
Plaza Onate et al. BMC Genomics  (2015) 16:183 
DOI 10.1186/s12864-015-1406-7
METHODOLOGY ARTICLE Open Access
Quality control of microbiota metagenomics by
k-mer analysis
Florian Plaza Onate1, Jean-Michel Batto2, Catherine Juste1,2, Jehane Fadlallah3,4, Cyrielle Fougeroux3,
Doriane Gouas3,5, Nicolas Pons1, Sean Kennedy1, Florence Levenez1,2, Joel Dore1,2, S Dusko Ehrlich1,2,
Guy Gorochov3,4,5 and Martin Larsen3,4,5*
Abstract

Background: The biological and clinical consequences of the tight interactions between host and microbiota are
rapidly being unraveled by next generation sequencing technologies and sophisticated bioinformatics, also referred
to as microbiota metagenomics. The recent success of metagenomics has created a demand to rapidly apply the
technology to large case–control cohort studies and to studies of microbiota from various habitats, including habitats
relatively poor in microbes. It is therefore of foremost importance to enable a robust and rapid quality assessment of
metagenomic data from samples that challenge present technological limits (sample numbers and size). Here we
demonstrate that the distribution of overlapping k-mers of metagenome sequence data predicts sequence quality as
defined by gene distribution and efficiency of sequence mapping to a reference gene catalogue.

Results: We used serial dilutions of gut microbiota metagenomic datasets to generate well-defined high to low quality
metagenomes. We also analyzed a collection of 52 microbiota-derived metagenomes. We demonstrate that k-mer
distributions of metagenomic sequence data identify sequence contaminations, such as sequences derived from
“empty” ligation products. Of note, k-mer distributions were also able to predict the frequency of sequences mapping
to a reference gene catalogue not only for the well-defined serial dilution datasets, but also for 52 human gut
microbiota derived metagenomic datasets.

Conclusions: We propose that k-mer analysis of raw metagenome sequence reads should be implemented as a first
quality assessment prior to more extensive bioinformatics analysis, such as sequence filtering and gene mapping. With
the rising demand for metagenomic analysis of microbiota it is crucial to provide tools for rapid and efficient decision
making. This will eventually lead to a faster turn-around time, improved analytical quality including sample quality
metrics and a significant cost reduction. Finally, improved quality assessment will have a major impact on the
robustness of biological and clinical conclusions drawn from metagenomic studies.
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Background
Analysis of human microbiota has in recent years unrav-
eled a universe of intricate interactions between man
and microorganisms with direct implications for health
and disease [1-5]. A large proportion of commensal bac-
terial species are presently either highly fastidious or
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cannot be cultured in vitro. This has been a major obs-
tacle to accurately describe the microbiota composition.
Metagenomic analysis based on state-of-the-art next
generation sequencing (NGS) along with sophisticated
bioinformatics overcomes these barriers by analyzing
complex samples ex vivo.
Quantitative metagenomic analysis creates a gene and

species profile, which allows the identification and phylo-
genetic classification of known as well as novel genes and
species. Arumugam and co-workers discovered 3 func-
tionally distinct gut microbiota compositions designated
“enterotypes” [1]. Indeed, highly diverse consortia of
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commensals may functionally synergize to derive energy
from nutrients in a highly coordinated and efficient man-
ner. An imbalance of gut microbiota composition has
been associated with a large range of pathologies, such as
obesity [2], allergy and autoimmunity [6].
Although most studies make use of bacteria rich stool

samples, a range of other body habitats with a much
lower bacterial load is steadily gaining interest, such as
vaginal, skin, oral and nasal body habitats [7]. A recent
study demonstrates that it is technically feasible to
analyze microbiota composition in samples of poor gen-
omic DNA quantity and quality, such as dental plaques
of pre-historic skeletons [8]. However, it is also increas-
ingly clear that this type of analysis is often associated
with strong biases, which are difficult to discern and
complicated to correct [9]. The increasing number of
samples and the use of samples from sites of low micro-
bial density augment the importance of speed and qual-
ity control of sample processing, sequencing and data
analysis. A number of studies have addressed this need
by developing bioinformatics tools to monitor and cor-
rect NGS errors. Errors in this context refers to direct
sequence errors at the individual base level [10,11], but
also the distribution and abundance of individual se-
quences including sequences derived from sample or
technological contaminants [12-14]. We developed a
novel method, which rapidly determines and quantifies
the quality of metagenomic sequence distribution at the
sample level. Metagenomic analysis of complex micro-
biota communities is particularly sensitive to errors in
sequence distribution, because abundance measures of
individual bacterial genes and strains are based on se-
quence distribution within a given sample.
The information density of bacterial genomes is higher

than complex eukaryotic organisms, because they harbor
much less non-coding nucleotides [15]. Moreover, bac-
terial genome size is tightly linked with host symbiosis.
Indeed, commensals with a long history of host symbi-
osis generally have small genome sizes as compared to
more recent bacterial symbionts [16]. The metagenome
of human gut microbiota consists of approximately 1000
different bacterial genomes and therefore has a size of
approximately 1 Gbp. Of note, no single bacterial strain
surpasses an abundance of 0.5% of the total gut microbiota
[17], emphasizing its highly diverse nature. We therefore
hypothesize that contrary to genomes of individual bac-
terial strains [18] a metagenome of high diversity frag-
mented into short sequences of length k (k-mers),
would be distributed uniformly if k is sufficiently small.
K-mers are regarded as strings of length k restricted to

the 4-letter alphabet (A, G, C, T). They have been used
to solve various problems, such as rapid comparison of
DNA sequences [19], estimation of bacterial genome
size [20] and phylogeny of double-stranded DNA viruses
[21]. We propose to introduce an automated k-mer dis-
tribution analysis of raw DNA sequences directly down-
stream of the deep-sequencing analysis. Practically, we
count the occurrence of all k4 possible k-mers in the raw
metagenomics sequence dataset (palindromic k-mers are
aggregated when sequencing direction is arbitrary) and
evaluate their distribution using a metric based on the
information theory of Shannon [22].
Here we show that k-mer distributions of good quality

metagenomic sequence data of complex gut microbiota
samples are equally distributed unlike genomic se-
quences of individual bacterial species. We furthermore
demonstrate that k-mer distribution is associated with
the quality of the metagenomic data. Moreover, the
Shannon Entropy of the k-mer distribution predicts the
rate of sequence mapping to a predefined reference gene
catalogue. Our approach analysis unprocessed raw se-
quences and may significantly facilitate the decision
making of whether to 1) recollect, 2) reprocess a sample
or 3) increase number of sequence reads before continu-
ing with more extensive analysis. Moreover, it introduces
a quality metric that may help validate conclusions made
from metagenomic data.

Methods
Faecal sample collection and processing
Faecal samples from 30 human donors were collected
in dedicated hermetically closed plastic containers kept
anaerobically (oxygen poor and CO2 rich) with acti-
vated Anaerocult® A strips (Merck Millipore, Molsheim,
France). Samples were aliquoted anaerobically and
cryopreserved (−80°C) within 24 hours. Microbiota
from 2.5g of stool were separated from the fecal matrix
on an inverse Nycodenz® gradient under anaerobic con-
ditions as previously described [23]. The separation
yielded an average of 1.59x1011 (95% confidence inter-
val = [7.8x1010:3.2x1011]) purified microbial cells per
sample. Undiluted as well as four 10xfold serial dilu-
tions of microbiota were pelleted by centrifugation
(3000xg for 10 minutes) and cryo-preserved as dry-
pellets for subsequent DNA extraction.

DNA extraction
Genomic DNA was extracted using two distinct but
overlapping protocols for whole stool and gradient puri-
fied commensals, respectively. Whole stool samples were
treated as previously described [24]. Briefly, 200 mg of
faecal sample was lysed chemically (guanidine thiocyan-
ate and N-lauroyl sarcosine) and mechanically (glass
beads) followed by elimination of cell debris by centrifu-
gation and precipitation of genomic DNA. Finally, gen-
omic DNA was RNase treated. DNA concentration and
molecular size were estimated by Nanodrop (Thermo
Scientific) and agarose gel electrophoresis. Gradient
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purified commensal samples were treated similar to
whole stool samples with the exception that DNA pre-
cipitation was performed in smaller volumes and with
extra-long incubation times.

Metagenomic library construction
Libraries were constructed according to manufactures
protocol (Life Technologies). Briefly, extracted genomic
DNA was sheared by sonication, size-exclusion purified
by Agencourt beads (Beckman Coulter), ligated to P1
and P2 adaptor oligonucleotides with appropriate bar-
codes, PCR amplified (default 6 cycles for all 52 meta-
genomes analysed but augmented for dilution series
metagenomes as indicated in Table 1) and loaded onto
the flow-chip for downstream SOLiD sequencing.

Metagenomic sequencing and data analysis
Microbiota gene content was determined by high-
throughput SOLiD sequencing of total faecal DNA [25].
An average of 34.3 million ± 36 million (mean ± s.d.)
and 52.6 million ± 56.8 million 35-base-long single reads
were determined for each sample from 10 dilution series
samples and 52 whole stool samples, respectively (a total
of 3.1 Gb of sequence). Raw sequences for all dilution
series samples have been deposited in the European Bio-
informatics Institute (EBI) European Nucleotide Archive
(ENA) under the accession number PRJEB7925. By using
Bowtie (version 1.0.0) [26] an average of 4.6 million ±
3.5 million and 13.8 million ± 15.4 million reads per in-
dividual from the two groups of samples, respectively,
were mapped on the reference catalogue of 3.3 million
genes [4] with a maximum of 3 mismatches. Reads map-
ping at multiple positions were discarded and an average
of 3.6 million ± 2.7 million and 13.0 million ± 14.7 mil-
lion uniquely mapped reads per individual from the
two sample groups, respectively, were retained for esti-
mating the abundance of each reference gene by using
METEOR software [27]. Abundance of each gene in an
individual was normalized with the method coined
Reads Per Kilobase per Million (RPKM) as previously
described [28]. Briefly, gene abundance was determined
Table 1 DNA quantity used for serial dilution library construc

Donor #1

Sample Size (10x bacteria) Purified
dsDNA (ng/ml)1

DNA for
ligation (μg)2

10 34.9 1.00

9 4.67 0.41

8 2.68 0.07

7 0.358 <0,04

6 0.296 <0,03
1Genomic dsDNA extracted from indicated number of bacteria.
2Amount of sheared and size purified genomic DNA utilized for ligation with P1 an
as the number of reads that uniquely mapped to a de-
fined gene. Subsequently, normalized gene abundances
were transformed in frequencies by dividing them by
the total number of uniquely mapped reads for a given
sample. The resulting microbial gene profile was used
for further analyses.

Bacterial genome sequences
28 bacterial genomes from a range of species covering
common human commensals were extracted from the
collection of available reference genomes from NCBI
(cf. Additional file 1: Table S1).

K-mer analysis
The abundances of all overlapping k-mer sequences
present in a set of whole-genome shotgun short-read se-
quences were counted with in-house developed C++
software (www.mgps.eu/people/fplaza/) optimized for
small k, which supports colour space reads and the
CSFasta file format as input. Sequence reads with miss-
ing colour cells were discarded and remaining reads
were trimmed to 35 bases. K-mer analysis of bacterial
genomes was conducted with Jellyfish version 1.1
(http://www.cbcb.umd.edu/software/jellyfish/). The fre-
quencies of different k-mers at each abundance value
contained in a set of sequences are plotted as a k-mer
abundance histogram. A repeated sequence in a sampled
genome affects the shape of these k-mer abundance
spectra depending on its length and copy number. A
DNA sequence of length l will contain (l – k +1) differ-
ent k-mers if it does not contain repeats of length
greater than k–1.
Each k-mer has a reverse complement. E.g. the comple-

ment of 4mer ATTC is GAAT. Note that some k-mers are
their own reverse complement (e.g. AGCT) if and only if
k is even. Since the shot-gun short-read sequencing
technology applied does not differentiate according to
sequence orientation, we apply a “canonical representation”,
which consider k-mers and their reverse complement
equivalent (e.g. the 4-mers ATTC and GAAT are grouped
together).
tions

Donor #2

PCR cycles Purified
dsDNA (ng/ml)1

DNA for
ligation (μg)2

PCR cycles

6 30.7 1.00 6

7 7.17 0.35 7

8 2.63 0.06 8

9 0.356 <0,04 9

10 0.228 <0,02 10

d P2 adaptor oligonucleotides.

http://www.mgps.eu/people/fplaza/
http://www.cbcb.umd.edu/software/jellyfish/
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If the same sequence occurs n times in a genome,
shotgun sequencing would sample k-mers from this se-
quence n times more often than those that occur in a
single-copy (also referred to as average read depth).
Therefore, repeated sequences in the genome result in
higher abundances of associated k-mers. These collec-
tions of k-mers at higher-than-normal abundances ap-
pear as multiple peaks at different positions along the
x-axis of the k-mer abundance histogram.

Hierarchical cluster analysis
Agglomerative hierarchical cluster analysis of k-mer dis-
tributions of individual bacterial genomes performed ac-
cording to Ward’s minimum variance method [29] was
accomplished using JMP7 software (SAS Software, NC,
USA). The optimal number of clusters was identified
according to the largest distance change between succes-
sive junctions of the associated dendrogram plot. Validity
and reproducibility of the classification obtained with
hierarchical cluster analysis was assessed using non-
hierarchical k-means cluster analysis, in which the optimal
number of clusters identified through hierarchical cluster
analysis was pre-specified. Reproducibility of the classifica-
tions obtained with both hierarchical and non-hierarchical
clustering was assessed by determination of the kappa
value.

Ethics statement
The study was conducted in accordance with the Dec-
laration of Helsinki. Human stool samples were ob-
tained following acquisition of the study participants’
written informed consent and the study protocol was
reviewed and approved by local ethics committee of
Pitié-Salpêtrière Hospital, Paris (“Les Comités de pro-
tection des personnes”).

Statistical analysis
Spearman’s rank correlation was calculated using the
R project (http://www.R-project.org, Vienna, Austria).
P-values < 0.05 were considered statistically significant.

Results and discussion
K-mer distribution of complex microbiota is homogenous
irrespective of bacterial composition
Highly complex microbiota metagenomic raw sequence
data can be split in short sequences of length k bases,
which can be binned into a finite set of possible k-mer
sequences (4k combinations). K-mer analysis of single
bacterial genome data has previously revealed differ-
ences in k-mer distribution between bacterial species
[30]. In contrast, we hypothesize that k-mer distribution
of a large set of sequence data derived from a complex
mix of microorganisms follows a relatively uniform dis-
tribution. To validate this hypothesis we selected two
distinct stool samples representing two different entero-
types (Prevotella dominated for donor #1 and Bacter-
oides dominated for donor #2 - Figure 1A). We then
analysed the occurrence of each 4-mer by searching
through all raw sequence reads for the two metagen-
omes. Interestingly, the two selected metagenomes had
very similar 4-mer distributions despite their highly dif-
ferent bacterial compositions (Figure 1B). Of note, the
Shannon-Entropy for both samples was high (0.9932 and
0.9930 for donor #1 and #2, respectively) characteristic
of a uniform distribution of 4-mers (Figure 1B). In line
with our hypothesis, the Shannon-Entropy of the two se-
lected metagenomes was clearly higher than the one of
28 known genomes of bacterial species from a large
spectrum of phyla and classes (Additional file 1: Figure
S1A top panel and C). In other words, genomes from
individual bacterial species have a more heterogenous
4-mer distribution than complex metagenomes, even
when such metagenomes are derived from very different
gut microbiota compositions. This result was confirmed
by evaluating the average normalized Shannon-index of
the k-mer distribution for genomes derived from 28 bac-
terial strains compared to gut metagenomes derived from
21 low (<1010 bacteria) (cf. Additional file 1: Figure S1A
middle panel) and 31 high (>1010 bacteria) (cf. Additional
file 1: Figure S1A bottom panel) bacterial content human
stool samples (P = 0.001 and <0.0001, respectively, cf.
Additional file 1: Figure S1B). Similarly, we compared the
28 bacterial strains with 110 healthy individuals from the
study by Yatsunenko et al. (mean and 95% confidence
intervals for strains and metagenomes: 0.972 [0.963:0.980]
and 0.983 [0.981:0.984], respectively, P = 0.004) [5].
Of note, the Yatsunenko study employed Illumina sequen-
cing, showing that the methodology is platform-
independent.
Moreover, individual bacterial genomes aggregated

into 6 clusters defined by their k-mer distribution using
agglomerative hierarchical cluster analysis (Figure 1D).
The clusters were validated with a non-hierarchical K-
means cluster analysis. The agreement between the two
clustering techniques was good as defined by Cohen’s
kappa agreement value (κ = 0.48). Interestingly, the iden-
tified clusters are associated with the phylogeny of the
bacteria and can be used to evaluate taxonomic rela-
tions, as previously suggested [30]. Deductions from this
result suggest that 4-mer analysis of metagenomes of
complex bacterial mixtures can be decomposed into a
linear regression of k-mer distribution vectors of individ-
ual bacteria genomes and a residual, which would repre-
sent the component unexplained by known bacterial
genomes. In other words, this type of analysis could
identify novel bacterial species and potentially elucidate
their phylogenetic descent. This approach is beyond the
scope of the present study.

http://www.r-project.org/


Figure 1 4-mer distribution analysis for complex microbiota metagenomes compared to individual bacterial genomes. A, Bar diagram
of quantitative metagenomics of gut microbiota from two healthy volunteers, donor #1 (blue) and #2 (red), aggregated to express the frequency
of a selected number of taxonomic classes from the Bacteroidetes and Firmicutes phylums. B, Line graph showing the 4-mer distribution of
metagenomic sequences from gut microbiota of donor #1 and #2. A histogram depicting the 4-mer abundance distribution is plotted to the right
of the line graph. Distribution entropy is indicated (normalized Shannon Entropy). C, Scatter plot visualizes the 4-mer distribution entropy for 28
bacterial genomes and two gut microbiota metagenomes. D, The 28 bacterial genomes are divided into 6 objective clusters by non-supervised
agglomerative hierarchical cluster analysis of metagenomic 4-mer distributions based on Ward’s minimum variance method.
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Quantitative metagenomic analysis of serially diluted gut
microbiota identifies lowest analyzable sample size limit
Biased metagenomic sequence distribution can be a re-
sult of technical obstacles (DNA extraction and library
construction), contaminations and limiting amount of
sample material [9,31]. Whereas the former causes may
be improved or avoided the latter is most often unavoid-
able. Of note, the reliability of sequence distribution dir-
ectly affects the validity of quantitative metagenomic
data. Therefore, there is an urgent need for a method to
evaluate metagenomic quality. To investigate if k-mer
distribution analysis of complex metagenomes could
predict metagenomic quality of samples with limiting
material, we generated 10-fold serial dilutions of two
purified gut microbiota samples presented above (cf.
Figure 1 - donor #1 and #2). Each dilution underwent
genomic DNA extraction and metagenomic analysis
(Table 1). All dilutions of the same sample should
ideally have identical gene distribution with the more
concentrated sample being the most representative of
the underlying gut microbiota and thus of best quality.
We therefore mapped raw metagenomic sequences
onto a reference gene catalogue [4] for all analyzed
samples and correlated gene frequencies from four 10-
fold dilutions with gene frequencies from the most con-
centrated sample, serving as internal reference sample
(Figure 2A). For both samples (donor #1 and #2) this
analysis demonstrated strong correlations between all
serial dilutions and their reference sample with a clear
reduction in correlation for the highest dilution for
both samples, indicating the analytical sample size limita-
tion associated with our analytical protocol (Figure 2B).
As expected, correlation between two unrelated donors
(the highest concentration sample from donor #1 and #2 -



Figure 2 Quantitative metagenomics of serially diluted gut microbiota. A, Scatter plot of gene frequencies derived from quantitative
metagenomic profiles of undiluted gut microbiota on the x-axis versus colour coded 10-, 100-, 1000- and 10.000-fold diluted gut microbiota on
the y-axis (samples derived from donor #1 gut microbiota). B, Categorical line graph depicts spearman rank correlation coefficients between gene
frequencies from metagenomic analysis of undiluted gut microbiota versus gene frequencies of 10-, 100-, 1000- and 10.000-fold diluted gut
microbiota from donor #1 (blue) and donor #2 (red). C, Scatter plot of gene frequencies of undiluted samples from the two unrelated donors #1
(x-axis) and #2 (y-axis) are depicted, and their spearman rank correlation is indicated as a dotted line in B, Genes, present in the reference gene
catalogue, which are not detected in the samples are excluded from the analysis.
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spearman r = 0.22) was significantly lower than intra-
donor correlations (Figure 2B and C).

K-mer distribution analysis of metagenomic sequences
identifies the same lower sample size limit as quantitative
metagenomic analysis
Having established a metagenomic dataset including
metagenomes with a defined decline in quality we inves-
tigated if k-mer analysis of raw sequences of the same
dataset would be able to predict the lower sample size
limit as defined in the previous paragraph based on a
comparative gene mapping procedure. 4-mer analysis of
raw metagenomes corresponding to dilution series sam-
ples (1 to 10.000 fold dilutions) of gut microbiota from
donor #1 and #2 identified a biased 4-mer distribution
for 1.000- and 10.000-fold dilution samples from both
donor #1 and #2 (Figure 3A, left panel). Interestingly,
aberrant k-mers were not fully overlapping between
sample dilutions (Figure 3A, right panel), suggesting that
low quality is derived from both sample preparation and
system noise. Calculating the Shannon-Entropy for 4-
mer distributions from all metagenomes confirmed that
the two most dilute samples suffered from a particularly
biased raw sequence read composition (Figure 3B). To
identify aberrant 4-mers, we correlated the 4-mer fre-
quency observed for each dilution series metagenome with
the 4-mer frequency observed for the undiluted reference
sample of donor #1 and #2, respectively (Figure 3C). This
analysis revealed a distinct subset of 4-mers largely over-
represented in the diluted samples. A closer look at these



Figure 3 4-mer distribution analysis of raw metagenomic sequences of serially diluted gut microbiota. A, 4-mer abundance distribution
(left panel) and individual frequency (right panel) of metagenomic sequences from colour coded dilution series metagenomics of gut microbiota
from donor #1 (upper panel) and #2 (lower panel). B, Bar plot visualizes the normalized Shannon Entropy of 4-mer distribution for undiluted and
10-, 100-, 1000- and 10.000-fold diluted gut microbiota metagenomics from donor #1 (blue) and #2 (red). C, Scatter plots depict the correlation
between 4-mer distributions of metagenomic sequences from undiluted gut microbiota (y-axis) and 4-mer distributions of metagenomic sequences
from 10-, 100-, 1000- and 10.000-fold diluted gut microbiota (x-axis) for donor #1 (upper panel) and #2 (lower panel).
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4-mers uncovered a tight association with the unique
barcode-cassette sequence flanking the genome fragments
of the metagenomic shot-gun repertoire. These sequences
are derived from self-ligated shot-gun cassettes. Excessive
amounts of these sequences are a consequence of limited
genomic DNA and subsequent reduced ligation efficiency.
Indeed, when we removed all raw sequence reads match-
ing the barcode-cassette sequence of the respective meta-
genome repertoire, the 4-mer distributions of diluted
samples were less aberrant (Additional file 1: Figure S2A),
although the 10.000-fold diluted sample remained
quantitatively more biased (reduced Shannon-Entropy)
than the other dilutions for both donor #1 and #2
(Additional file 1: Figure S2B). Similarly, the correlation
analysis revealed that the 10.000-fold diluted sample
included k-mers largely overrepresented in the diluted
sample compared to the undiluted reference k-mer
distribution (Additional file 1: Figure S2C). Of note,
this bias is correlated with the skewed gene distribution
observed for the 10.000-fold dilution (Figure 2B).
These observations demonstrate that metagenomic
quality, as defined by the capacity to precisely and robustly
define gene distributions of microbiota, can be predicted
by a k-mer distribution analysis of metagenomic raw
sequences. It is however not clear if the skewed k-mer dis-
tribution observed for the highest sample dilutions (corre-
sponding to low quality metagenomes) is due to aberrant
bacterial gene sequences, as observed by correlative ana-
lysis of mapped reads (Figure 2), or due to concomitant
non-mappable sequences similar to but distinct from the
barcode-cassette sequences discussed above. We therefore
filtered raw metagenome sequences to only contain map-
pable sequences. 4-mer analysis revealed an almost equal
distribution of 4-mers for all dilution series metagenomes
(Additional file 1: Figure S3A) resulting in very similar
Shannon-Entropy for 4-mer distributions of all samples
(Additional file 1: Figure S3B). Equally, k-mer frequencies
correlated perfectly between dilution series samples from
the same donor (Additional file 1: Figure S3C). The pre-
dictive features of the k-mer analysis are therefore relying
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on a secondary but concomitant degradation of sequence
quality and distribution.

K-mer distribution predicts metagenomic sequence
mapping to a reference gene catalogue
Our data demonstrate that k-mer analysis is primarily
identifying the presence of aberrant sequences, such as
contaminations linked to poor metagenome library as-
sembly resulting from limited quantity of genomic DNA.
Because sequence contaminations are unlikely to map to
known bacterial genes, we speculated that skewed k-mer
distributions could predict the frequency of raw se-
quence reads mapping to the reference gene catalogue.
Of note, raw sequences in this context refer to entirely
unmanipulated NGS datasets. This approach was chosen
to render the methodology broadly applicable. Indeed,
we were able to show a clear positive association be-
tween 4-mer distribution quantified as Shannon-Entropy
and the frequency of mapped reads for dilution series
metagenomes of donor #1 and #2 (r = 0.88, P = 0.0009 -
Figure 4A). Of note, the three most concentrated dilu-
tion series samples for both donor #1 and #2 had very
similar 4-mer distributions and thus similar gene mapping
frequency, whereas the more diluted samples suffered a
pronounced drop in the uniformity of their 4-mer distri-
bution with an associated drop in gene mapping efficiency.
Applying this analytical approach to a set of 52 metagen-
omes of 28 human gut microbiota (some gut microbiota
were analyzed up to three times with different initial
sample size input) showed that our observation was
generally applicable, and that 4-mer analysis predicted
gene mapping efficiencies below approximately 20% (r =
Figure 4 4-mer distribution of microbiota metagenomes
correlates with gene mapping efficiency to a reference gene
catalogue. A, Line graphs depict the frequency of gene mapping to
a reference gene catalogue as a function of the normalized
Shannon Entropy of 4-mer distributions for undiluted and 10-, 100-,
1000- and 10.000-fold diluted gut microbiota metagenomics from
donor #1 (blue) and #2 (red). B, Scatter plot illustrates the association
between normalized Shannon Entropy of 4-mer distributions and
the frequency of gene mapping to a reference gene catalogue for
52 gut microbiota metagenomic profiles stratified according to small
(red dots, <1010 bacteria) and large (black dots, >1010 bacteria) sample
size. Spearman rank correlation statistics are indicated.
0.34, P = 0.0141 - Figure 4B). Of note, the rate of mapping
was based on unfiltered raw sequences and therefore
lower than previously reported [32]. We observed that low
mapping efficiency was strongly associated with limiting
sample material (less than 1010 bacteria per sample –
Figure 4B). Low (<1010 bacteria) and high (>1010 bacteria)
quantity samples differed significantly with regards to the
quantity of DNA available for the ligation step of metage-
nomic library construction (P = 0.0004; median values and
25%-75% ranges are 1.0 μg [1.0;1.0] and 0.7 μg [0.6;1.0], re-
spectively). The quantities were conform with what was
observed for the dilution series samples (cf. Table 1).
Above a mapping efficiency of 20% the normalized
Shannon Entropy reaches a plateau despite variation in
mapping efficiency. This is likely to be a consequence
of the relatively large inherent variation in gene distri-
butions between individuals, which is more or less
compatible with the known but still incomplete gene
reference catalog [4]. The constant increase in gene
coverage provided by reference catalogues should even-
tually remove variations of gene mapping between
samples.

Conclusion
The metagenomic protocol employed in the present
study enabled analysis of samples containing more than
108 bacteria (1000-fold dilution). This lower limit fits
most live habitat derived microbiota, whereas e.g. ana-
lysis of dental plaques from skeletons [8] or other low
density microbiota habitats, may be inherently biased in
gene and/or species distribution due to limiting sample
size. Our study suggests that for these studies it is im-
portant to validate the employed metagenomic protocol
(e.g. by analyzing a serial dilution of a known quantity of
commensals) as described here. Of note, the present
study monitors the gene distribution of microbiota. It is
likely that reducing the zoom from gene to a given
phylogenetic level would equilibrate a large amount of
the variance observed at the gene distribution level of
low quality metagenomic datasets.
Our study demonstrates that a k-mer distribution ana-

lysis of metagenomic raw sequence reads identifies
metagenomes of low quality and predicts low gene map-
ping efficiency. Low quality metagenomes were defined
as metagenomes for which the gene distribution was
considerably different from a reference sample. In the
present study this was modelled by concentrated versus
dilute samples of two stool samples. Metagenome quality
was lowered by a significant reduction of sample size. It
remains to be validated if the technology would also
apply to metagenomes suffering from e.g. technical
biases or contaminations.
We propose that k-mer analysis of raw metagenome

sequence reads should be implemented as a first quality
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assessment of raw NGS data prior to filtering and gene
mapping analysis. It would allow a qualified decision as
to whether 1) obtained metagenomic dataset should be
further analyzed (filtering, gene mapping etc.), 2) if more
sequence reads should be acquired to surpass a predeter-
mined threshold of mapped reads or 3) sample should
be discarded or reprocessed to improve metagenomic
quality. With the rising demand for metagenomic ana-
lysis of microbiota it is crucial to provide tools for rapid
and efficient decision making. This will eventually lead
to a faster turn-around time, higher quality analysis in-
cluding measurable quality metrics and a significant cost
reduction. Finally, increased quality would have a major
impact on the robustness of biological and clinical con-
clusions drawn from metagenomic studies.

Additional file

Additional file 1: Table S1. All bacterial genomes can be obtained
from NCBI (http://www.ncbi.nlm.nih.gov/taxonomy). Figure S1. 4-mer
distribution analysis of 26 bacterial genomes and 52 metagenomic
sequences of gut microbiota from low and high bacterial content
samples. Figure S2. 4-mer distribution analysis of barcode-cassette
filtered metagenomic sequences of serially diluted gut microbiota.
Figure S3. 4-mer distribution analysis of gene mapped metagenomic
sequences of serially diluted gut microbiota.
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