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Abstract
In this paper, we study new fractional-order multivalued problems supplemented
with nonlocal nonlinear flux type integral boundary conditions. Some existence
results are obtained for convex as well as non-convex multivalued maps by applying
standard fixed point theorems for such maps. We also discuss examples for the
illustration of our results.
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1 Introduction
In this paper, we investigate the existence of solutions for a fractional differential inclusion

cDqx(t) ∈ F
(
t, x(t)

)
, t ∈ [, ],  < q ≤ , (.)

supplemented with nonlocal nonlinear flux type integral boundary conditions

x() = βg
(
x′(η)

)
, x′() = α

∫ ξ


x′(s) ds,  < ξ ,η < , (.)

and

x′() = α

∫ ξ


x′(s) ds, x() = βg

(
x′(η)

)
,  < ξ ,η < , (.)

where cDq denotes the Caputo fractional derivative of order q, F : [, ] × R → P(R) is a
multivalued map, P(R) is the family of all nonempty subsets of R, g : R →R is a continu-
ous function and α, β are appropriate real constants with αξ �= .

Fractional differential equations are found to be of great interest in view of their exten-
sive applications in various scientific disciplines such as fluid mechanics, biomathematics,
ecology, visco-elastodynamics, aerodynamics, control theory, electro-dynamics of com-
plex medium, thermodynamics, electrical circuits, electron-analytical chemistry, etc. For
details, we refer the reader to the books [–].
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The subject of boundary value problems has an enriched history, and several kinds
of problems have been discussed over the years. In the past few years, fractional-order
boundary value problems have received much attention, and the subject has been devel-
oped in an extensive manner. In fact it is a hot topic of research in mathematics and its
applications. For some recent results on boundary value problems of fractional differential
equations, we refer the reader to a series of papers [–] and the references cited therein.

Differential inclusions (multivalued differential equations), regarded as the generaliza-
tion of single-valued differential equations, are found to be important mathematical mod-
eling tools in certain problems of economics, optimal control, etc. and are widely studied
by many authors; for instance, see [–] and the references therein. Examples and de-
tails of some recent works on differential inclusions of fractional order can be found in
[–] and the references cited therein.

In this paper, we extend the study on fractional boundary value problems further by in-
troducing a new class of problems of fractional differential inclusions supplemented with
nonlocal nonlinear flux type integral boundary conditions. We obtain some existence re-
sults for the given problems for the cases of convex as well as non-convex multivalued
maps. Our results are based on some standard theorems dealing with multivalued maps.
The methods used here are well known, however their exposition in the context of prob-
lems (.)-(.) and (.)-(.) is new.

The paper is organized as follows. In Section  we present some related preliminary
material from fractional calculus and multivalued analysis. We also describe the details
of the proposed work. The main existence results for problem (.)-(.) are obtained in
Section , and the examples illustrating the results of Section  are given in Section . We
indicate the results for problem (.)-(.) in Section .

2 Preliminaries
This section is devoted to some preliminary concepts of fractional calculus and multival-
ued analysis. We also describe the work proposed in this paper together with the allied
techniques.

Let us first recall some definitions of fractional calculus [, ] and prove an auxiliary
result needed to define the solution for problem (.)-(.).

Definition . For an (n – )-times absolutely continuous function g : [,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s) ds, n –  < q < n, n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q ds, q > ,

provided the integral exists.
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Lemma . Let y ∈ C([, ],R) and x ∈ C([, ],R) be a solution of the linear boundary
value problem

{
cDqx(t) = y(t), t ∈ [, ],  < q ≤ ,
x() = βg(x′(η)), x′() = α

∫ ξ

 x′(s) ds,  ≤ ξ ,η ≤ .
(.)

Then

x(t) =
∫ t



(t – s)q–

�(q)
y(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
y(τ ) dτ ds –

∫ 



( – s)q–

�(q)
y(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
y(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
y(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
y(s) ds

)
. (.)

Proof It is well known that the general solution of the fractional differential equation in
(.) can be written as

x(t) = c + ct +
∫ t



(t – s)q–

�(q)
y(s) ds, (.)

where c, c ∈R are arbitrary constants.
Applying the given boundary conditions, we find that

c = βg
(∫ η



(η – s)q–

�(q – )
y(s) ds + c

)
,

and

c =


 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
y(τ ) dτ ds –

∫ 



( – s)q–

�(q – )
y(s) ds

)
.

Substituting the values of c, c in (.), we get (.). This completes the proof. �

Now we outline some background material on multivalued maps [, ].
For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈

P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}. A multivalued map G : X → P(X) is convex (closed) valued
if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded sets if G(B) =
⋃

x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is
called upper semicontinuous (u.s.c.) on X if for each x ∈ X, the set G(x) is a nonempty
closed subset of X, and if for each open set N of X containing G(x), there exists an open
neighborhood N of x such that G(N) ⊆ N . G is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be denoted
by Fix G. A multivalued map G : [, ] →Pcl(R) is said to be measurable if for every y ∈R,
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the function

t �−→ d
(
y, G(t)

)
= inf

{|y – z| : z ∈ G(t)
}

is measurable.
For each y ∈ C([, ],R), define the set of selections of F by

SF ,y :=
{

v ∈ L([, ],R
)

: v(t) ∈ F
(
t, y(t)

)
for a.e. t ∈ [, ]

}
.

Next we characterize the proposed work and provide the necessary details for achieving
the main results.

To discuss the existence of solutions for problem (.)-(.) with a nonconvex valued
right-hand side (the Lipschitz case), we need the following auxiliary material.

Let (X, d) be a metric space induced from the normed space (X;‖ · ‖). Consider Hd :
P(X) ×P(X) →R∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a; b) and d(a, B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized metric space (see []).

Definition . A multivalued operator N : X →Pcl(X) is called:
(a) γ -Lipschitz if and only if there exists γ >  such that

Hd
(
N(x), N(y)

) ≤ γ d(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < .

Lemma . ([]) Let (X, d) be a complete metric space. If N : X →Pcl(X) is a contraction,
then Fix N �= ∅.

To establish the existence result when the multivalued map F in (.) is convex-valued
(the upper semicontinuous case), we recall the following definitions and known results.

Definition . A multivalued map F : [, ] ×R →P(R) is said to be Carathéodory if
(i) t �−→ F(t, x) is measurable for each x ∈R;

(ii) x �−→ F(t, x) is upper semicontinuous for almost all t ∈ [, ];
Further a Carathéodory function F is called L-Carathéodory if

(iii) for each ρ > , there exists ϕρ ∈ L([, ],R+) such that

∥
∥F(t, x)

∥
∥ = sup

{|v| : v ∈ F(t, x)
} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [, ].

We define the graph of a multivalued map G to be the set Gr(G) = {(x, y) ∈ X × Y , y ∈
G(x)} and recall two results for closed graphs and upper-semicontinuity.

Lemma . ([], Proposition .) If G : X →Pcl(Y ) is u.s.c., then Gr(G) is a closed subset
of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗,
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yn → y∗ and yn ∈ G(xn), then y∗ ∈ G(x∗). Conversely, if G is completely continuous and has
a closed graph, then it is upper semicontinuous.

Lemma . ([]) Let X be a Banach space. Let F : [, ] × X → Pcp,c(X) be an L-
Carathéodory multivalued map, and let � be a linear continuous mapping from
L([, ], X) to C([, ], X). Then the operator

� ◦ SF : C
(
[, ], X

) →Pcp,c
(
C

(
[, ], X

))
, x �−→ (� ◦ SF )(x) = �(SF ,x)

is a closed graph operator in C([, ], X) × C([, ], X).

Lemma . (Nonlinear alternative for Kakutani maps) [] Let E be a Banach space, C be
a closed convex subset of E, U be an open subset of C and  ∈ U . Suppose that F : U →
Pcp,c(C) is an upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Finally, we study the case when the multivalued map F in (.) is not necessarily convex-
valued (the lower semicontinuous case). In this case, the background material is outlined
as follows.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E) be a multi-
valued operator with nonempty closed values. G is lower semicontinuous (l.s.c.) if the set
{y ∈ X : G(y) ∩ B �= ∅} is open for any open set B in E. Let A be a subset of [, ] ×R. A is
L⊗ B measurable if A belongs to the σ -algebra generated by all sets of the form J ×D,
where J is Lebesgue measurable in [, ] and D is Borel measurable in R. A subset A of
L([, ],R) is decomposable if for all u, v ∈A and measurable J ⊂ [, ] = J , the function
uχJ + vχJ–J ∈A, where χJ stands for the characteristic function of J .

Definition . Let Y be a separable metric space and let N : Y → P(L([, ],R)) be a
multivalued operator. We say N has a property (BC) if N is lower semicontinuous (l.s.c.)
and has nonempty closed and decomposable values.

Let F : [, ] ×R→P(R) be a multivalued map with nonempty compact values. Define
a multivalued operator F : C([, ] ×R) →P(L([, ],R)) associated with F as

F (x) =
{

w ∈ L([, ],R
)

: w(t) ∈ F
(
t, x(t)

)
for a.e. t ∈ [, ]

}
,

which is called the Nemytskii operator associated with F .

Definition . Let F : [, ]×R →P(R) be a multivalued function with nonempty com-
pact values. We say F is of lower semicontinuous type (l.s.c. type) if its associated Ne-
mytskii operator F is lower semicontinuous and has nonempty closed and decomposable
values.

Lemma . ([]) Let Y be a separable metric space and let N : Y → P(L([, ],R)) be
a multivalued operator satisfying the property (BC). Then N has a continuous selection,
that is, there exists a continuous function (single-valued) g : Y → L([, ],R) such that
g(x) ∈ N(x) for every x ∈ Y .
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3 Existence results
Definition . A function x ∈ C([, ],R) is said to be a solution of the boundary value
problem (.)-(.) if x() = βg(x′(η)), x′() = α

∫ ξ

 x′(s) ds, and there exists a function v ∈
SF ,x such that

x(t) =
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
, t ∈ [, ]. (.)

For the sake of convenience, we set

� =


�(q + )

(
 + |β|qηq– +

|α|ξ q + 
| – αξ |

(
 + |β|)

)
. (.)

Now we are in a position to present our first existence result for problem (.)-(.) which
deals with a nonconvex valued right-hand side of (.).

Theorem . (The Lipschitz case) Assume that

(A) F : [, ] × R → Pcp(R) is such that F(·, x) : [, ] → Pcp(R) is measurable for each
x ∈R;

(A) Hd(F(t, x), F(t, x̄)) ≤ m(t)|x – x̄| for almost all t ∈ [, ] and x, x̄ ∈ R with m ∈
C([, ],R+) and d(, F(t, )) ≤ m(t) for almost all t ∈ [, ];

(A) g : R →R is continuous and |g(v)| ≤ |v|, ∀v ∈ R.

Then the boundary value problem (.)-(.) has at least one solution on [, ] if ‖m‖� < ,
where � is given by (.).

Proof Define the operator �F : C([, ],R) →P(C([, ],R)) by

�F (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t


(t–s)q–

�(q) v(s) ds
+ t

–αξ
(α

∫ ξ


∫ s


(s–τ )q–

�(q–) v(τ ) dτ ds –
∫ 


(–s)q–

�(q) v(s) ds)
+ βg(

∫ η


(η–s)q–

�(q–) v(s) ds + α
–αξ

∫ ξ


∫ s


(s–τ )q–

�(q–) v(τ ) dτ ds
– 

–αξ

∫ 


(–s)q–

�(q) v(s) ds)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

for v ∈ SF ,x.
Observe that the set SF ,x is nonempty for each x ∈ C([, ],R) by the assumption (A),

so F has a measurable selection (see Theorem III. []). Now we show that the operator
�F satisfies the assumptions of Lemma .. To show that �F (x) ∈Pcl((C[, ],R)) for each
x ∈ C([, ],R), let {un}n≥ ∈ �F (x) be such that un → u (n → ∞) in C([, ],R). Then
u ∈ C([, ],R) and there exists vn ∈ SF ,xn such that, for each t ∈ [, ],
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un(t) =
∫ t



(t – s)q–

�(q)
vn(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
vn(τ ) dτ ds –

∫ 



( – s)q–

�(q)
vn(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
vn(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
vn(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
vn(s) ds

)
.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn

converges to v in L([, ],R). Thus, v ∈ SF ,x and for each t ∈ [, ], we have

vn(t) → v(t) =
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
.

Hence, u ∈ �F (x).
Next we show that there exists δ <  such that

Hd
(
�F (x),�F (x̄)

) ≤ δ‖x – x̄‖ for each x, x̄ ∈ C([, ],R
)
.

Let x, x̄ ∈ C([, ],R) and h ∈ �F (x). Then there exists v(t) ∈ F(t, x(t)) such that, for each
t ∈ [, ],

h(t) =
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
.

By (A), we have

Hd
(
F(t, x), F(t, x̄)

) ≤ m(t)
∣∣x(t) – x̄(t)

∣∣.

So, there exists w ∈ F(t, x̄(t)) such that
∣
∣v(t) – w

∣
∣ ≤ m(t)

∣
∣x(t) – x̄(t)

∣
∣, t ∈ [, ].

Define U : [, ] →P(R) by

U(t) =
{

w ∈R :
∣∣v(t) – w

∣∣ ≤ m(t)
∣∣x(t) – x̄(t)

∣∣}.
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Since the multivalued operator U(t)∩F(t, x̄(t)) is measurable (Proposition III. []), there
exists a function v(t) which is a measurable selection for U . So v(t) ∈ F(t, x̄(t)) and for
each t ∈ [, ], we have |v(t) – v(t)| ≤ m(t)|x(t) – x̄(t)|.

For each t ∈ [, ], let us define

h(t) =
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
.

Thus,

∣
∣h(t) – h(t)

∣
∣ ≤

∫ t



(t – s)q–

�(q)
∣
∣v(s) – v(s)

∣
∣ds

+
t

| – αξ |
(

|α|
∫ ξ



∫ s



(s – τ )q–

�(q – )
∣
∣v(τ ) – v(τ )

∣
∣dτ ds

+
∫ 



( – s)q–

�(q)
∣∣v(s) – v(s)

∣∣ds
)

+ |β|g
(∫ η



(η – s)q–

�(q – )
∣∣v(s) – v(s)

∣∣(s) ds

+
|α|

| – αξ |
∫ ξ



∫ s



(s – τ )q–

�(q – )
∣∣v(τ ) – v(τ )

∣∣dτ ds

+


| – αξ |
∫ 



( – s)q–

�(q)
∣
∣v(s) – v(s)

∣
∣(s) ds

)

≤ ‖m‖
{


�(q + )

+


| – αξ |
( |α|ξ q

�(q + )
+


�(q + )

)

+ |β|
(

ηq–

�(q)
+

|α|
| – αξ |

ξ q

�(q + )
+


| – αξ |


�(q + )

)}
‖x – x̄‖

= ‖m‖�‖x – x̄‖.

Hence,

‖h – h‖ ≤ ‖m‖�‖x – x̄‖.

Analogously, interchanging the roles of x and x, we obtain

Hd
(
�F (x),�F (x̄)

) ≤ ‖m‖�‖x – x̄‖,

where δ = ‖m‖� < . So �F is a contraction. Hence it follows by Lemma . that �F has a
fixed point x which is a solution of (.)-(.). This completes the proof. �



Ahmad et al. Boundary Value Problems  (2015) 2015:83 Page 9 of 16

Our next result concerns the existence of the solutions for problem (.)-(.) with a
convex-valued multivalued map.

Theorem . (The upper semicontinuous case) Assume that (A) holds. In addition we
suppose that

(H) F : [, ] ×R →P(R) is Carathéodory and has nonempty compact and convex values;
(H) there exists a continuous nondecreasing function ψ : [,∞) → (,∞) and a function

φ ∈ C([, ],R+) such that

∥
∥F(t, x)

∥
∥
P := sup

{|y| : y ∈ F(t, x)
} ≤ φ(t)ψ

(‖x‖) for each (t, x) ∈ [, ] ×R;

(H) there exists a constant M >  such that

M
ψ(M)‖φ‖� > ,

where � is defined by (.).

Then the boundary value problem (.)-(.) has at least one solution on [, ].

Proof Consider the operator �F : C([, ],R) →P(C([, ],R)) defined in the beginning of
the proof of Theorem .. We will show that �F satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type. The proof consists of several steps. As the first step,
we show that �F is convex for each x ∈ C([, ],R). This step is obvious since SF ,x is convex
(F has convex values), and therefore we omit the proof.

In the second step, we show that �F maps bounded sets (balls) into bounded sets in
C([, ],R). For a positive number ρ , let Bρ = {x ∈ C([, ],R) : ‖x‖ ≤ ρ} be a bounded ball
in C([, ],R). Then, for each h ∈ �F (x), x ∈ Bρ , there exists v ∈ SF ,x such that

h(t) =
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
, t ∈ [, ].

Then for t ∈ [, ] we have

∣
∣h(t)

∣
∣ ≤

∫ t



(t – s)q–

�(q)
∣
∣v(s)

∣
∣ds

+
t

| – αξ |
(

|α|
∫ ξ



∫ s



(s – τ )q–

�(q – )
∣
∣v(τ )

∣
∣dτ ds +

∫ 



( – s)q–

�(q)
∣
∣v(s)

∣
∣ds

)

+ |β|g
(∫ η



(η – s)q–

�(q – )
∣
∣v(s)

∣
∣ds +

|α|
| – αξ |

∫ ξ



∫ s



(s – τ )q–

�(q – )
∣
∣v(τ )

∣
∣dτ ds
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+


| – αξ |
∫ 



( – s)q–

�(q)
∣∣v(s)

∣∣ds
)

≤ ψ
(‖x‖)‖φ‖

{


�(q + )
+


| – αξ |

( |α|ξ q

�(q + )
+


�(q + )

)

+ |β|
(

ηq–

�(q)
+

|α|
| – αξ |

ξ q

�(q + )
+


| – αξ |


�(q + )

)}

= ψ
(‖x‖)‖φ‖�.

Consequently,

‖h‖ ≤ ψ(ρ)‖φ‖�.

Now we show that �F maps bounded sets into equicontinuous sets of C([, ],R). Let
t, t ∈ [, ] with t < t and x ∈ Bρ . For each h ∈ �F (x), we obtain

∣∣h(t) – h(t)
∣∣

≤
∣
∣∣
∣


�(α)

∫ t


(t – s)q–v(s) ds –


�(α)

∫ t


(t – s)q–v(s) ds

∣
∣∣
∣

+
|t – t|
| – αξ |

(
|α|

∫ ξ



∫ s



(s – τ )q–

�(q – )
∣∣v(τ )

∣∣dτ ds +
∫ 



( – s)q–

�(q)
∣∣v(s)

∣∣ds
)

≤ 
�(α)

∫ t



[
(t – s)q– – (t – s)q–]φ(s)ψ(r) ds +


�(α)

∫ t

t

(t – s)q–φ(s)ψ(r) ds

+
|t – t|
| – αξ |

(
|α|

∫ ξ



∫ s



(s – τ )q–

�(q – )
φ(s)ψ(r) dτ ds +

∫ 



( – s)q–

�(q)
φ(s)ψ(r) ds

)

≤ ‖φ‖ψ(ρ)
�(α)

∫ t



[
(t – s)q– – (t – s)q–]ds +

‖φ‖ψ(ρ)
�(α)

∫ t

t

(t – s)q– ds

+
‖φ‖ψ(ρ)|t – t|

| – αξ |
( |α|ξ q

�(q + )
+


�(q + )

)
.

Obviously the right-hand side of the above inequality tends to zero independently of x ∈
Bρ as t – t → . As �F satisfies the above three assumptions, therefore it follows by the
Ascoli-Arzelà theorem that �F : C([, ],R) →P(C([, ],R)) is completely continuous.

In our next step, we show that �F is upper semicontinuous. To this end it is sufficient to
show that �F has a closed graph by Lemma .. Let xn → x∗, hn ∈ �F (xn) and hn → h∗.
Then we need to show that h∗ ∈ �F (x∗). Associated with hn ∈ �F (xn), there exists vn ∈ SF ,xn

such that for each t ∈ [, ],

hn(t) =
∫ t



(t – s)q–

�(q)
vn(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
vn(τ ) dτ ds –

∫ 



( – s)q–

�(q)
vn(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
vn(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
vn(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
vn(s) ds

)
.
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Thus it suffices to show that there exists v∗ ∈ SF ,x∗ such that for each t ∈ [, ],

h∗(t) =
∫ t



(t – s)q–

�(q)
v∗(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v∗(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v∗(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v∗(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v∗(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v∗(s) ds

)
.

Let us consider the linear operator � : L([, ],R) → C([, ],R) given by

v �−→ �(v)(t)

=
∫ t



(t – s)q–

�(q)
v(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
.

Observe that

∥
∥hn(t) – h∗(t)

∥
∥

=
∥∥∥
∥

∫ t



(t – s)q–

�(q)
(
vn(s) – v∗(s)

)
ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
(
vn(τ ) – v∗(τ )

)
dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
(
vn(s) – v∗(s)

)
ds

+
α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
(
vn(τ ) – v∗(τ )

)
dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
(
vn(s) – v∗(s)

)
ds

)∥
∥∥∥ → 

as n → ∞.
Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have

hn(t) ∈ �(SF ,xn ). Since xn → x∗, therefore we have

h∗(t) =
∫ t



(t – s)q–

�(q)
v∗(s) ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v∗(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v∗(s) ds

)
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+ βg
(∫ η



(η – s)q–

�(q – )
v∗(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v∗(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v∗(s) ds

)

for some v∗ ∈ SF ,x∗ .
Finally, we show that there exists an open set U ⊆ C([, ],R) with x /∈ �F (x) for any

λ ∈ (, ) and all x ∈ ∂U . Let λ ∈ (, ) and x ∈ λ�F (x). Then there exists v ∈ L([, ],R)
with v ∈ SF ,x such that, for t ∈ [, ], we have

x(t) = λ

∫ t



(t – s)q–

�(q)
v(s) ds

+ λ
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds –

∫ 



( – s)q–

�(q)
v(s) ds

)

+ λβg
(∫ η



(η – s)q–

�(q – )
v(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
v(τ ) dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
v(s) ds

)
.

Using the computations of the second step above we have

∣
∣x(t)

∣
∣ ≤ ψ

(‖x‖)‖φ‖
{


�(q + )

+


| – αξ |
( |α|ξ q

�(q + )
+


�(q + )

)

+ |β|
(

ηq–

�(q)
+

|α|
| – αξ |

ξ q

�(q + )
+


| – αξ |


�(q + )

)}

= ψ
(‖x‖)‖φ‖�.

Consequently, we have

‖x‖
ψ(‖x‖)‖φ‖� ≤ .

In view of (H), there exists M such that ‖x‖ �= M. Let us set

U =
{

x ∈ C
(
[, ],R

)
: ‖x‖ < M

}
.

Note that the operator �F : U → P(C([, ],R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λ�F (x) for some λ ∈
(, ). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we
deduce that �F has a fixed point x ∈ U which is a solution of problem (.)-(.). This
completes the proof. �

Finally, we assume that the multivalued map F in (.) is not necessarily convex valued
and formulate (and prove) the existence result as follows.

Theorem . (The lower semicontinuous case) Assume that (A), (H), (H) and the fol-
lowing condition hold:



Ahmad et al. Boundary Value Problems  (2015) 2015:83 Page 13 of 16

(H) F : [, ] ×R →P(R) is a nonempty compact-valued multivalued map such that
(a) (t, x) �−→ F(t, x) is L⊗B measurable,
(b) x �−→ F(t, x) is lower semicontinuous for each t ∈ [, ];

then the boundary value problem (.)-(.) has at least one solution on [, ].

Proof It follows from (H) and (H) that F is of l.s.c. type. Then, from Lemma ., there
exists a continuous function f : C([, ],R) → L([, ],R) such that f (x) ∈ F (x) for all
x ∈ C([, ],R).

Consider the problem

{
cDqx(t) = f (x(t)), t ∈ [, ],  < q ≤ ,
x() = βg(x′(η)), x′() = α

∫ ξ

 x′(s) ds,  < ξ ,η < .
(.)

Observe that if x ∈ C([, ],R) is a solution of (.), then x is a solution to problem
(.)-(.). In order to transform problem (.) into a fixed point problem, we define the
operator �F as

�F x(t) =
∫ t



(t – s)q–

�(q)
f
(
x(s)

)
ds

+
t

 – αξ

(
α

∫ ξ



∫ s



(s – τ )q–

�(q – )
f
(
x(τ )

)
dτ ds –

∫ 



( – s)q–

�(q)
f
(
x(s)

)
ds

)

+ βg
(∫ η



(η – s)q–

�(q – )
f
(
x(s)

)
ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
f
(
x(τ )

)
dτ ds

–


 – αξ

∫ 



( – s)q–

�(q)
f
(
x(s)

)
ds

)
, t ∈ [, ].

It can easily be shown that �F is continuous and completely continuous. The remain-
ing part of the proof is similar to that of Theorem .. So we omit it. This completes the
proof. �

4 Examples
Consider the problem

{
cD/x(t) ∈ F(t, x(t)),  ≤ t ≤ ,
x() = 

 g(x′(/)), x′() = 

∫ /

 x′(s) ds.
(.)

Here, q = /, α = /, ξ = /, β = /, η = / and

g(v) =

{√
v, |v| ≥ ,

v, |v| < .

With the given values, we find that � ≈ ..
(i) Consider the multivalued map F : [, ] ×R →P(R) given by

F(t, x) =
[

,



(t + ) sin x +



]
.
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Then we have

sup
{|v| : v ∈ F(t, x)

} ≤ 


(t + ) +



,

and

Hd
(
F(t, x), F(t, x̄)

) ≤ 


(t + )|x – x̄|.

Let m(t) = 
 (t + ). Then ‖m‖ = 

 and ‖m‖� ≈ . < . Hence by Theorem .
problem (.) has a solution.

(ii) Let F : [, ] ×R→P(R) be a multivalued map given by

F(t, x) =
[

e–t
( |x|

|x| + 
+ 

)
, e–t

( |x|
|x| + 

+ 
)]

.

For v ∈ F , we have

∣∣v(t)
∣∣ ≤ max

(
e–t

( |x|
|x| + 

+ 
)

, e–t
( |x|

|x| + 
+ 

))
≤ e–t , x ∈R.

Thus

∥
∥F(t, x)

∥
∥
P := sup

{|y| : y ∈ F(t, x)
} ≤ e–t = φ(t)ψ

(‖x‖),

with φ(t) = e–t , ψ(‖x‖) = .
By assumption (H), we find that M > .. It follows by Theorem . that problem

(.) has a solution.

5 Existence results for problem (1.1)-(1.3)
To define the solution for problem (.)-(.), we need the following lemma.

Lemma . Let y ∈ C([, ],R) and x ∈ C([, ],R) be a solution of the linear boundary
value problem

{
cDqx(t) = y(t), t ∈ [, ],  < q ≤ ,
x′() = α

∫ ξ

 x′(s) ds, x() = βg(x′(η)),  ≤ ξ ,η ≤ .
(.)

Then

x(t) =
∫ t



(t – s)q–

�(q)
y(s) ds

+ (t – )
α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
y(τ ) dτ ds –

∫ 



( – s)q–

�(q)
y(s) ds

+ βg
(∫ η



(η – s)q–

�(q – )
y(s) ds +

α

 – αξ

∫ ξ



∫ s



(s – τ )q–

�(q – )
y(τ ) dτ ds

)
. (.)

Proof We omit the proof as it is similar to that of Lemma .. �
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In relation to problem (.)-(.), we define an operator GF : C([, ],R) →P(C([, ],R))
by

GF (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h ∈ C([, ],R) :

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t


(t–s)q–

�(q) v(s) ds
+ (t – ) α

–αξ

∫ ξ


∫ s


(s–τ )q–

�(q–) v(τ ) dτ ds –
∫ 


(–s)q–

�(q) v(s) ds
+ βg(

∫ η


(η–s)q–

�(q–) v(s) ds + α
–αξ

∫ ξ


∫ s


(s–τ )q–

�(q–) v(τ ) dτ ds)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for v ∈ SF ,x, and set

�̄ =


�(q + )

(
 + q|β|ηq– +

|α|( + |β|)ξ q

| – αξ |
)

. (.)

With the above operator and estimate (.), we can reproduce all the existence results
obtained in Section  for the boundary value problem (.)-(.).

6 Conclusions
We have studied the existence of solutions for fractional-order differential inclusions sup-
plemented with new nonlocal nonlinear flux type integral boundary conditions for differ-
ent types of multivalued maps involved in the given problems. Precisely, Section  contains
some existence results for problem (.)-(.): the first one (Theorem .) deals with non-
convex valued maps (the Lipschitz case) and is obtained by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler; the second result (Theorem .) takes into
account the convex-valued maps (the upper semicontinuous case) and relies on nonlinear
alternative of Leray-Schauder type; and the third one (Theorem .) involves multivalued
maps which are not necessarily convex-valued (the lower semicontinuous case) and is ob-
tained by jointly using the nonlinear alternative of Leray-Schauder type and the selection
theorem of Bressan and Colombo [] for lower semicontinuous maps with decomposable
values. These results have been illustrated with the aid of examples in Section . Finally,
we have provided the platform for proving the existence results for problem (.)-(.). We
emphasize that our results are new, and several special results can be obtained by fixing
the parameters α, β , ξ , η involved in the problems at hand.
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