e. t ∈ [, T], where G = max|s|≤ G(s), β = logλ(μ) <  Then

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≥ –
∫ T


k(t)G(ūn) dt

≥ –
∫ T


k(t)

(
μ|ūn|β + 

)
G dt

= –μM|ūn|β – M, (.)

where M = G
∫ T

 k(t) dt. From (.) and (.), for large n, we have

‖ūn‖ ≥ 〈
ϕ(un), ũn

〉

= ‖u̇n‖
L +

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)

≥
(

 –
T

πa

)

‖u̇n‖
L –

(
T


)(+α)/

CMK‖u̇n‖+α
L –

(CM)a


h(|ūn|

)

–
(

T


)/(

M +
CMK



)

‖u̇‖L – μM|ūn|β – M. (.)

So, from (.) and (.) we have

(CM)a


h(|ūn|

)
+ μM|ūn|β

≥
(

 –
T

πa

)

‖u̇n‖
L –

(
T


)(+α)/

CMK‖u̇n‖+α
L

–
(

T


)/(

M +
CMK



)

‖u̇‖L –
(T + π)/

π
‖u̇n‖L – M

≥ 

‖u̇n‖

L + C, (.)

where

C = min

{(



–
T

πa

)

s –
(

T


)(+α)/

CMKs+α –
[

(T + π)/

π

+
(

T


)/(

M +
CMK



)]

s – M

}

.

Note that –∞ < C <  due to a > T

π , by (.), one has

‖u̇n‖
L ≤ a(CM)h(|ūn|

)
+ μM|un|β – C, (.)

and then

‖u̇n‖L ≤ √
aCMh

(|ūn|
)

+ 
√

μM|un|β/ + C, (.)
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where C > . From () and (.), we have

∣
∣
∣
∣

∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt

∣
∣
∣
∣

=
∫ T



∫ 



(∇F
(
t, ūn + sũn(t)

)
, ũn(t)

)
ds dt

≤
∫ T



∫ 


k(t)G

(
ūn + (s + )ũn

)
ds dt

≤
∫ T



∫ 


k(t)

(
μ

∣
∣ūn + (s + )ũn(t)

∣
∣β + 

)

≤ μ

∫ T


k(t)

(|ūn|β + β |ũn|β
)
G

∫ T


k(t) dt

≤
(

T


)β/

β+μM‖u̇n‖β

L + μM|ūn|β + M, (.)

for all u ∈ H
T . By the boundedness of {ϕ(un)} and the inequalities (.)-(.), we

get

C ≤ ϕ(un)

=


‖u̇n‖

L +
∫ T



[
F

(
t, un(t)

)
– F(t, ūn)

]
dt

+
∫ T



[
F

(
t, un(t)

)
– F(t, ūn)

]
dt +

∫ T


F(t, ūn) dt

≤
(




+
T

π
√a

)

‖u̇n‖
L +

√aTC


π
M

 h(|ūn|
)

+
(

T


)/

(CMK + M)‖u̇n‖L

+
(

T


)(+α)/

CMK‖u̇n‖+α
L +

(
T


)β/

β+μM‖u̇‖β

L

+ μM|ūn|β + M +
∫ T


F(t, ūn) dt

≤
(




+
T

π
√a

)
(
a(CM)h(|ūn|

)
+ μM|un|β – C

)

+
√aTC


π

M
 h(|ūn|

)

+
(

T


)(+α)/

CMK
(√

aCMh
(|ūn|

)
+ 

√
μM|un|β/ + C

)+α

+
(

T


)/

(CMK + M)
(√

aCMh
(|ūn|

)
+ 

√
μM|un|β/ + C

)

+
(

T


)β/

β+μM
(√

aCMh
(|ūn|

)
+ 

√
μM|un|β/ + C

)β

+ μM|ūn|β + M +
∫ T


F(t, ūn) dt

≤
(

a


+

√aT
π

)
(
(CM)h(|ūn|

))
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+
(

 +
T

π
√a

)

μM|un|β –
(

 +
T

π
√a

)

C

+
(

T


)(+α)/

CMK
(
αa(+α)/

 (CM)+αh+α
(|un|

)

+ α+μ
+α

 M
+α


 |un|β(+α) + αC+α


)

+
(

T


)β/

+βμM
(
β–aβ/


(
CMh

(|un|
))β

+ β–μβ/Mβ/
 |un|β/ + (β–)Cβ


)

+
(

T


)/

(CMK + M)
(√

aCMh
(|ūn|

)
+ 

√
μM|un|β/ + C

)

+ M +
∫ T


F(t, ūn) dt +

∫ T


F(ūn) dt

= h(|ūn|
)
[

h–(|ūn|
)
∫ T


F(t, ūn) dt +

(
a


+

√aT
π

)

(CM)

+
(

T


)(+α)/

C+α
 M+α

 MKαa(+α)/
 hα–(|un|

)

+
(

T


)β/

+βμ(CM)βMaβ/
 hβ–(|un|

)

+
(

T


)/

(CMK + M)
√

aCMh–(|ūn|
)
]

+ |un|β
[

|un|–β

∫ T


F(ūn) dt +

(

 +
T

π
√a

)

μM

+
(

T


)(+α)/

α+CMKμ
(+α)/M(+α)/

 |un|αβ

+
(

T


)β/

βμ(β+)/M(β+)/
 |un| β

 –β

+
(

T


)/

(CMK + M)
√

μM|un|–β/
]

–
(

 +
T

π
√a

)

C +
(

T


)(+α)/

αCMKC+α


+
(

T


)/

(CMK + M)C +
(

T


)β/

βμMCβ

 + M,

for large n. The above inequality and (.) imply that {|u|} is bounded. Hence {un} is
bounded by (.). By using the standard method, the (PS) condition holds.

Since the rest of the proof is similar to that of Theorem ., we omit the details here. �
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