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Abstract
The purpose of this paper is to solve the hierarchical variational inequality with the
constraint of a general system of variational inequalities in a uniformly convex and
2-uniformly smooth Banach space. We introduce implicit and explicit iterative
algorithms which converge strongly to a unique solution of the hierarchical
variational inequality problem. Our results improve and extend the corresponding
results announced by some authors.
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1 Introduction
Let X be a real Banach space with its topological dual X∗, and C be a nonempty closed
convex subset of X. Let T : C → X be a nonlinear mapping on C. We denote by Fix(T)
the set of fixed points of T and by R the set of all real numbers. A mapping T : C → X is
called L-Lipschitz continuous if there exists a constant L ≥  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then T is called a nonexpansive mapping; if L ∈ [, ) then T is called
a contraction.

The normalized dual mapping J : X → X∗ is defined as

J(x) :=
{
ϕ ∈ X∗ : 〈x,ϕ〉 = ‖x‖ = ‖ϕ‖}, ∀x ∈ X, ()

where 〈·, ·〉 denotes the generalized duality pairing; see, e.g., [] for further details.
Let U := {x ∈ X : ‖x‖ = } be the unit sphere of X. Then the space X is said to
• have a Gâteaux differentiable norm if the limit limt→+ (‖x + ty‖ – ‖x‖)/t exists for

each x, y ∈ U .
• have a uniformly Gâteaux differentiable norm if the limit is attained uniformly for

x ∈ U .
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• be strictly convex if and only if for x, y ∈ U with x �= y, we have

∥∥( – λ)x + λy
∥∥ < , ∀λ ∈ (, ).

We note that if X is smooth, then the normalized duality mapping is single-valued; and if
the norm of X is uniformly Gâteaux differentiable, then the normalized duality mapping
is norm to weak star uniformly continuous on every bounded subset of X (see []). In the
sequel, we shall denote by j the single-valued normalized duality mapping.

Let X be a smooth Banach space. Let A, B : C → X be two nonlinear mappings and λ,μ
be two positive real numbers. The general system of variational inequalities (GSVI, for
short) is to find (x∗, y∗) ∈ C × C such that

⎧
⎨

⎩
〈λAy∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C.
()

The equivalence between GSVI () and the fixed point problem of some nonexpansive
mapping defined on a Banach space is established in Yao et al. []. The authors [] intro-
duced and analyzed implicit and explicit iterative algorithms for solving GSVI () by using
this equivalence, and they proved the strong convergence of the sequences generated by
the proposed algorithms. Subsequently, Ceng et al. [] proposed and analyzed an implicit
algorithm of Mann’s type and another explicit algorithm of Mann’s type for solving GSVI
().

If X is a real Hilbert space, then GSVI () was introduced and studied by Ceng et al.
[]. In this case, for A = B, it was considered by Verma [] (see also []). Further, in this
case, when x∗ = y∗, problem () reduces to the following classical variational inequality (in
short, VI) of finding x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. ()

This problem is a fundamental problem in the variational analysis, in particular, in the
optimization theory and mechanics; see, e.g., [–] and the references therein. A large
number of algorithms for solving this problem are essentially projection algorithms that
employ projections onto the feasible set C of the VI, or onto some related set, so as to iter-
atively reach a solution. In particular, Korpelevich [] proposed extragradient method for
solving the VI in the Euclidean space. This method further has been improved by several
researchers; see, e.g., [, , ] and the references therein.

In the case of a Banach space setting, that is, if A = B and x∗ = y∗, the VI is defined as

〈
Ax∗, j

(
x – x∗)〉 ≥ , ∀x ∈ C. ()

Aoyama et al. [] proposed an iterative scheme to find the approximate solution of ()
and proved the weak convergence of the sequences generated by the proposed scheme.
It is also well known [] that, in a smooth Banach space, this problem is equivalent to a
fixed-point equation, containing a sunny nonexpansive retraction from any point of the
space onto the feasible set, which is usually assumed to be closed and convex. For the
complexity of the feasible set, the sunny nonexpansive retraction is difficult to compute.
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To overcome this drawback in a Hilbert space, where the retraction is a metric projection,
in Yamada [], the feasible set is assumed to be the common fixed points of a finite family
of nonexpansive mappings, and an explicit hybrid steepest-descent method is introduced.
In this case, the variational inequality defined on such a feasible set is also called a hier-
archical variational inequality (in short, HVI). Yamada’s method is then extended to solve
more complex problems involving finite or infinite nonexpansive mappings (one can re-
fer to, e.g., [, ] and the references therein). Zeng and Yao [] introduced an implicit
method that converges weakly to a solution of a variational inequality, containing a Lips-
chitz continuous and strongly monotone mapping in a Hilbert space H , where the feasible
set is the common fixed points of a finite family of nonexpansive mappings on H . Ceng et
al. [] extended this result from nonexpansive mappings to Lipschitz pseudocontractive
mappings and strictly pseudocontractive mappings on H . Recently, Buong and Anh []
modified Yamada’s result and proposed a strongly convergent implicit method.

In this paper, we are going to solve the hierarchical variational inequality with the
constraint of a general system of variational inequalities in a uniformly convex and
-uniformly smooth Banach space. We introduce implicit and explicit iterative algorithms
for finding a solution of the problem and derive the strong convergence of the proposed
algorithms to a unique solution of the problem. Our results improve and extend the
corresponding results announced by some others, e.g., Ceng et al. [] and Buong and
Phuong [].

2 Preliminaries
Let X be a real Banach space with the dual space X∗. For simplicity, the norms of X and
X∗ are denoted by the symbol ‖ · ‖. Let X be a nonempty closed convex subset of a real
Banach space X. We write xn ⇀ x (respectively, xn → x) to indicate that the sequence {xn}
converges weakly (respectively, strongly) to x. A mapping J : X → X∗ , defined by

J(x) =
{
ϕ ∈ X∗ : 〈x,ϕ〉 = ‖ϕ‖ and ‖ϕ‖ = ‖x‖},

is called the normalized duality mapping of X. We know that J(tx) = tJ(x) for all t >  and
x ∈ X, and J(–x) = –J(x).

Let U := {x ∈ X : ‖x‖ = }. A Banach space X is said to be uniformly convex if for each
ε ∈ (, ], there exists δ >  such that for any x, y ∈ U , ‖ x+y

 ‖ >  – δ ⇒ ‖x – y‖ < ε. It is
known that a uniformly convex Banach space is reflexive and strictly convex. Also, it is
known that if a Banach space X is reflexive, then X is strictly convex if and only if X∗ is
smooth as well as X is smooth if and only if X∗ is strictly convex.

Proposition  ([]) Let X be a smooth and uniformly convex Banach space, and let r > .
Then there exists a strictly increasing, continuous and convex function g : [, r] → R,
g() =  such that

g
(‖x – y‖) ≤ ‖x‖ – 

〈
x, j(y)

〉
+ ‖y‖, ∀x, y ∈ Br ,

where Br = {x ∈ X : ‖x‖ ≤ r}.
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Here we define a function ρ : [,∞) → [,∞) called the modulus of smoothness of X as
follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known that X is uniformly smooth if and only if limτ→+ ρ(τ )/τ = . Let q be a fixed
real number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if
there exists a constant c >  such that ρ(τ ) ≤ cτ q for all τ > . For further details on the
geometry of Banach spaces, we refer to [, ] and the references therein. Takahashi et al.
[] reminded us of the fact that no Banach space is q-uniformly smooth for q > . So, in
this paper, we focus on only a -uniformly smooth Banach space as in [].

Lemma  ([]) Let q be a given real number with  < q ≤ , and let X be a q-uniformly
smooth Banach space. Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ ‖κy‖q, ∀x, y ∈ X,

where κ is the q-uniformly smooth constant of X and Jq is the generalized duality mapping
from X into X∗ defined by

Jq(x) =
{
ϕ ∈ X∗ : 〈x,ϕ〉 = ‖x‖q,‖ϕ‖ = ‖x‖q–}, ∀x ∈ X.

Let D be a subset of C, and let 
 be a mapping of C into D. Then 
 is said to be sunny if



[

(x) + t

(
x – 
(x)

)]
= 
(x),

whenever 
(x) + t(x – 
(x)) ∈ C for x ∈ C and t ≥ . A mapping 
 of C into itself is called
a retraction if 
 = 
. If a mapping 
 of C into itself is a retraction, then 
(z) = z for each
z ∈ R(
), where R(
) is the range of 
. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.

Lemma  ([]) Let C be a nonempty closed convex subset of a smooth Banach space X,
D be a nonempty subset of C and 
 be a retraction of C onto D. Then the following are
equivalent:

(i) 
 is sunny and nonexpansive;
(ii) ‖
(x) – 
(y)‖ ≤ 〈x – y, j(
(x) – 
(y))〉, ∀x, y ∈ C;

(iii) 〈x – 
(x), j(y – 
(x))〉 ≤ , ∀x ∈ C, y ∈ D.

It is well known that if X is a Hilbert space, then a sunny nonexpansive retraction 
C

coincides with the metric projection from X onto C. Let C be a nonempty closed convex
subset of a uniformly convex and uniformly smooth Banach space X, and let T be a non-
expansive mapping of C into itself with the fixed point set Fix(T) �= ∅. Then the set Fix(T)
is a sunny nonexpansive retract of C; see, e.g., [].

Lemma  ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space X. Let 
C be a sunny nonexpansive retraction from X onto C. Let the map-
pings A, B : C → X be α-inverse-strongly accretive and β-inverse-strongly accretive, respec-
tively. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI () if and only if x∗ ∈ GSVI(C, A, B),
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where GSVI(C, A, B) is the set of fixed points of the mapping G := 
C(I – λA)
C(I – μB)
and y∗ = 
C(x∗ – μBx∗).

Proposition  ([]) Let C be a nonempty closed convex subset of a real -uniformly
smooth Banach space X. Let the mappings A, B : C → X be α-inverse-strongly accretive
and β-inverse-strongly accretive, respectively. Then

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ

(
κλ – α

)‖Ax – Ay‖

and

∥∥(I – μB)x – (I – μB)y
∥∥ ≤ ‖x – y‖ + μ

(
κμ – β

)‖Bx – By‖.

In particular, if  ≤ λ ≤ α

κ and  ≤ μ ≤ β

κ , then I – λA and I – μB are nonexpansive.

Lemma  ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth Ba-
nach space X. Let 
C be a sunny nonexpansive retraction from X onto C. Let the mappings
A, B : C → X be α-inverse-strongly accretive and β-inverse-strongly accretive, respectively.
Let the mapping G : C → C be defined as G := 
C(I – λA)
C(I – μB). If  ≤ λ ≤ α

κ and
 ≤ μ ≤ β

κ , then G : C → C is nonexpansive.

Let C be a nonempty closed convex subset of a uniformly convex and -uniformly
smooth Banach space X. Let 
C be a sunny nonexpansive retraction from X onto C. Let
the mappings A, B : C → X be α-inverse-strongly accretive and β-inverse-strongly accre-
tive, respectively. Let F : C → X be δ-strongly accretive and ζ -strictly pseudocontractive
with δ + ζ > . Assume that λ ∈ (, α

κ ) and μ ∈ (, β

κ ), where κ is the -uniformly smooth
constant of X (see Lemma ). Very recently, in order to solve GSVI (), Ceng et al. []
introduced an implicit algorithm of Mann’s type.

Algorithm  ([]) For each t ∈ (, ), choose a number θt ∈ (, ) arbitrarily. The net {xt}
is generated by the implicit method

xt = t
C(I –λA)
C(I –μB)xt +(–t)
C(I –θtF)
C(I –λA)
C(I –μB)xt , ∀t ∈ (, ),

where xt is a unique fixed point of the contraction

Wt = t
C(I – λA)
C(I – μB) + ( – t)
C(I – θtF)
C(I – λA)
C(I – μB).

It was proven in [] that the net {xt} converges in norm, as t → +, to the unique solution
x∗ ∈ GSVI(C, A, B) to the following VI:

〈
F
(
x∗), j

(
x – x∗)〉 ≥ , ∀x ∈ GSVI(C, A, B), ()

provided limt→+ θt = . In the meantime, the authors [] also proposed another explicit
algorithm of Mann’s type.
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Algorithm  ([]) For arbitrarily given x ∈ C, let the sequence {xk} be generated iteratively
by

xk+ = βkxk + γk
C(I – λA)
C(I – μB)xk

+ ( – βk – γk)
C(I – λkF)
C(I – λA)
C(I – μB)xk ,

where {λk}, {βk} and {γk} are three sequences in [, ] such that βk + γk ≤ , ∀k ≥ .

On the other hand, a mapping F with domain D(F) and range R(F) in X is called
(a) accretive if for each x, y ∈ D(F), there exists j(x – y) ∈ J(x – y) such that

〈
Fx – Fy, j(x – y)

〉 ≥ ,

where J is the normalized duality mapping;
(b) δ-strongly accretive if for each x, y ∈ D(F), there exists j(x – y) ∈ J(x – y) such that

〈
Fx – Fy, j(x – y)

〉 ≥ δ‖x – y‖ for some δ ∈ (, );

(c) α-inverse-strongly accretive if for each x, y ∈ D(F), there exists j(x – y) ∈ J(x – y)
such that

〈
Fx – Fy, j(x – y)

〉 ≥ α‖Fx – Fy‖ for some α ∈ (, );

(d) ζ -strictly pseudocontractive if for each x, y ∈ D(F), there exists j(x – y) ∈ J(x – y)
such that

〈
Fx – Fy, j(x – y)

〉 ≤ ‖x – y‖ – ζ
∥∥x – y – (Fx – Fy)

∥∥ for some ζ ∈ (, ).

It is easy to see that () can be rewritten as (see [])

〈
(I – F)x – (I – F)y, j(x – y)

〉 ≥ ζ
∥∥(I – F)x – (I – F)y

∥∥, ()

where I denotes the identity mapping of X. Clearly, if F is ζ -strictly pseudocontractive with
ζ = , then it is said to be pseudocontractive. It is not hard to find that every nonexpansive
mapping is pseudocontractive.

Let C be a nonempty closed convex subset of a smooth Banach space X and {Ti}∞i= be
an infinite family of nonexpansive self-mappings on C. Then we set F :=

⋂∞
i= Fix(Ti). In

, Buong and Phuong [] considered the following HVI with C = X: find x∗ ∈F such
that

〈
F
(
x∗), j

(
x – x∗)〉 ≥ , ∀x ∈F . ()

In the case where X = H , a Hilbert space, we have J = I , and hence problem () reduces to
the HVI: find x∗ ∈F such that

〈
F
(
x∗), x – x∗〉 ≥ , ∀x ∈F . ()
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Assume that F =
⋂N

i= Fix(Ti) is the set of common fixed points of a family of N nonex-
pansive mappings Ti on H , and F is an L-Lipschitz continuous and η-strongly monotone
mapping, i.e., ‖Fx – Fy‖ ≤ L‖x – y‖ and 〈Fx – Fy, x – y〉 ≥ η‖x – y‖ for all x, y ∈ H . Zeng and
Yao [] introduced the following implicit iteration: for an arbitrarily initial point x ∈ H ,
the sequence {xk}∞k= is generated as follows:

xk = βkxk– + ( – βk)
[
T[k]xk – λkμF(T[k]xk)

]
, ∀k ≥ , ()

where T[n] = Tn mod N , for integer n ≥ , with the mod function taking values in the set
{, , . . . , N}. They proved the following result.

Theorem  ([]) Let H be a real Hilbert space, and let F : H → H be a mapping such
that, for some positive constants L and η, F is L-Lipschitz continuous and η-strongly
monotone. Let {Ti}N

i= be N nonexpansive mappings on H such that F :
⋂N

i= Fix(Ti) �= ∅.
Let μ ∈ (, η/L), x ∈ H , {λk}∞k= ⊂ [, ) and {βk}∞k= ⊂ (, ) satisfying the conditions
∑∞

k= λk < ∞, and let a ≤ βk ≤ b, k ≥ , for some a, b ∈ (, ). Then the sequence {xk}∞k=,
defined by (), converges weakly to x∗ ∈F .

Recently, for deriving the strong convergence and weakening the condition on λk , Buong
and Anh [] proposed the following implicit iteration method:

xt = Ttxt , Tt := Tt
Tt

N · · ·Tt
 , t ∈ (, ), ()

where the sequence {Tt
i }N

i= is defined by

⎧
⎨

⎩
Tt

i x := ( – β i
t)x + β i

tTix, i = , . . . , N ,

Tt
y := (I – λtμF)y, x, y ∈ H ,

()

and proved that the nets {xt}, defined by ()-(), converge strongly to an element x∗ in ().
Under the assumptions that N = , X is a real reflexive and strictly convex Banach space
with a uniformly Gâteaux differentiable norm, and T is a continuous pseudocontractive
mapping, Ceng et al. [] proved the following result.

Theorem  ([]) Let F be a δ-strongly accretive and ζ -strictly pseudocontractive mapping
with δ + ζ > , and let T be a continuous and pseudocontractive mapping on X, which is
a real reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable
norm such that F := Fix(T) �= ∅. For each t ∈ (, ), choose a number μt ∈ (, ) arbitrarily,
and let {zt} be defined by

zt = t(I – μtF)zt + ( – t)Tzt . ()

Then, as t → +, {zt} converges strongly to x∗ ∈F .
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In [], Takahashi introduced the following W -mapping which is generated by Tk , Tk–,
. . . , T and real numbers αk ,αk–, . . . ,α as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk,k+ = I,

Uk,k = αkTkUk,k+ + ( – αk)I,

Uk,k– = αk–Tk–Uk,k + ( – αk–)I,

· · ·
Uk, = αTUk, + ( – α)I,

Wk = Uk, = αTUk, + ( – α)I.

()

Kikkawa and Takahashi [] considered the following strongly convergent implicit meth-
od:

Skx =
(

 –

k

)
Ux +


k

f (x), and Ux = lim
k→∞

Wkx = lim
k→∞

Uk,x. ()

However, the method () is very difficult to be grasped due to the limit mapping U .
Motivated by methods () and (), Buong and Phuong [] considered two implicit

methods by introducing a mapping Vk defined by

Vk = V 
k , V i

k = TiTi+ · · ·Tk , Ti = ( – αi)I + αiTi, i = , , . . . , k, ()

where

αi ∈ (, ) and
∞∑

i=

αi < ∞. ()

In both methods, the iteration sequence {xk}∞k= is defined, respectively, by

xk = Vk(I – λkF)xk , ∀k ≥ , ()

and

xk = γk(I – λkF)xk + (I – γk)Vkxk , ∀k ≥ , ()

where λk and γk are the positive parameters satisfying some additional conditions. The
strong convergence theorems for methods () and () are also established.

We will make use of the following well-known results.

Lemma  Let X be a real normed linear space. Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀x, y ∈ X,∀j(x + y) ∈ J(x + y).

Lemma  ([]) Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and T : C → C be a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence
of C such that xn ⇀ x and (I – T)xn → y, then (I – T)x = y. In particular, if y = , then
x ∈ Fix(T).
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Lemma  ([]) Let C be a nonempty closed convex subset of a real smooth Banach space
X. Assume that the mapping F : C → X is accretive and weakly continuous along segments
(that is, F(x + ty) ⇀ F(x) as t → ). Then the variational inequality

x∗ ∈ C,
〈
F
(
x∗), j

(
x – x∗)〉 ≥ , ∀x ∈ C

is equivalent to the following Minty type variational inequality:

x∗ ∈ C,
〈
F(x), j

(
x – x∗)〉 ≥ , ∀x ∈ C.

Lemma  ([]) Let X be a real smooth Banach space and F : C → X be a mapping.
(a) If F is ζ -strictly pseudocontractive, then F is Lipschitz continuous with constant  + 

ζ
.

(b) If F is δ-strongly accretive and ζ -strictly pseudocontractive with δ + ζ > , then I – F
is contractive with constant

√
–δ
ζ

∈ (, ).
(c) If F is δ-strongly accretive and ζ -strictly pseudocontractive with δ + ζ > , then for any

fixed number λ ∈ (, ), I – λF is contractive with constant  – λ( –
√

–δ
ζ

) ∈ (, ).

3 Iterative algorithms and convergence criteria
In this section, we study iterative methods for computing approximate solutions of the
HVI (for an infinite family of nonexpansive mappings) with a GSVI constraint. We intro-
duce implicit and explicit iterative algorithms for solving such a problem. We show the
strong convergence theorems for the sequences generated by the proposed algorithms.

The following lemmas will be used to prove our main results in the sequel.

Lemma  ([]) Let C be a nonempty closed convex subset of a strictly convex Banach space
X, and let {Ti}k

i=, k ≥ , be k nonexpansive self-mappings on C such that the set of common
fixed points F :=

⋂k
i= Fix(Ti) �= ∅. Let a, b and αi, i = , , . . . , k, be real numbers such that

 < a ≤ αi ≤ b < , and let Vk be a mapping defined by () for all k ≥ . Then Fix(Vk) = F .

Lemma  ([]) Let C be a nonempty closed convex subset of a Banach space X, and let
{Ti}∞i= be an infinite family of nonexpansive self-mappings on C such that the set of common
fixed points F :=

⋂∞
i= Fix(Ti) �= ∅. Let Vk be a mapping defined by (), and let αi satisfy

(). Then, for each x ∈ C and i ≥ , limk→∞ V i
kx exists.

Remark 
(i) We can define the mappings

V i
∞x := lim

k→∞
V i

kx and Vx := V 
∞x = lim

k→∞
Vkx, ∀x ∈ C.

(ii) It can be readily seen from the proof of Lemma  that if D is a nonempty and
bounded subset of C, then the following holds:

lim
k→∞

sup
x∈D

∥∥V i
kx – V i

∞x
∥∥ = , ∀i ≥ .

In particular, whenever i = , we have

lim
k→∞

sup
x∈D

‖Vkx – Vx‖ = .
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Lemma  ([]) Let C be a nonempty closed convex subset of a strictly convex Banach
space X, and let {Ti}∞i= be an infinite family of nonexpansive self-mappings on C such that
the set of common fixed points F :=

⋂∞
i= Fix(Ti) �= ∅. Let αi satisfy the first condition in ().

Then Fix(V ) = F .

Lemma  ([]) Let {xn} and {zn} be bounded sequences in a Banach space X, and let
{αk} be a sequence in [, ] such that

 < lim inf
k→∞

αk ≤ lim sup
k→∞

αk < .

Suppose that xk+ = αkxk + ( – αk)zk ,∀k ≥ , and

lim sup
k→∞

(‖zk+ – zk‖ – ‖xk+ – xk‖
) ≤ .

Then limk→∞ ‖zk – xk‖ = .

Lemma  ([]) Assume that {ak} is a sequence of nonnegative real numbers such that

ak+ ≤ ( – γk)ak + γkδk , ∀k ≥ ,

where {γk} is a sequence in [, ] and {δk} is a sequence in R such that
(i)

∑∞
k= γk = ∞;

(ii) lim supk→∞ δk ≤  or
∑∞

k= |γkδk| < ∞.
Then limk→∞ ak = .

Now, we are in a position to prove the following main results.

Theorem  Let C be a nonempty closed convex subset of a uniformly convex and -
uniformly smooth Banach space X. Let 
C be a sunny nonexpansive retraction from X onto
C. Let the mappings A, B : C → X be α-inverse-strongly accretive and β-inverse-strongly ac-
cretive, respectively. Let F : C → X be δ-strongly accretive and ζ -strictly pseudocontractive
with δ + ζ > . Assume that λ ∈ (, α

κ ) and μ ∈ (, β

κ ) where κ is the -uniformly smooth
constant of X. Let {Ti}∞i= be an infinite family of nonexpansive self-mappings on C such that
F :=

⋂∞
i= Fix(Ti) ∩ GSVI(C, A, B) �= ∅. Let {Vk}∞k= be defined by () and (). Let {xk}∞k=

be defined by

xk = γk
C(I – λkF)
C(I – λA)
C(I – μB)Vkxk

+ ( – γk)
C(I – λA)
C(I – μB)Vkxk , ∀k ≥ ,

where {γk} and {λk} are sequences in (, ] such that γk →  and λk →  as k → ∞. Then
{xk}∞k= converges strongly to a unique solution x∗ ∈F to the following VI:

〈
F
(
x∗), j

(
x – x∗)〉 ≥ , ∀x ∈F . ()

Proof Let the mapping G : C → C be defined as G := 
C(I –λA)
C(I –μB), where  < λ <
α

κ and  < μ < β

κ . In terms of Lemma  we know that G : C → C is nonexpansive. Then
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the implicit iterative scheme can be rewritten as

xk = γk
C(I – λkF)GVkxk + ( – γk)GVkxk , ∀k ≥ . ()

Consider the mapping Ukx = γk
C(I – λkF)GVkx + ( – γk)GVkx,∀x ∈ C. From Lemmas 
and (c), it follows that for each x, y ∈ C,

‖Ukx – Uky‖ =
∥∥γk

(

C(I – λkF)GVkx – 
C(I – λkF)GVky

)

+ ( – γk)(GVkx – GVky)
∥∥

≤ γk
∥∥(I – λkF)GVkx – (I – λkF)GVky

∥∥ + ( – γk)‖GVkx – GVky‖
≤ γk( – λkτ )‖GVkx – GVky‖ + ( – γk)‖GVkx – GVky‖
= ( – γkλkτ )‖GVkx – GVky‖
≤ ( – γkλkτ )‖x – y‖,

where τ =  –
√

–δ
ζ

∈ (, ) (by using δ + ζ > ). Due to γkλkτ ∈ (, ), Uk is a contraction
of C into itself. Hence, by Banach’s contraction principle, there exists a unique element
xk ∈ C satisfying ().

Next, we divide the rest of the proof into several steps.
Step . We show that {xk}∞k= is bounded. Indeed, take an arbitrarily given p ∈ F . Then

we have Vkp = p and Gp = p. Hence, by Lemma (c) we get

‖xk – p‖ =
∥∥γk
C(I – λkF)GVkxk + ( – γk)GVkxk – p

∥∥

≤ γk
∥∥
C(I – λkF)GVkxk – p

∥∥ + ( – γk)‖GVkxk – p‖

≤ γk
∥∥(I – λkF)GVkxk – p

∥∥ + ( – γk)‖GVkxk – p‖

= γk
∥∥(I – λkF)GVkxk – (I – λkF)p – λkF(p)

∥∥ + ( – γk)‖GVkxk – p‖

≤ γk
[
( – λkτ )‖GVkxk – p‖ + λk

∥∥F(p)
∥∥] + ( – γk)‖GVkxk – p‖

≤ γk
[
( – λkτ )‖GVkxk – p‖ + λkτ

–∥∥F(p)
∥∥] + ( – γk)‖GVkxk – p‖

= ( – γkλkτ )‖GVkxk – p‖ + γkλkτ
–∥∥F(p)

∥∥

≤ ( – γkλkτ )‖xk – p‖ + γkλkτ
–∥∥F(p)

∥∥. ()

Therefore, ‖xk – p‖ ≤ ‖F(p)‖/τ , which also leads to the boundedness of {xk}∞k=. So, the
sequences {Vkxk}∞k=, {yk}∞k= and {F(yk)}∞k=, where yk = GVkxk , are also bounded. Since
γk →  as k → ∞, and the following relation holds

‖xk – GVkxk‖ = γk
∥∥
C(I – λkF)GVkxk – GVkxk

∥∥

≤ γk
∥∥(I – λkF)GVkxk – GVkxk

∥∥

= γkλk
∥∥F(yk)

∥∥ ≤ γk
∥∥F(yk)

∥∥,

we obtain from the boundedness of {F(yk)} that ‖xk – GVkxk‖ →  as k → ∞.
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Step . We show that ‖zk – Gzk‖ →  as k → ∞, where zk = Vkxk for all k ≥ . Indeed, for
simplicity, put q = 
C(p – μBp) and uk = 
C(zk – μBzk). Then yk = Gzk = 
C(uk – λAuk)
for all k ≥ . From Lemma , we have

‖uk – q‖ =
∥∥
C(zk – μBzk) – 
C(p – μBp)

∥∥

≤ ∥∥zk – p – μ(Bzk – Bp)
∥∥

≤ ‖zk – p‖ – μ
(
β – κμ

)‖Bzk – Bp‖

≤ ‖xk – p‖ – μ
(
β – κμ

)‖Bzk – Bp‖, ()

and

‖yk – p‖ =
∥∥
C(uk – λAuk) – 
C(q – λAq)

∥∥

≤ ∥∥uk – q – λ(Auk – Aq)
∥∥

≤ ‖uk – q‖ – λ
(
α – κλ

)‖Auk – Aq‖. ()

Substituting () for (), we obtain

‖yk – p‖ ≤ ‖xk – p‖ – μ
(
β – κμ

)‖Bzk – Bp‖

– λ
(
α – κλ

)‖Auk – Aq‖. ()

From () and (), we have

‖xk – p‖ ≤ ( – γkλkτ )‖Gzk – p‖ + γkλkτ
–∥∥F(p)

∥∥

≤ ‖Gzk – p‖ + γkτ
–∥∥F(p)

∥∥

≤ ‖xk – p‖ – μ
(
β – κμ

)‖Bzk – Bp‖

– λ
(
α – κλ

)‖Auk – Aq‖ + γk
‖F(p)‖

τ
,

which immediately yields

μ
(
β – κμ

)‖Bzk – Bp‖ + λ
(
α – κλ

)‖Auk – Aq‖ ≤ γk
‖F(p)‖

τ
.

So, from λ ∈ (, α

κ ), μ ∈ (, β

κ ) and γk →  as k → ∞, we deduce that

lim
k→∞

‖Bzk – Bp‖ =  and lim
k→∞

‖Auk – Aq‖ = . ()

Utilizing Proposition  and Lemma , we have

‖uk – q‖ =
∥∥
C(zk – μBzk) – 
C(p – μBp)

∥∥

≤ 〈
(zk – μBzk) – (p – μBp), j(uk – q)

〉

=
〈
(zk – p, j(uk – q)

〉
+ μ

〈
Bp – Bzk , j(uk – q)

〉
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≤ 

[‖zk – p‖ + ‖uk – q‖ – g

(∥∥zk – uk – (p – q)
∥∥)]

+ μ‖Bp – Bzk‖‖uk – q‖
≤ 


[‖xk – p‖ + ‖uk – q‖ – g

(∥∥zk – uk – (p – q)
∥∥)]

+ μ‖Bp – Bzk‖‖uk – q‖,

which implies that

‖uk – q‖ ≤ ‖xk – p‖ – g
(∥∥zk – uk – (p – q)

∥∥)

+ μ‖Bp – Bzk‖‖uk – q‖. ()

In the same way, we derive

‖yk – p‖ =
∥∥
C(uk – λAuk) – 
C(q – λAq)

∥∥

≤ 〈
uk – λAuk – (q – λAq), j(yk – p)

〉

=
〈
uk – q, j(yk – p)

〉
+ λ

〈
Aq – Auk , j(yk – p)

〉

≤ 

[‖uk – q‖ + ‖yk – p‖ – g

(∥∥uk – yk + (p – q)
∥∥)]

+ λ‖Aq – Auk‖‖yk – p‖,

which implies that

‖yk – p‖ ≤ ‖uk – q‖ – g
(∥∥uk – yk + (p – q)

∥∥)
+ λ‖Aq – Auk‖‖yk – p‖. ()

Substituting () for (), we get

‖yk – p‖ ≤ ‖xk – p‖ – g
(∥∥zk – uk – (p – q)

∥∥)
– g

(∥∥uk – yk + (p – q)
∥∥)

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖. ()

So, from () and () it follows that

‖xk – p‖ ≤ ( – γkλkτ )‖Gzk – p‖ + γkλkτ
–∥∥F(p)

∥∥

≤ ‖yk – p‖ + γk
‖F(p)‖

τ

≤ ‖xk – p‖ – g
(∥∥zk – uk – (p – q)

∥∥)
– g

(∥∥uk – yk + (p – q)
∥∥)

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖ + γk
‖F(p)‖

τ
,

which hence leads to

g
(∥∥zk – uk – (p – q)

∥∥)
+ g

(∥∥uk – yk + (p – q)
∥∥)

≤ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖ + γk
‖F(p)‖

τ
. ()
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From (), γk →  as k → ∞, and the boundedness of {uk} and {yk}, we deduce that

lim
k→∞

g
(∥∥zk – uk – (p – q)

∥∥)
=  and lim

k→∞
g

(∥∥uk – yk + (p – q)
∥∥)

= .

Utilizing the properties of g and g, we conclude that

lim
k→∞

∥∥zk – uk – (p – q)
∥∥ =  and lim

k→∞
∥∥uk – yk + (p – q)

∥∥ = . ()

From (), we get

‖zk – yk‖ ≤ ∥∥zk – uk – (p – q)
∥∥ +

∥∥uk – yk + (p – q)
∥∥ →  as k → ∞.

That is,

lim
k→∞

‖zk – Gzk‖ = lim
k→∞

‖zk – yk‖ = . ()

This together with ‖xk – GVkxk‖ →  implies that

lim
k→∞

‖xk – yk‖ =  and lim
k→∞

‖xk – Vkxk‖ = lim
k→∞

‖xk – zk‖ = . ()

Step . We show that ωw(xk) ⊂F , where

ωw(xk) =
{

x ∈ C : xki ⇀ x for some subsequence {xki} of {xk}
}

.

Indeed, we first claim that ‖xk – Vxk‖ →  as k → ∞. It is easy to see from Remark (ii)
that if D is a nonempty and bounded subset of C, then, for ε > , there exists k > i such
that for all k > k

sup
x∈D

∥∥V i
kx – V i

∞x
∥∥ ≤ ε.

Taking D = {xk : k ≥ } and i = , we have

‖Vkxk – Vxk‖ ≤ sup
x∈D

‖Vkx – Vx‖ ≤ ε.

So, it follows that

lim
k→∞

‖Vkxk – Vxk‖ = . ()

Noting that

‖GVxk – Vxk‖ ≤ ‖GVxk – GVkxk‖ + ‖GVkxk – Vkxk‖ + ‖Vkxk – Vxk‖
≤ ‖Vxk – Vkxk‖ + ‖Gzk – zk‖ + ‖Vkxk – Vxk‖
= ‖Vkxk – Vxk‖ + ‖Gzk – zk‖, ()
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from (), () and () we obtain that

lim
k→∞

‖GVxk – Vxk‖ = . ()

Also, noting that ‖xk – Vxk‖ ≤ ‖xk – Vkxk‖ + ‖Vkxk – Vxk‖, from () and () we get

lim
k→∞

‖xk – Vxk‖ = . ()

In addition, observing that

‖xk – Gxk‖ ≤ ‖xk – zk‖ + ‖zk – Gzk‖ + ‖Gzk – Gxk‖
≤ ‖xk – zk‖ + ‖zk – Gzk‖ + ‖zk – xk‖
= ‖xk – zk‖ + ‖zk – Gzk‖,

from () and () we get

lim
k→∞

‖xk – Gxk‖ = . ()

Since X is reflexive, there exists at least a weak convergence subsequence of {xk}, and
hence ωw(xk) �= ∅. Take an arbitrary p ∈ ωw(xk). Then there exists a subsequence {xki} of
{xk} such that xki ⇀ p. Since Vk is nonexpansive for all k ≥ , V is a nonexpansive self-
mapping on C. Also, since X is uniformly convex and V and G are two nonexpansive self-
mappings on C, utilizing Lemma  we know from () and () that p ∈ GSVI(C, A, B) and
p ∈ Fix(V ) =

⋂∞
i= Fix(Ti) (due to Lemma ). Consequently, p ∈ Fix(V ) =

⋂∞
i= Fix(Ti) ∩

GSVI(C, A, B) =: F . This shows that ωw(xk) ⊂F .
Step . We show that ωw(xk) = ωs(xk), where

ωs(xk) =
{

x ∈ C : xki → x for some subsequence {xki} of {xk}
}

.

Indeed, by Lemma , we have ‖GVkxk – z‖ ≤ ‖xk – z‖ for any fixed z ∈F , and hence

‖xk – z‖ =
∥∥γk
C(I – λkF)GVkxk + ( – γk)GVkxk – z

∥∥

= γk
[〈

C(I – λkF)GVkxk – (I – λkF)GVkxk , j(xk – z)

〉

+
〈
λk(I – F)GVkxk + ( – λk)GVkxk – z, j(xk – z)

〉]

+ ( – γk)
〈
GVkxk – z, j(xk – z)

〉

= γk
[〈

C(I – λkF)GVkxk – (I – λkF)GVkxk , j

(

C(I – λkF)GVkxk – z

)〉

+
〈

C(I – λkF)GVkxk – (I – λkF)GVkxk , j(xk – z)

– j
(

C(I – λkF)GVkxk – z

)〉

+
〈
λk(I – F)GVkxk + ( – λk)GVkxk – z, j(xk – z)

〉]

+ ( – γk)
〈
GVkxk – z, j(xk – z)

〉
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≤ γk
[∥∥
C(I – λkF)GVkxk – (I – λkF)GVkxk

∥∥∥∥j(xk – z)

– j
(

C(I – λkF)GVkxk – z

)∥∥

+
〈
λk(I – F)GVkxk + ( – λk)GVkxk – z, j(xk – z)

〉]

+ ( – γk)
〈
GVkxk – z, j(xk – z)

〉

≤ γk
[∥∥
C(I – λkF)GVkxk – (I – λkF)GVkxk

∥∥∥∥j(xk – z)

– j
(

C(I – λkF)GVkxk – z

)∥∥

+ λk
〈
(I – F)GVkxk – z, j(xk – z)

〉
+ ( – λk)‖xk – z‖]

+ ( – γk)‖xk – z‖

≤ γk
(∥∥
C(I – λkF)GVkxk – GVkxk

∥∥

+ λk
∥∥F(GVkxk)

∥∥)∥∥j(xk – z) – j
(

C(I – λkF)GVkxk – z

)∥∥

+ γkλk
〈
(I – F)GVkxk – z, j(xk – z)

〉
+ ( – γkλk)‖xk – z‖

≤ γkλk
∥∥F(GVkxk)

∥∥∥∥j(xk – z) – j
(

C(I – λkF)GVkxk – z

)∥∥

+ γkλk
〈
(I – F)GVkxk – (I – F)z – F(z), j(xk – z)

〉
+ ( – γkλk)‖xk – z‖.

Therefore, by Lemma (b) we get

‖xk – z‖ ≤ ( – τ )‖xk – z‖ –
〈
F(z), j(xk – z)

〉

+ 
∥∥F(xk)

∥∥∥∥j(xk – z) – j
(

C(I – λkF)xk – z

)∥∥,

which immediately leads to

‖xk – z‖ ≤ 
τ

(〈
F(z), j(z – xk)

〉

+ 
∥∥F(GVkxk)

∥∥∥∥j(xk – z) – j
(

C(I – λkF)GVkxk – z

)∥∥)
, ∀z ∈F , ()

where τ =  –
√

–δ
ζ

∈ (, ). Note that

∥∥(xk – z) –
(

C(I – λkF)GVkxk – z

)∥∥ ≤ ∥∥xk – (I – λkF)yk
∥∥

≤ ‖xk – yk‖ + λk
∥∥F(yk)

∥∥.

Since the uniform smoothness of X guarantees the uniform continuity of j on every
nonempty bounded subset of X, we deduce from (), λk →  and the boundedness of
{yk} that

lim
k→∞

∥
∥j(xk – z) – j

(

C(I – λkF)GVkxk – z

)∥∥ = .

Now, take an arbitrary p ∈ ωw(xk). Then there exists a subsequence {xki} of {xk} such
that xki ⇀ p. In terms of Step , we know that p ∈ ωw(xk) ⊂F . Thus, we can substitute xki
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for xk and p for z in () to get

‖xki – p‖ ≤ 
τ

(〈
F(p), j(p – xki )

〉

+ 
∥∥F(yki )

∥∥∥∥j(xki – p) – j
(

C(I – λki F)yki – p

)∥∥)
. ()

Consequently, the weak convergence of {xki} to p together with () actually implies that
xki → p as i → ∞, and hence p ∈ ωs(xk). This shows that ωw(xk) = ωs(xk).

Step . We show that each p ∈ ωs(xk) solves the variational inequality (). Indeed, take
an arbitrary p ∈ ωs(xk). Then there exists a subsequence {xki} of {xk} such that xki → p as
i → ∞. According to Steps  and , we know that p ∈ ωs(xk) (= ωw(xk) ⊂F ). Replacing xk

in () with xki , and noticing that xki → p, we have the Minty type variational inequality

〈
F(z), j(z – p)

〉 ≤ , ∀z ∈F ,

which is equivalent to the variational inequality (see Lemma )

〈
F(p), j(p – z)

〉 ≤ , ∀z ∈F . ()

That is, p ∈F is a solution of ().
Step . We show that {xk} converges strongly to a unique solution inF to VI (). Indeed,

we first claim that the solution set of () is a singleton. As a matter of fact, assume that
p̄ ∈F is also a solution of (). Then we have

〈
F(p̄), j(p̄ – p)

〉 ≤ .

From (), we have

〈
F(p), j(p – p̄)

〉 ≤ .

So, by the δ-strong accretiveness of F , we have

〈
F(p̄), j(p̄ – p)

〉
+

〈
F(p), j(p – p̄)

〉 ≤ 

⇒ 〈
F(p̄) – F(p), j(p̄ – p)

〉 ≤ 

⇒ δ‖p̄ – p‖ ≤ .

Therefore, p̄ = p. In summary, we have shown that each cluster point of {xk} (as k → ∞)
equals p. Consequently, xk → p as k → ∞. �

Theorem  Let C, X,
C , A, B, F , {Ti}∞i=,F , δ, ζ ,λ and μ be as in Theorem . Let {Vk}∞k= be
defined by () and (). For arbitrarily given x ∈ C, let {xk}∞k= be defined by

xk+ = βkxk + γk
C(I – λA)
C(I – μB)Vkxk

+ ( – βk – γk)
C(I – λkF)
C(I – λA)
C(I – μB)Vkxk , ∀k ≥ ,

where {λk}, {βk} and {γk} are three sequences in [, ] with βk + γk ≤ ,∀k ≥ , and satisfy
the following conditions:
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(i) limk→∞ λk =  and
∑∞

k= λk = ∞;
(ii) limk→∞( γk+

–βk+
– γk

–βk
) = ;

(iii)  < lim infk→∞ βk ≤ lim supk→∞(βk + γk) < .
Then {xk}∞k= converges strongly to a unique solution x∗ ∈F .

Proof Let the mapping G : C → C be defined as G := 
C(I –λA)
C(I –μB), where  < λ <
α

κ and  < μ < β

κ . In terms of Lemma  we know that G : C → C is nonexpansive. Then
the explicit iterative scheme can be rewritten as

xk+ = βkxk + γkGVkxk + ( – βk – γk)
C(I – λkF)GVkxk , ∀k ≥ . ()

Next, we divide the rest of the proof into several steps.
Step . We show that {xk}∞k= is bounded. Indeed, take an arbitrarily given p ∈ F . Then

we have Vkp = p and Gp = p. Hence, by Lemma (c) we get

‖xk+ – p‖ =
∥∥βkxk + γkGVkxk + ( – βk – γk)
C(I – λkF)GVkxk – p

∥∥

≤ βk‖xk – p‖ + γk‖GVkxk – p‖ + ( – βk – γk)
∥∥
C(I – λkF)GVkxk – p

∥∥

≤ βk‖xk – p‖ + γk‖xk – p‖
+ ( – βk – γk)

∥∥(I – λkF)GVkxk – (I – λkF)p – λkF(p)
∥∥

≤ (βk + γk)‖xk – p‖ + ( – βk – γk)
∥∥(I – λkF)GVkxk – (I – λkF)p

∥∥

+ λk( – βk – γk)
∥∥F(p)

∥∥

≤ (βk + γk)‖xk – p‖ + ( – βk – γk)( – λkτ )‖GVkxk – p‖
+ λk( – βk – γk)

∥∥F(p)
∥∥

≤ [
 – ( – βk – γk)λkτ

]‖xk – p‖ + ( – βk – γk)λkτ
‖F(p)‖

τ
.

By induction, we conclude that

‖xk+ – p‖ ≤ max

{
‖x – p‖,

‖F(p)‖
τ

}
.

Therefore, {xk}∞k= is bounded. So, the sequences {zk}∞k=, {yk}∞k= and {F(yk)}∞k=, where zk =
Vkxk and yk = GVkxk , are also bounded.

Step . We show that ‖xk+ – xk‖ →  and ‖xk – yk‖ →  as k → ∞. Indeed, observe that

‖yk+ – yk‖ = ‖GVk+xk+ – GVkxk‖
≤ ‖Vk+xk+ – Vkxk‖
≤ ‖Vk+xk+ – Vk+xk‖ + ‖Vk+xk – Vkxk‖
≤ ‖xk+ – xk‖ +

∥∥VkTk+xk – Vkxk
∥∥

≤ ‖xk+ – xk‖ +
∥∥Tk+xk – xk

∥∥

= ‖xk+ – xk‖ + αk+‖xk – Tk+xk‖.



Ceng et al. Journal of Inequalities and Applications  (2017) 2017:247 Page 19 of 25

Set xk+ = βkxk + ( – βk)wk for all k ≥ . Then wk = γk yk +(–βk –γk )
C (I–λkF)yk
–βk

. Note that

∥∥
C(I – λk+F)yk+ – 
C(I – λkF)yk
∥∥

≤ ∥∥(I – λk+F)yk+ – (I – λkF)yk
∥∥

=
∥∥yk+ – yk – λk+F(yk+) + λkF(yk)

∥∥

≤ ‖yk+ – yk‖ + λk+
∥∥F(yk+)

∥∥ + λk
∥∥F(yk)

∥∥

≤ ‖xk+ – xk‖ + λk+
∥∥F(yk+)

∥∥ + λk
∥∥F(yk)

∥∥ + αk+‖xk – Tk+xk‖.

Hence

‖wk+ – wk‖

=
∥∥∥∥
γk+yk+ + ( – βk+ – γk+)
C(I – λk+F)yk+

 – βk+

–
γkyk + ( – βk – γk)
C(I – λkF)yk

 – βk

∥∥∥∥

≤
∥∥∥∥

γk+

 – βk+
yk+ –

γk

 – βk
yk

∥∥∥∥

+
∥∥∥∥

( – βk+ – γk+)
 – βk+


C(I – λk+F)yk+ –
( – βk – γk)

 – βk

C(I – λkF)yk

∥∥∥∥

≤
∣∣∣∣

γk+

 – βk+
–

γk

 – βk

∣∣∣∣‖yk+‖ +
γk

 – βk
|‖yk+ – yk‖

+
∣∣∣∣
( – βk+ – γk+)

 – βk+
–

( – βk – γk)
 – βk

∣∣∣∣
∥∥
C(I – λk+F)yk+

∥∥

+
( – βk – γk)

 – βk

∥∥
C(I – λk+F)yk+ – 
C(I – λkF)yk
∥∥

≤
∣∣∣∣

γk+

 – βk+
–

γk

 – βk

∣∣∣∣
(‖yk+‖ +

∥∥
C(I – λk+F)yk+
∥∥)

+
γk

 – βk
|(‖xk+ – xk‖ + αk+‖xk – Tk+xk‖

)

+
( – βk – γk)

 – βk

(‖xk+ – xk‖ + λk+
∥∥F(yk+)

∥∥ + λk
∥∥F(yk)

∥∥ + αk+‖xk – Tk+xk‖
)

≤
∣∣∣∣

γk+

 – βk+
–

γk

 – βk

∣∣∣∣
(‖yk+‖ +

∥∥
C(I – λk+F)yk+
∥∥)

+ ‖xk+ – xk‖ + λk+
∥∥F(yk+)

∥∥ + λk
∥∥F(yk)

∥∥ + αk+
(‖xk‖ + ‖Tk+xk‖

)
.

Since {xk}, {yk} and {F(yk)} are bounded, we have that {‖yk+‖ + ‖
C(I – λk+F)yk+‖} and
{‖xk‖ + ‖Tk+xk‖} are bounded. So it follows from αk →  and conditions (i) and (ii) that

lim sup
k→∞

(‖wk+ – wk‖ – ‖xk+ – xk‖
) ≤ .

Hence, by Lemma , we get ‖wk – xk‖ →  as k → ∞. Consequently,

lim
k→∞

‖xk+ – xk‖ = lim
k→∞

( – βk)‖wk – xk‖ = . ()
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We also note that

‖wk – yk‖ =
∥∥∥∥
γkyk + ( – βk – γk)
C(I – λkF)yk

 – βk
– yk

∥∥∥∥

=
 – βk – γk

 – βk

∥∥
C(I – λkF)yk – yk
∥∥

≤ ∥∥
C(I – λkF)yk – 
Cyk
∥∥

≤ λk
∥∥F(yk)

∥∥ →  as k → ∞.

It follows that

lim
k→∞

‖xk – yk‖ = . ()

Step . We show that ‖zk – Gzk‖ →  and ‖xk – Vkxk‖ →  as k → ∞. Indeed, for sim-
plicity, put q = 
C(p – μBp) and uk = 
C(zk – μBzk). Then yk = Gzk = 
C(uk – λAuk) for
all k ≥ . Repeating the same arguments as those of (), we obtain

‖yk – p‖ ≤ ‖xk – p‖ – μ
(
β – κμ

)‖Bzk – Bp‖ – λ
(
α – κλ

)‖Auk – Aq‖. ()

Observe that

‖xk+ – p‖ ≤ βk‖xk – p‖ + γk‖GVkxk – p‖ + ( – βk – γk)
∥∥
C(I – λkF)GVkxk – p

∥∥

≤ βk‖xk – p‖ + γk‖GVkxk – p‖

+ ( – βk – γk)
∥∥(I – λkF)GVkxk – (I – λkF)p – λkF(p)

∥∥

≤ βk‖xk – p‖ + γk‖GVkxk – p‖

+ ( – βk – γk)
[
( – λkτ )‖GVkxk – p‖ + λkF(p)‖]

≤ βk‖xk – p‖ + γk‖GVkxk – p‖

+ ( – βk – γk)
[
( – λkτ )‖GVkxk – p‖ + λkτ

–∥∥F(p)
∥∥]

≤ βk‖xk – p‖ + γk‖GVkxk – p‖

+ ( – βk – γk)‖GVkxk – p‖ + λkτ
–∥∥F(p)

∥∥

= βk‖xk – p‖ + ( – βk)‖GVkxk – p‖ + λkτ
–∥∥F(p)

∥∥, ()

which together with () implies that

‖xk+ – p‖ ≤ βk‖xk – p‖ + ( – βk)
[‖xk – p‖ – μ

(
β – κμ

)‖Bzk – Bp‖

– λ
(
α – κλ

)‖Auk – Aq‖] + λkτ
–∥∥F(p)

∥∥

= ‖xk – p‖ – ( – βk)
[
μ

(
β – κμ

)‖Bzk – Bp‖

+ λ
(
α – κλ

)‖Auk – Aq‖] + λkτ
–∥∥F(p)

∥∥.
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So, it follows that

( – βk)
[
μ

(
β – κμ

)‖Bzk – Bp‖ + λ
(
α – κλ

)‖Auk – Aq‖]

≤ ‖xk – p‖ – ‖xk+ – p‖ + λkτ
–∥∥F(p)

∥∥

≤ ‖xk – xk+‖
(‖xk – p‖ + ‖xk+ – p‖) + λkτ

–∥∥F(p)
∥∥. ()

Since λ ∈ (, α

κ ), μ ∈ (, β

κ ) and λk →  as k → ∞, we deduce from () and condition
(iii) that

lim
k→∞

‖Bzk – Bp‖ =  and lim
k→∞

‖Auk – Aq‖ = . ()

Repeating the same arguments as those of (), we get

‖yk – p‖ ≤ ‖xk – p‖ – g
(∥∥zk – uk – (p – q)

∥∥)
– g

(∥∥uk – yk + (p – q)
∥∥)

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖. ()

Combining () and (), we have

‖xk+ – p‖ ≤ βk‖xk – p‖ + ( – βk)
[‖xk – p‖ – g

(∥∥zk – uk – (p – q)
∥∥)

– g
(∥∥uk – yk + (p – q)

∥∥)
+ μ‖Bp – Bzk‖‖uk – q‖

+λ‖Aq – Auk‖‖yk – p‖] + λkτ
–∥∥F(p)

∥∥

≤ ‖xk – p‖ – ( – βk)
[
g

(∥∥zk – uk – (p – q)
∥∥)

+ g
(∥∥uk – yk + (p – q)

∥∥)]

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖ + λkτ
–∥∥F(p)

∥∥,

which immediately leads to

( – βk)
[
g

(∥∥zk – uk – (p – q)
∥∥)

+ g
(∥∥uk – yk + (p – q)

∥∥)]

≤ ‖xk – p‖ – ‖xk+ – p‖

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖ + λkτ
–∥∥F(p)

∥∥

≤ ‖xk – xk+‖
(‖xk – p‖ + ‖xk+ – p‖)

+ μ‖Bp – Bzk‖‖uk – q‖ + λ‖Aq – Auk‖‖yk – p‖ + λkτ
–∥∥F(p)

∥∥.

Since λk →  as k → ∞, and {uk} and {yk} are bounded, we deduce from (), () and
condition (iii) that

lim
k→∞

g
(∥∥zk – uk – (p – q)

∥∥)
=  and lim

k→∞
g

(∥∥uk – yk + (p – q)
∥∥)

= .

Utilizing the properties of g and g, we conclude that

lim
k→∞

∥∥zk – uk – (p – q)
∥∥ =  and lim

k→∞
∥∥uk – yk + (p – q)

∥∥ = . ()
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From (), we get

‖zk – yk‖ ≤ ∥∥zk – uk – (p – q)
∥∥ +

∥∥uk – yk + (p – q)
∥∥ →  as k → ∞.

That is,

lim
k→∞

‖zk – Gzk‖ = lim
k→∞

‖zk – yk‖ = . ()

This together with () implies that

lim
k→∞

‖xk – Vkxk‖ = lim
k→∞

‖xk – zk‖ = . ()

Step . We show that ωw(xk) ⊂F , where

ωw(xk) =
{

x ∈ C : xki ⇀ x for some subsequence {xki} of {xk}
}

.

Indeed, repeating the same arguments as those of () and () in the proof of Theorem ,
we obtain that

lim
k→∞

‖xk – Vxk‖ =  and lim
k→∞

‖xk – Gxk‖ = . ()

Utilizing Lemma  and Lemma  and the nonexpansivity of V and G, we conclude that
ωw(xk) ⊂F .

Step . We show that lim supk→∞〈F(x∗), j(x∗ – vk)〉 ≤ , where vk = 
C(I – λkF)yk for all
k ≥  and x∗ ∈F is the unique solution of VI (). Indeed, we first take a subsequence {vki}
of {vk} such that

lim sup
k→∞

〈
F
(
x∗), j

(
x∗ – vk

)〉
= lim

i→∞
〈
F
(
x∗), j

(
x∗ – vki

)〉
.

We may also assume that vki ⇀ z. Note that

‖vk – xk‖ =
∥∥
C(I – λkF)yk – xk

∥∥

≤ ∥∥(I – λkF)yk – xk
∥∥ ≤ ‖yk – xk‖ + λk

∥∥F(yk)
∥∥ →  as k → ∞. ()

Combining () with ωw(xk) ⊂F (due to Step ), we get z ∈F . So, it follows from VI ()
that

lim sup
k→∞

〈
F
(
x∗), j

(
x∗ – vk

)〉
= lim

i→∞
〈
F
(
x∗), j

(
x∗ – vki

)〉

=
〈
F
(
x∗), j

(
x∗ – z

)〉 ≤ .

Since vk = 
C(I – λkF)yk for all k ≥ , according to Lemma (iii), we have

〈
(I – λkF)yk – 
C(I – λkF)yk , j

(
x∗ – vk

)〉 ≤ . ()
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From (), we have

∥∥vk – x∗∥∥ =
〈

C(I – λkF)yk – x∗, j

(
vk – x∗)〉

=
〈

C(I – λkF)yk – (I – λkF)yk , j

(
vk – x∗)〉

+
〈
(I – λkF)yk – x∗, j

(
vk – x∗)〉

≤ 〈
(I – λkF)yk – x∗, j

(
vk – x∗)〉

=
〈
(I – λkF)yk – (I – λkF)x∗, j

(
vk – x∗)〉 + λk

〈
F
(
x∗), j

(
x∗ – vk

)〉

≤ ( – λkτ )
∥∥yk – x∗∥∥∥∥vk – x∗∥∥ + λk

〈
F
(
x∗), j

(
x∗ – vk

)〉

≤ 


( – λkτ )∥∥yk – x∗∥∥ +


∥∥vk – x∗∥∥ + λk

〈
F
(
x∗), j

(
x∗ – vk

)〉
,

which immediately yields

∥∥vk – x∗∥∥ ≤ ( – λkτ )
∥∥yk – x∗∥∥ + λk

〈
F
(
x∗), j

(
x∗ – vk

)〉

≤ ( – λkτ )
∥∥xk – x∗∥∥ + λk

〈
F
(
x∗), j

(
x∗ – vk

)〉
. ()

Step . We show that xk → x∗ as k → ∞. Indeed, from () and (), we have

∥∥xk+ – x∗∥∥ ≤ βk
∥∥xk – x∗∥∥ + γk

∥∥yk – x∗∥∥ + ( – βk – γk)
∥∥vk – x∗∥∥

≤ βk
∥∥xk – x∗∥∥ + γk

∥∥xk – x∗∥∥

+ ( – βk – γk)
[
( – λkτ )

∥∥xk – x∗∥∥ + λk
〈
F
(
x∗), j

(
x∗ – vk

)〉]

=
[
 – λk( – βk – γk)τ

]∥∥xk – x∗∥∥

+ λk( – βk – γk)τ · 
τ

〈
F
(
x∗), j

(
x∗ – vk

)〉
. ()

Since
∑∞

k= λk = ∞, lim supk→∞(βk + γk) <  and τ =  –
√

–δ
ζ

∈ (, ), we get

∞∑

k=

λk( – βk – γk)τ = ∞.

Taking into account lim supk→∞〈F(x∗), j(x∗ – vk)〉 ≤ , we can apply Lemma  to relation
() and conclude that xk → x∗ as k → ∞. �
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