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Abstract

Background: Accurate identification of linear B-cell epitopes plays an important role in
peptide vaccine designs, immunodiagnosis, and antibody productions. Although several
prediction methods have been reported, unsatisfied accuracy has limited the broad
usages in linear B-cell epitope prediction. Therefore, developing a reliable model with
significant improvement on prediction accuracy is highly desirable.

Results: In this study, we developed a novel model for prediction of linear B-cell
epitopes, APCpred, which was derived from the combination of amino acid anchoring
pair composition (APC) and Support Vector Machine (SVM) methods. Systematic
comparisons with the existing prediction models demonstrated that APCpred method
significantly improved the prediction accuracy both in fivefold cross-validation of training
datasets and in independent blind datasets. In the fivefold cross-validation test with
Chen872 dataset at window size of 20, APCpred achieved AUC of 0.809 and accuracy of
72.94%, which was much more accurate than the existing models, e.g., Bayesb, Chen’s
AAP methods and the enhanced combination method of AAP with five AP scales. For
the fivefold cross-validation test with ABC16 dataset, APCpred achieved an improved
AUC of 0.794 and ACC of 73.00% at window size of 16, and attained an AUC of 0.748 and
ACC of 67.96% on Blind387 dataset after being trained with ABC16 dataset. Trained with
Lbtope_Confirm dataset, APCpred achieved an increased Acc of 55.09% on FBC934
dataset. Within sequence window sizes from 12 to 20, APCpred final model on
homology-reduced dataset achieved an optimal AUC of 0.748 and ACC of 68.43% in
fivefold cross-validation at the window size of 20.

Conclusion: APCpred model demonstrated a significant improvement in predicting
linear B-cell epitopes using the features of amino acid anchoring pair composition (APC).
Based on our study, a webserver has been developed for on-line prediction of
linear B-cell epitopes, which is a free access at: http:/ccb.bmi.ac.cn/APCpred/.

Keywords: Linear B-cell epitopes, Epitopes prediction, Amino acid anchoring pair
composition

Background
B-cell epitope is a part of an antigen recognized region that is bound to immunoglobu-

lin molecules to stimulate B-cell response [1]. Based on structural characteristics, B-

cell epitopes can be categorized into two types: linear (continuous) epitopes and

conformational (discontinuous) epitopes. Linear epitopes are made up of short con-

tiguous amino acids, whereas, conformational epitopes are composed of amino acids

that are not contiguous in primary sequence but are brought together by the folded
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protein structure [2]. Although it is believed that the majorities of B-cell epitopes are

discontinuous, detection of continuous epitopes still plays an important role in experi-

mental designs, immunodiagnostic tests, and vaccines production [3,4]. However, de-

velopment of a reliable computational method for predicting linear B-cell epitopes has

been a daunting task with little success.

Previously, several studies have been conducted focusing on the correlations between

physicochemical properties of certain amino acids and the linear B-cell epitopes within

protein sequences. As a result, some epitope prediction methods have been constructed

using physicochemical properties of amino acids, such as hydrophilicity [5], flexibility

[6], turns [7], and solvent accessibility propensity scales [8]. These prediction models

are simply based on the average of physicochemical values of amino acids at a window.

However, these prediction models demonstrated only marginally better results than

random selections [9]. Thus, new approaches should be developed to improve perform-

ance for prediction of linear B-cell epitopes.

Recently, some studies have attempted to improve the prediction accuracy using ma-

chine learning approaches. For example, the ABCpred [10] was developed using artifi-

cial neural network method. This model was constructed and evaluated using fivefold

cross-validation tests on a training dataset, which was composed of a non-redundant

dataset of 700 B-cell epitopes and 700 non-epitope peptides. Its input sequences ranged

from 10 to 20 amino acids on the experimental design, and the best performance was

achieved 65.93% prediction accuracy when ABCpred model was trained using recurrent

neural network with a peptide dataset of 16 amino acids in length (ABC16). Then this

model was further validated with a blind testing dataset (Blind387), and achieved

66.41% prediction accuracy.

Furthermore, Chen et al. [11] found that certain amino acid pairs (AAPs) tended to

occur more frequently in B-cell epitopes, thus, an AAP propensity scale was used in

combination with a support vector machine (SVM) to construct a prediction model,

which reached an optimal accuracy of 71.09% on a dataset Chen872 containing 872 B-

cell epitopes and 872 non-B-cell epitopes using fivefold cross-validation at window size

of 20. Moreover, they combined the AAP scale and five amino acid propensity (AP)

scales using the SVM classifier to improve the prediction accuracy, and the combin-

ation method achieved a better prediction accuracy of 72.54%. EL-Manzalawy et al.

[12] reported an implemented AAPBCPred method and developed a more superior

model (BCpred) over those previous methods by utilizing SVM string kernels, and

achieved the highest AUC (area under the receiver operating characteristic curve) of

0.758. In their results, BCpred and AAPBCPred models both achieved improved predic-

tion accuracies with fivefold cross-validation on ABC16 dataset, but attained lower

prediction accuracy than ABCpred model when tested on blind dataset test [12]. Wee

et al. [13] developed a SVM prediction model utilizing Bayes Feature Extraction – Bayesb.

This Bayesb model achieved accuracy of 68.50% and AUC of 0.74 on testing with Chen’s

dataset. Moreover, Singh et al. [14] recently reported an improved method called LBtope

for linear B-cell epitope prediction using large datasets derived from immune Epitope

Database. Testing performances of LBtope on some benchmark datasets still remained

unsatisfactory.

In this study, we present a novel method APCpred for linear B-cell epitope prediction,

which was derived from the combination of amino acid anchoring pair composition
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(APC) and Support Vector Machine (SVMs) methods using diverse lengths of peptides

(12 to 20-mers). The performances of this model were evaluated using different public

datasets.
Methods
Datasets

In order to develop prediction models, we collected six datasets (Table 1). The first

dataset BCI727 was derived from the Bcipep database containing 2479 linear B-cell epi-

topes [15]. Each sample was a 20-mer peptide. If the epitope length was less than 20

amino acids, then the length was increased at both terminals by introducing equal

number of residues derived from its original antigenic sequence [10]. If the epitope

length was longer than 20 amino acids, the extra amino acids were removed at both

terminals. In addition, we removed duplicated and highly homologous peptides by fil-

tering the dataset based on 80% sequence identity using the CD-HIT program [16].

Furthermore, we obtained a dataset of 727 peptides (positive instances of B-cell epi-

topes) as positive samples. A total of 727 non-epitope peptides were generated by ran-

domly extracting 20-mer peptide sequences from Swiss-Prot database while none of

these negative instances occurred in the positive instances. This dataset was applied as

the training dataset to develop our prediction model.

The second dataset, Chen872, was released by Chen [11], which contains 872 epi-

topes and 872 non-epitopes, and each of which was a 20-mer peptide. This dataset was

used to evaluate our APCpred method in comparison with the Bayesb, Chen’s AAP and

the combination method of AAP and AP in terms of fivefold cross-validation.

The third dataset, ABC16, was available from the model ABCpred, which contains

700 epitopes and 700 non-epitopes, and each of which was a 16-mer peptide [10]. This

dataset was used to evaluate ABCpred in comparison with BCpred, AAPBCpred and

ABCpred in terms of fivefold cross-validation [12]. In addition, ABC16 was also used

as training dataset for blind test in the next dataset Blind387 [10].

The fourth dataset, Blind387, was composed of 187 epitopes and 200 16-mer non-

epitope peptides [10]. This dataset was used as a blind dataset to compare our model

performance with the models BCpred, AAP BCpred and ABCpred.

The fifth dataset, Lbtope_Confirm, was derived from IEDB by Singh [14]. This data-

set contained variable lengths of 1042 unique B-cell epitopes and 1795 non-epitopes.

The sixth dataset, FBC934, was constructed by EL-Manzalawy [17]. The FBC934 con-

tains 934 B-cell epitopes and 934 non-epitopes with variable lengths.
Table 1 Six datasets for model construction and evaluation

Dataset PostiveNum* NegativeNum* Refereance

BCI727 727 727 Saha et.al. [10,15]

Chen872 872 872 Chen et.al. [11]

ABC16 700 700 Saha et.al. [10]

Blind387 187 200 Saha et.al. [10]

Lbtope_Confirm 1042 1795 Singh et.al. [14]

FBC934 934 934 EL-Manzalawy et.al. [17]

*PositiveNum and NegativeNum represent the number of positive samples and negative samples, respectively.
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Among the datasets above, BCI727, Chen872 and ABC16 were applied to construct pre-

diction models, which were evaluated by fivefold cross-validation. In addition, the dataset

Blind387 was used as an independent dataset to test the performance of the models built

from ABC16 dataset. Finally, both models APCpred and LBtope were developed using the

dataset Lbtope_Confirm, and their performances were compared using the dataset FBC934.

Feature extraction and machine learning method

To construct the prediction model of B-cell linear epitopes, amino acid anchoring pairs

of short sequences were employed to represent the epitopes and non-epitopes. Feature

selection was used to filter out the noise information on the sequence profile data. The

prediction model was built and evaluated by fivefold cross-validation. During the valid-

ation, feature selection was made as part of cross-validation by employing 4/5 part of

data to be feature-selected while leaving out 1/5 part of data as independent evaluation

data that was not included in the feature selection. In addition, the completed model

was built on the feature selection from a full training dataset by machine learning

method, and was tested with an independent dataset. The evaluating design was shown

in Figure 1. The performances of fivefold cross-validation were then compared among

different methods.
Figure 1 A schematic flowchart shows the feature selection and fivefold cross-validation test on
BCI727 dataset.
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Amino acid anchoring pair composition

For each sequence in a dataset, we extracted sequences of amino acid anchoring pair

composition (APC) by decomposing a protein or peptide sequences into 2-mer or n-

mer subsequences. We propose that the two terminal amino acids of subsequences are

the anchoring point pair that may anchor each other to form a relatively stable struc-

ture, and the pair composition can be used as the features of the peptide sequences.

For example, one sequence ‘QAGTSLS’ can be represented by the following features:

‘Q.{0}A’,‘A.{0}G’,’G.{0}T’…‘Q.{1}G’,’Q.{2}T’,…, ‘Q.{5}S’ . As shown in Figure 2, each feature

was weighted by the frequency divided by the maximum likelihoods as this: one feature

‘A.{i}A’ (A denotes one of 20 amino acids, i denotes the number of interval amino acids

and it is an integer) exits in one short sequence in number k and the window size of

short sequence is a integer l, then the quantity of ‘A.{i}A’ in short sequence is calculated

as k/(l – i - 1). For scanning all possible pairs, the number of interval amino acid pairs

ranges from 0 to I (I denotes the max number of I, it is an integer) by step 1. Finally,

there are 400*(I + 1) features describing each epitope sequence or non-epitope se-

quence. The setting of I is an important factor for prediction. To find the best I, we

tested I = 2, I = 3, I = 4 on BCI727 dataset at the window size of 20. The best parameter

would be used on APCpred.
Feature selection

Since there are many useless APC for discriminating epitopes from non-epitopes, we

employed Student’s t-test to remove these noise APC without affecting on the classifi-

cation of epitopes and non-epitopes. Cutoff p-value is an important factor to select fea-

tures for model building. Traditional levels such as 0.05 would be a good cutoff value.

However, in this study we first tried p < 0.05 to eliminate the non-discriminable
Figure 2 Amino acid anchoring pair composition extraction. For each sequence in a dataset, the
sequences of amino acid anchoring pair composition (APC) are extracted by decomposing a protein or
peptide sequences into 2-mer or n-mer subsequences. The two terminal amino acids of subsequences are
the anchoring point pair that may anchor each other to form a relatively stable structure, and the pair
composition can be used as the features of the peptide sequences.
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anchoring pair compositions, but the prediction accuracies of APCpred resulted in

poor AUCs. This might be due to the background noises of the dataset we used. Bursac

et al. [18] and Budtz-Jørgensen et al. [19] used p-value cut-off point of 0.25 and 0.2 re-

spectively in their studies and generated satisfied selection. Therefore, to find best p-

value cutoff value, in this study we tried p < 0.2, p < 0.4, p < 0.5, p <0.6 and p = < 1 on

the BCI727 at window size 20. The best parameter would be used on APCpred.

Support vector machines and kernel methods

We applied support vector machines (SVMs) to construct prediction models. SVMs are

a class of supervised machine learning methods used for classification and regression,

and have been widely used in algorithm and modeling study [20]. Given a set of labeled

training data (xi, yi), where xi ∈ Rd and yi ∈ {+1, −1}, training a SVM classifier involves

finding a hyper-plane that maximizes the geometric margin between positive and nega-

tive training data samples. In this study, every component of the input vector x was the

sequence anchoring pair occurring in the peptide.

When performing classification using the SVM classifier, because x is a combination

of different features of a peptide, RBF (Radial Basis Function) kernel was used. The

RBF is by far the most popular choice of kernel type used in SVM for its localization

property. It is defined as [21]:

K x; x0ð Þ ¼ exp −λ� x−x0k k2
� �

The λ is a control parameter reflecting the kernel width.

For the RBF kernel, we found that tuning the SVM cost parameter C and the RBF

kernel parameter γ were necessary and important to obtain satisfactory performances

of SVM. We tuned these parameters using a two-dimensional grid searching method

over the range C = 2^-12, 2^-10,…,2^2, γ = 2^-5, 2^-3,…2^9. It should be noted that the par-

ameter optimization was performed only using the training data in inner-loop. The Lin

Chih-Jen’s LIBSVM [22] was employed for both training and evaluation epitope predic-

tion models.

Fivefold cross-validation

In order to estimate parameters in unbiased manner in the feature extraction, a strati-

fied fivefold cross-validation tests were applied (Shown as in Figure 1). Specifically, the

sample dataset was randomly divided into five subsets, and each contained an equal

number of peptides so that the relative proportion of epitopes to non-epitopes was 1:1.

One fifth of the dataset was used as a testing dataset which was not used in the feature

selection, while the feature selection was done and the learner was trained with the

other four fifths dataset. This procedure was repeated five times, each time choosing

different subsets of the data for training and testing. The whole consideration of the

five testing sets was the final estimated performance of the training dataset.

Performance evaluation

The threshold-dependent and threshold-independent measures were used to evaluate the

performance of fivefold cross-validation on training and independent testing datasets. For

threshold-dependent measures, we used four types of commonly used parameters to
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evaluate the performances of prediction algorithms in the experiment, the prediction ac-

curacy (ACC), sensitivity (Sen), specificity (Spe), and Matthews correlation coefficient

(MCC). The MCC measure has a value in the range from −1 to +1, and the closer the value

to +1, the better the predictor is. ACC, Sen, Spe, and MCC are defined as follows:

ACC ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ

Sen ¼ TP= TPþ FNð Þ

Spe ¼ TN= TNþ FPð Þ

MCC ¼ TP � TN – FP � FNð Þ=sqrt TNþ FNð Þ TNþ FPð Þ TPþ FNð Þ TPþ FPð Þð Þ

TP, FP, TN, and FN are abbreviated for the number of true positive sample, false posi-
tive sample, true negative sample, and false negative sample, respectively.

Threshold-dependent measures are likely to increase the number of true positives of the

classifier at the expense of increasing in false positive, and they are often employed to

access the performances of machine learning methods. However, threshold-dependent

measures are difficult to access the overall performance of B-cell linear epitopes predic-

tion. Receiver operating characteristic (ROC) curves can define the performance of a clas-

sifier for a threshold-independent method over all possible thresholds. Area under curve

(AUC) measures discrimination ability of correctly classifying B-cell linear epitopes and

non-epitopes. Any classifier performing better than random will have an AUC value that

lies between 0.5 and 1.

Results
Identification of optimal parameters

AUC value was used to find the optimal combinations of parameters. For each combin-

ation of I (=2, 3, 4) and p (<0.2, 0.4, 0.5, 0.6, 1) on BCI727 dataset at window size 20,

AUC value was calculated by fivefold cross-validation. The epitope and non-epitope

sequence features were generated from the peptide sequence using APC at window size

of 20. Then, we removed the noise APC by feature selection using t-test. The dimen-

sional reduced APC were used for SVMs trainings and model evaluation. The results of

a serial AUC values were shown in Table 2. The results indicated that I = 3 setting had

greater AUC values than those I = 2 and I = 4 settings, and the differences were statisti-

cally significant (Wilcoxon test, p-values were 0.02895 and 0.03125 respectively). While

for I = 3, the results illustrated that the optimal p-value was at p < 0.5. Therefore, the

optimal parameters for APCpred model development were I = 3 and p < 0.5.
Table 2 AUC values for each combination of I (=2, 3, 4) and p (<0.2, 0.4, 0.5, 0.6, 1) on
BCI727 dataset at window size of 20

Parameters p < 0.2 p < 0.4 p < 0.5 p < 0.6 p = < 1

I = 2 0.703 0.723 0.747 0.734 0.745

I = 3 0.715 0.742 0.748* 0.738 0.746

I = 4 0.704 0.726 0.725 0.723 0.730

* The bold denotes the largest AUC value of the prediction.



Table 3 Performances of APCpred on BCI727 dataset at different window sizes using
fivefold cross-validation

Window Sizes Acc(%) Sen(%) Spe(%) MCC AUC

12 65.68 65.48 65.89 0.314 0.705

14 66.30 66.58 66.02 0.326 0.727

16 67.13 67.68 66.58 0.343 0.735

18 68.23 69.05 67.40 0.365 0.732

20 68.43* 69.74 67.13 0.369 0.748

* The bold denotes the largest accuracy (ACC) value of the prediction.
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Construction of prediction model for B-cell epitopes

We used the dataset BCI727 to evaluate the performances of APCpred. First, the epi-

tope and non-epitope sequence features were generated from the peptide sequence

using APC (I = 3). Then, the noise APC was removed by feature selection using t-test

(p < 0.5) on training dataset. The dimensional reduced APC were used for SVMs train-

ings and model evaluation. The performance of APCpred at different window lengths

(12, 14, 16, 18, 20) on the BCI727 dataset was shown in Table 3, which indicated that

the best performance was at the window size 20 with AUC = 0.748 and accuracy (Acc)

= 68.43%. ROC plot for different window sizes was shown in Figure 3.
Assessing APCpred model building method using different datasets

In Chen’s report [11], AAP propensity scale was used in combination with a support

vector machine (SVM) to construct a model which achieved optimal accuracy of

71.09% on Chen872 using fivefold cross-validation at window size 20. Further, they
Figure 3 ROC curves of APCpred on BCI727 dataset for different window-sizes using fivefold cross-validation.
The largest AUC is 0.748 at window size of 20.



Table 4 Performances of APCpred, Bayesb, AAP, and the combination method of AAP
and AP models on testing with Chen872 dataset using fivefold cross-validation

Methods ACC(%) Sen(%) Spe(%) MCC AUC

APCpred 72.94 69.95 75.92 0.460 0.809

Bayesb 68.50 70.00 67.00 - 0.74

AAP 71.09 60.87 75.36 0.366 -

AAP + AP 72.54 63.56 76.48 0.404 -

“-” denotes unknown information.
“AAP + AP” is Chen’s combination method of AAP and five APs.
The bold denotes the largest ACC value of the prediction.
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combined the AAP scale and five amino acid propensity (AP) scales using the SVM

classifier in order to improve the prediction accuracy and achieved Acc of 72.54%.

In Wee’s report [13], the method Bayesb only achieved an accuracy of 68.50% and

AUC of 0.74 on Chen’s dataset. In this study, we used fivefold cross-validation on the

Chen872 dataset to compare APCpred (I = 3 and p < 0.5) with Bayesb, Chen’s AAP and

the combination method of AAP and AP (Table 4). The result showed that APCpred

method achieved better performance with AUC = 0.809 and Acc = 72.94% comparing to

Bayesb (Acc = 68.50%) and Chen’s two methods (Acc = 71.09% and 72.54%).

We further evaluated the APCpred (I = 3 and p < 0.5) performance with ABC16 and

Blind387 datasets. In the previous study, BCpred and AAPBCpred had a comparison with

ABCpred [12]. BCpred and AAPBCpred were proven to outperform over ABCpred on

the fivefold cross-validation of ABC16, but both methods failed in improving the pre-

diction of the independent dataset Blind387. Using publicly available benchmark data-

sets, we were also able to compare APCpred with ABCpred, BCpred and AAPBCpred.

First, we tested fivefold cross-validation on ABCP16 dataset to compare APCpred with

ABCpred, BCpred and AAPBCpred, the result were summarized in Table 5. In terms of

overall accuracy, the performance of APCpred was more accurate than ABCpred, but

less accurate than BCpred and AAPBCpred on fivefold cross-validation of ABC16 data-

set. However, in terms of overall AUC values, AUC of APCpred was only less than

BCpred (ABCpred AUC was unknown). These results showed that APCpred also

improved the performance of fivefold cross-validation on ABC16 compared with

ABCpred.

The classifier built from ABC16 dataset was used to predict the liner B-cell epitopes

from an independent dataset for validation. The prediction accuracy was then used to

compare APCpred (I = 3 and p < 0.5) with other current prediction methods. The per-

formances of the four classifiers trained with ABC16 dataset, and then tested with the

independent dataset Blind387. The results were summarized in Table 6. In this case,
Table 5 Performances of APCpred, ABCpred, BCpred, and AAPBCPred on testing with
ABC16 dataset using fivefold cross-validation

Methods ACC(%) Sen(%) Spe(%) MCC AUC

APCpred 73.00 65.14 80.86 0.466 0.794

ABCpred 65.93 67.14 64.71 0.319 -

BCPred 74.57 70.14 79.0 0.493 0.801

AAPBCPred 73.14 50.17 95.57 0.518 0.782

“-” denotes unknown information.
The bold denotes the largest Acc value of the prediction.



Table 6 Comparison of Performances among APCpred, ABCpred, BCpred, and AAPBCPred
models

Methods ACC(%) Sen(%) Spe(%) MCC AUC

APCpred 67.96 56.15 79.00 0.362 0.748

ABCpred 66.41 71.66 61.50 *0.333 *0.736

BCpred 65.89 66.31 65.50 0.318 0.699

AAPBCPred 64.60 64.17 65.00 0.292 0.689

The four classifiers were trained using ABC16 dataset and evaluated using the third dataset of Blind287.
“*” denotes the information was obtained on online prediction of ABCpred with the third dataset though an automatic
program script.
The bold denotes the largest ACC value of the prediction.
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APCpred outperformed the other three methods, the improvement were 6/387 for

ABCpred, 8/387 for BCpred, and 13/387 for AAPBCpred. In summary, the performance

of APCpred model demonstrated more accurate results than ABCpred, BCpred and

AAPBCpred models in terms of prediction accuracy, AUC, and Mcc on the independent

test dataset.

Finally, we trained APCpred (I = 3 and p < 0.5) model on Lbtope_Confirm dataset

[14] to test the variable length linear B-cell epitopes on FBC934 dataset, the result was

summarized in Table 7. The APCpred accuracy is 55.09%, which is better than 52.66%

from the model LBtope. Therefore, APCpred also improved the prediction on this

dataset.
Discussion
B-cell linear epitopes are short sequences on the antigenic proteins, which contain struc-

ture characters to exposure themselves to antibodies, and easily bind to the antibodies,

even if they are disengaged from the source proteins. In order to have antigenic functions,

epitope sequences must be different from the random sequences generated from Swiss-

prot database. We believe that B-cell linear epitopes sequences must fold into a stable

structure to show the sequences’ information for being bound to antibodies. We propose

that the amino acid anchoring pairs play important roles in stabilizing folding of epitopes

structure by producing the force for folding in three-dimensional spaces. Thus, in this

paper, we studied the roles of amino acid pairs in prediction of B-cell linear epitopes. Since

it has been reported that 86.7% epitopes’ length was at most 20 amino acids in Bcipep

database [12], during dealing with the large variability in the length of the epitopes, we

chose to fix length of epitopes with lengths ranging from 12 to 20 peptides in the method

of El-Manzalawy [12] and Saha [10], instead of windows of five or seven amino acids at

the center of a linear epitope as Parker [5] and Karplus [6] did. The existing B-cell linear-

epitope finding methods are far less than optimal or may only find part of epitope

sequences, which may indicate that the prediction methods based on composition of
Table 7 Comparison of performances between APCpred and LBtope on FBC934 dataset

Methods Acc(%) Sen(%) Spe(%) Mcc

LBtope on FBC934 dataset (trained on Lbtope_Confirm dataset) 52.66 78.09 27.23 0.06

APCpred on FBC934 dataset (trained on Lbtope_Confirm dataset) 55.09 59.31 50.86 0.10

Both models were trained on Lbtope_Confirm dataset.
The bold denotes the largest Acc value of the prediction.
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amino acids properties might be better than the prediction methods based on amino acids

exact positions.

Based on the APC in window of amino acids and feature selection, we explored a novel

method, APCpred, for prediction of linear B-cell epitopes on primary amino acid se-

quences. We used BCI727 dataset to find the optimal parameters of APCpred (I = 3 and p

< 0.5) by fivefold-cross validation. Our experiments using five cross-validation on the

homology-reduced dataset of 727 non-epitopes, BCI727, showed that APCpred achieved

max AUC = 0.748 and ACC = 68.43%. It is interesting to find that the I = 3 (i = 0, 1, 2, 3) is

identical to α-helix in protein second structure of which every backbone N-H group

donates a hydrogen bond to the backbone C =O group of the amino acid four residues

earlier (i + 4 to i hydrogen bonding. Thus, the number of interval amino acid is 3) [23].

This kind of arrangements maintains a regular and stable protein structure.

Using the other five datasets, we compared APCpred with several exiting methods,

and the results demonstrated that the APCpred method improved the prediction of B-

cell linear epitopes both in fivefold cross-validation of training dataset and in blind test-

ing of validation datasets. In comparisons with Bayesb, Chen’s AAP and combination

method of AAP and AP, APCpred achieved the best prediction accuracy on fivefold

cross-validation. In another comparison, although BCpred and AAPBCpred achieved

higher accuracy than APCpred on fivefold cross-validation, both models showed less

impressive accuracies than APCpred in prediction of blind dataset. Based on the com-

parison of APCpred and LBtope, APCpred method was also shown to be better than

LBtope method. Therefore, we believe APC is a promising feature encoding method for

improving prediction of linear B-cell epitopes.

Accurate prediction of linear B-cell epitopes requires effective features encoding, fea-

tures selection and proper classifying methods. So far existing models remain subopti-

mal in these aspects. In this study, we tried to combine features encoding method

APC, feature selection (t-test) and SVM to improve the prediction of linear B-cell epi-

topes. Our results demonstrated that the sequences of amino acid anchoring pair can

capture the sequence feature pattern, and the classifying ability can be enhanced by fea-

ture selection. Using APC and the feature selection’s enhancement, APCpred model

showed improvements over the current models, which may provide a novel method in

predicting liner B-cell epitopes.

Based on our results in this study, we developed APCpred by Perl and PHP, and an

online web server for predicting linear B-cell epitopes. It is freely available at http://ccb.

bmi.ac.cn/APCpred/.
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