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Abstract
In this paper, we find the least value α and the greatest value β such that the double
inequality

Pα (a,b)T1–α (a,b) <M(a,b) < Pβ (a,b)T1–β (a,b)

holds for all a,b > 0 with a �= b, whereM(a,b), P(a,b), and T (a,b) are the
Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b,
respectively.
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1 Introduction
For a, b >  with a �= b, the Neuman-Sándor mean M(a, b) [], the first Seiffert mean P(a, b)
[], and the second Seiffert mean T(a, b) [] are defined by

M(a, b) =
a – b

 sinh–( a–b
a+b )

, (.)

P(a, b) =
a – b

 tan–(
√

a/b) – π
,

T(a, b) =
a – b

 tan–( a–b
a+b )

, (.)

respectively. It can be observed that the first Seiffert mean P(a, b) can be rewritten as (see
[])

P(a, b) =
a – b

 sin–( a–b
a+b )

, (.)

where sinh–(x) = log(x +
√

x + ), tan–(x) = arctan(x), and sin–(x) = arcsin(x) are the in-
verse hyperbolic sine, inverse tangent, inverse sine functions, respectively.
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Recently, the means M, P, and T and other means have been the subject of intensive
research. Many remarkable inequalities for means can be found in the literature [–].

Let H(a, b) = ab/(a + b), G(a, b) =
√

ab, L(a, b) = (b – a)/(log b – log a), I(a, b) = /e(bb/
aa)/(b–a), A(a, b) = (a + b)/, Q(a, b) =

√
(a + b)/ and

Mp(a, b) =

{
( ap+bp

 )/p, p �= ,√
ab, p = ,

denote the harmonic, geometric, logarithmic, identric, arithmetic, root-square, and the
pth power means of two positive numbers a and b with a �= b, respectively. Then it is well
known that the inequalities

H(a, b) < G(a, b) < L(a, b) < P(a, b) < I(a, b) < A(a, b) < M(a, b) < T(a, b) < Q(a, b)

hold for a, b >  with a �= b.
Neuman and Sándor [] established

π


P(a, b) > sinh–()M(a, b) >

π


T(a, b)

for all a, b >  with a �= b.
Gao [] proved that the optimal double inequalities

e
π

I(a, b) < P(a, b) < I(a, b), I(a, b) < T(a, b) <
e
π

I(a, b)

hold for all a, b >  with a �= b.
The following bounds for the Seiffert means P(a, b) and T(a, b) in terms of the power

mean were presented by Jagers in []:

M 


< P(a, b) < M 


(a, b)

for all a, b >  with a �= b. Hästö [] improved the results of [] and found the sharp lower
power mean bound for the Seiffert mean P(a, b) as follows:

P(a, b) > M log 
logπ

(a, b)

for all a, b >  with a �= b.
In [], the authors proved that the sharp double inequality

M log 
logπ–log 

< T(a, b) < M 


(a, b)

holds for all a, b >  with a �= b.
Let Lp(a, b) = (ap+ + bp+)/(ap + bp) be the Lehmer mean of two positive numbers a and b

with a �= b. In [], the authors presented the following best possible Lehmer mean bounds
for the Seiffert means P(a, b) and T(a, b):

L–/(a, b) < P(a, b) < L(a, b) and L(a, b) < T(a, b) < L/(a, b)

for all a, b >  with a �= b.
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Let u, v, and w be bivariate means such that u(a, b) < v(a, b) < w(a, b) for all a, b >  with
a �= b. The problems of finding the best possible parameters α and β such that the in-
equalities αu(a, b) + ( –α)v(a, b) < w(a, b) < βu(a, b) + ( –β)v(a, b) and u(a, b)αv–α(a, b) <
w(a, b) < u(a, b)βv–β(a, b) hold for all a, b >  with a �= b have attracted the interest of many
mathematicians.

In [] and [], the authors proved that the double inequalities

αQ(a, b) + ( – α)A(a, b) < T(a, b) < βQ(a, b) + ( – β)A(a, b),

Qα (a, b)A–α (a, b) < T(a, b) < Qβ (a, b)A–β (a, b)

hold for all a, b >  with a �= b if and only if α ≤ ( – π )/[(
√

 – )π ], β ≥ /, α ≤ /,
β ≥  –  logπ/ log .

In [], Neuman and Sándor gave the inequality

Q(a, b)

 A(a, b)


 < M(a, b) <




Q(a, b) +



A(a, b).

In [], Sándor proved the inequality

G(a, b)

 A(a, b)


 < P(a, b) <




G(a, b) +



A(a, b).

In [] and [], the authors proved that the double inequalities

Q(a, b)α A–α (a, b) < M(a, b) < Q(a, b)β A–β (a, b),

αQ(a, b) + ( – α)G(a, b) < M(a, b) < βQ(a, b) + ( – β)G(a, b)

hold for all a, b >  with a �= b if and only if α ≤ /, β ≥ (log( +
√

) – log )/ log ,
α ≤ /, β ≥ /[

√
 log( +

√
)].

In [], the authors proved that the double inequality

αA(a, b) + ( – α)G(a, b) < P(a, b) < βA(a, b) + ( – β)G(a, b)

holds for all a, b >  with a �= b if and only if α ≤ π/, β ≥ /.
The main purpose of this paper is to find the least value α and the greatest value β such

that the double inequality

Pα(a, b)T –α(a, b) < M(a, b) < Pβ (a, b)T –β(a, b)

holds for all a, b >  with a �= b.
Theorem . and Theorem . in [] provide the inequality

A(a, b)T(a, b) ≤ M(a, b), P(a, b)M(a, b) ≤ A(a, b),

following which one can get P 
 (a, b)T 

 ≤ M(a, b). Then the lower bound of α in Theo-
rem . of Section  is achieved.
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2 Lemmas
To establish our main result, we need several lemmas, which we present in this section.

For x ∈ (, ), the power series expansions of the functions tan–(x) and sinh–(x) are
presented as follows:

sinh–(x) = x –
x


+

x


–

x


+ · · · =

∞∑

n=

(–)n(n)!
(n + )n(n!) xn+, (.)

tan–(x) = x –
x


+

x


–

x


+ · · · =

∞∑

n=

(–)n

n + 
xn+. (.)

Lemma . If x ∈ (, ), then one has

 +
x


<

√
 + x <  +

x


, (.)

sin–(x)
√

 – x < x –
x


–

x


, (.)

sinh–(x) > x –
x


, (.)

x –
x


+

x


–

x


< tan–(x) < x –

x


+

x


, (.)

and

tan–(x) > x –
x


+

x


. (.)

Proof Square every terms of inequality (.) at the same time, then it is easy to prove
it. Inequality (.) was proved in Lemma . of []. Inequalities (.) and (.) follow
immediately from equations (.) and (.), respectively.

Let �(x) = tan–(x) – (x – x

 + x

 ). Then �′(x) = x(–x)
(+x) . Thus, �(x) is strictly in-

creasing on (, 
√


 ] and strictly decreasing on [ 

√


 , ). Considering �() =  and �() =
. . . . > , we can get �(x) >  for x ∈ (, ). Therefore, inequality (.) holds. �

Lemma . If x ∈ (, .), then one has

sin–(x)
√

 – x > x –
x


–

x


, (.)

tan–(x) > x –
x


+

x


, (.)

and

sinh–(x) < x –
x


. (.)

Proof Let

γ(x) = sin–(x)
√

 – x –
(

x –
x


–

x



)
, (.)
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γ(x) = tan–(x) –
(

x –
x


+

x



)
, (.)

γ(x) =
(

x –
x



)
– sinh–(x). (.)

Then

γ ′
 (x) =

xγ ∗
 (x)√

 – x
, (.)

γ ′
(x) =

x( – x)
 + x , (.)

γ ′
(x) =

γ ∗
 (x)


√

 + x
, (.)

where

γ ∗
 (x) =

(
x + x)√ – x – sin–(x), (.)

γ ∗
 (x) =

√
 + x

(
 – x) – . (.)

Differentiating γ ∗
 (x) and γ ∗

 (x), we have

γ ∗′
 (x) =

x( – x)√
 – x

, (.)

γ ∗′
 (x) =

x√
 + x

(
 – x). (.)

Furthermore, direct or numerical computations lead to

γ() = , γ(.) = . . . . > , (.)

γ ∗
 () = , γ ∗

 () = –. . . . < , (.)

γ() = , γ(.) = . . . . > , (.)

γ() = , γ(.) = . . . . > , (.)

and

γ ∗
 () = , γ ∗

 () = –. . . . < . (.)

From (.), we can easy to see that γ ∗
 (x) is strictly increasing on (, 

 ] and strictly
decreasing on [ 

 , ). This fact and (.) together with (.) imply that there exists x ∈
( 

 , ), such that γ ′
 (x) >  on (, x) and γ ′

 (x) <  on (x, ). The monotonicity of γ(x) and
(.) lead to

γ(x) > 

for x ∈ (, .). Therefore, inequality (.) holds.
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Equation (.) shows that γ(x) >  on (,
√


 ) and γ(x) <  on (

√

 , ). This fact and

(.) lead to

γ(x) > 

for x ∈ (, .). That is to say inequality (.) holds.
By (.), we know that γ ∗

 (x) is strictly increasing on (,
√


 ] and strictly decreasing on

[
√


 , ). This fact and (.) together with (.) imply that there must exist x ∈ (

√


 , ),
such that γ ′

(x) >  on (, x) and γ ′
(x) <  on (x, ). It follows from the monotonicity of

γ(x) and (.) that

γ(x) > 

for x ∈ (, .). This means the inequality (.) holds. �

Lemma . If x ∈ (., ), the double inequality

x –
x


+

x


< tan–(x) < x –

x


+

x


(.)

holds.

Proof Let

ξ(x) =
(

x –
x


+

x



)
– tan–(x),

ξ(x) =
(

x –
x


+

x



)
– tan–(x).

Then

ξ ′
(x) =

x(x – )
( + x)

, (.)

ξ ′
(x) =

x(x – )
( + x)

. (.)

Equality (.) implies that ξ(x) is strictly increasing on [
√


 , ). Additional numeri-

cal computations lead to
√


 < . and ξ(.) = . . . . > . Therefore, we can get

ξ(x) >  for x ∈ (., ). This implies the right hand side of the double inequality (.)
holds.

Equality (.) implies ξ(x) is strictly decreasing on (,
√


 ] and strictly increasing on

[
√


 , ). Because of ξ() =  and ξ() = –. . . . < , it leads to ξ(x) <  for x ∈ (, ).

Specially, for x ∈ (., ). This means the left hand side of the double inequality (.)
holds. �

Lemma . Let

μ(x) =
 + x

(x + x) –


( + x)[sinh–(x)]
–

x
( + x) 

 sinh–(x)
, (.)
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μ(x) = –
 + x

(x + x) +


( – x)[sin–(x)]
–

x
( – x) 

 sin–(x)
, (.)

and

μ(x) = –
x

( + x) tan–(x)
–


[tan–(x)]( + x) +

 + x

(x + x) . (.)

Then, for any x ∈ (., ), we have

μ(x) < ., μ(x) < –., (.)

and

μ(x) > –.. (.)

Proof From Lemmas . and . of [], for any x ∈ [., ), we can get μ′
(x) ≤ . . . . <

. and μ′
(x) ≤ –. . . . < –., respectively.

Differentiating μ(x), we have

μ′
(x) =

η(x) + x tan–(x)η(x)
[tan–(x)(x + x)] , (.)

where

η(x) = x – x[tan–(x)
] –

[
tan–(x)

]

and

η(x) = x + x tan–(x) –
(
x + 

)[
tan–(x)

].

For any x ∈ [., ),

η(x) < x – x
(

x –
x


+

x



)

–
(

x –
x


+

x



)

= –x( + x) <  (.)

and

η(x) < x + x
(

x –
x


+

x



)
–

(
x + 

)(
x –

x


+

x



)

=
x

,
(
– + ,x – x) +

x

,
(
–, + ,x – x)

follow from inequalities (.) and (.), respectively. Because – + ,x – x < 
and –, + ,x – x <  for x ∈ (., ), we have

η(x) <  (.)
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for x ∈ (., ). Thus μ′
(x) <  for x ∈ (., ) follows from (.), (.), and (.). There-

fore, we obtain μ(x) > μ() = –. . . . > –. for x ∈ (., ). �

Lemma . Let f (x) = √
+x sinh–(x)

– ( – λ) 
(+x) tan–(x) – λ

√
–x sin–(x)

, where λ =
log(  log(+

√
)

π )
log  = . . . . . Then the function f (x) is strictly decreasing on (., ).

Proof It is obvious that

f (x) =
[

√
 + x sinh–(x)

–


x( + x)

]
+ λ

[


x( + x)
–

√
 – x sin–(x)

]

+ (λ – )
[


( + x) tan–(x)

–


x( + x)

]

:= U(x) + λU(x) + (λ – )U(x).

Differentiating f (x), we have

f ′(x) = U ′
(x) + λU ′

(x) + (λ – )U ′
(x)

= μ(x) + λμ(x) + (λ – )μ(x), (.)

where μ(x), μ(x), and μ(x) are defined as in Lemma .. Therefore, Lemma . and
equation (.) yield

f ′(x) < . + λ(–.) + (λ – )(–.)

= –. . . . < 

for x ∈ (., ). The proof is completed. �

3 Main results
Theorem . The double inequality

Pα(a, b)T –α(a, b) < M(a, b) < Pβ (a, b)T –β(a, b)

holds for all a, b >  with a �= b if and only if a ≥ / and β ≤ log(  log(+
√

)
π )

log  = . . . . .

Proof Because P(a, b), M(a, b), and T(a, b) are symmetric and homogeneous of degree

, without loss of generality, we assume that a > b. Let p ∈ (, ), λ = log(  log(+
√

)
π )

log  , and
x = (a – b)/(a + b). Then x ∈ (, ) and

p log
[
P(a, b)

]
+ ( – p) log

[
T(a, b)

]
– log

[
M(a, b)

]

= p log

[
x

sin–(x)

]
+ ( – p) log

[
x

tan–(x)

]
– log

[
x

sinh–(x)

]

= log
[
sinh–(x)

]
– ( – p) log

[
tan–(x)

]
– p log

[
sin–(x)

]
:= Dp(x). (.)

It follows that

Dp
(
+)

=  and Dλ

(
–)

= . (.)
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Differentiating Dp(x), we have

D′
p(x) =


sinh–(x)

√
 + x

– ( – p)


tan–(x)( + x)
– p


sin–(x)

√
 – x

=
gp(x)

sinh–(x)( + x) tan–(x) sin–(x)
√

 – x
, (.)

where

gp(x) =
[√

 + x tan–(x) – ( – p) sinh–(x)
]

sin–(x)
√

 – x

– p sinh–(x)
(
 + x) tan–(x). (.)

On one hand, when p = 
 , Lemma . and equation (.) lead to

g 


(x) =
[√

 + x tan–(x) –



sinh–(x)
]

sin–(x)
√

 – x

–



sinh–(x)
(
 + x) tan–(x)

<
[(

 +
x



)(
x –

x


+

x



)
–




(
x –

x



)](
x –

x


–

x



)

–



(
x –

x



)(
 + x)

(
x –

x


+

x


–

x



)

=
x

,
(
– + x + x – x) <  (.)

for x ∈ (, ). According to (.) and (.), we can see that

D′



(x) <  (.)

for x ∈ (, ).
On the other hand, when p = λ, the inequalities (.) and (.) and Lemma . together

with equation (.) lead to

gλ (x) =
[√

 + x tan–(x) – ( – λ) sinh–(x)
]

sin–(x)
√

 – x

– λ sinh–(x)
(
 + x) tan–(x)

>
[(

 +
x



)(
x –

x


+

x



)
– ( – λ)

(
x –

x



)](
x –

x


–

x



)

– λ

(
x –

x



)(
 + x)

(
x –

x


+

x



)

=
x

,
Fλ (x) (.)

for x ∈ (, .), where

Fλ (x) = ( – ,λ) + (λ – )x + ( – λ)x + (λ – )x – x.
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Because of λ –  = –. . . . <  and λ –  = –. . . . < , it follows that

Fλ (x) > ( – ,λ) + (λ – )x + ( – λ)x + (λ – )x – x

= ( – ,λ) + (λ – )x + (– – λ)x

:= F∗(x) (.)

and

F∗′(x) = (λ – )x + (– – λ)x < 

for x ∈ (, .). Thus, we can get

Fλ (x) > F∗(x) > F∗(.) = . . . . >  (.)

for x ∈ (, .). Therefore, equation (.) and inequalities (.)-(.) imply

D′
λ (x) >  (.)

for x ∈ (, .).
It follows from equation (.) and Lemma . that D′

λ
(x) is strictly decreasing on (., ).

Then from equation (.) and D′
λ

(–) = –∞, we know that there exists x∗ ∈ (., ) such
that Dλ (x) is strictly increasing on (, x∗] and strictly decreasing on [x∗, ). This in con-
junction with (.) means that

Dλ (x) >  (.)

for x ∈ (, ).
Therefore, for all a, b >  with a �= b,

M(a, b) > P

 (a, b)T


 (a, b), (.)

follows from equations (.), (.), and (.) as well as

M(a, b) < Pλ (a, b)T –λ (a, b) (.)

follows from equations (.), (.), and (.).
Finally, by easy computations, equations (.), (.), and (.) lead to

log[T(a, b)] – log[M(a, b)]
log[T(a, b)] – log[P(a, b)]

=
log[sinh–(x)] – log[tan–(x)]
log[sin–(x)] – log[tan–(x)]

, (.)

lim
x→+

log[sinh–(x)] – log[tan–(x)]
log[sin–(x)] – log[tan–(x)]

=



(.)

and

lim
x→–

log[sinh–(x)] – log[tan–(x)]
log[sin–(x)] – log[tan–(x)]

= λ. (.)

Thus, we have the following two claims.
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Claim  If α < 
 , then from (.) and (.), there must exist δ ∈ (, ) such that M(a, b) <

Pα(a, b)T –α(a, b) for all a, b >  with (a – b)/(a + b) ∈ (, δ).

Claim  If β > λ, then from (.) and (.), there must exist δ ∈ (, ) such that
M(a, b) > Pβ (a, b)T –β(a, b) for all a, b >  with (a – b)/(a + b) ∈ ( – δ, ).

Inequalities (.) and (.) in conjunction with the above two claims mean the proof
is completed. �
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