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Abstract

Background: Large data sets from gene expression array studies are publicly available offering information highly
valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced
bioinformatics tools have been made available to researchers, but a demand for user-friendly software
allowing researchers to quickly extract expression information for multiple genes from multiple studies persists.

Findings: Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of
genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors
(GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known
regulation of a beta 1 adrenergic receptor and further indicate novel research targets.

Conclusions: Although existing software allows for complex data analyses, the LabVIEW based program presented here,
“Array Data Extractor (ADE)”, provides users with a tool to retrieve meaningful information from multiple normalized
gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows
applying changes to the program without the need of advanced programming knowledge.

Keywords: Array Data Extractor, ADE, Gene expression array, Microarray data analysis, Meta-analysis, Combining of
multiple datasets, Statistics, Merge p-values
Background
High-throughput gene expression array technologies are
commonly used in biomedical research and provide huge
amounts of data. Today, there are close to one million
preprocessed datasets publicly available repositories like
the NCBI Gene Expression Omnibus [1], ArrayExpress [2]
or the Stanford Microarray Database [3]. This provides re-
searchers with the opportunity to detect novel treatment
targets for various diseases [4], discover and refine signal-
ing pathways, and to identify unknown interaction net-
works. Combining and comparing data from different
studies is a rewarding approach, but comparing data
across several studies is a challenging task. Various ap-
proaches have been published to normalize and refine
data to detect meaningful expression changes in genes/
networks and there are several software packages, e.g.
the open source software Bioconductor [5], allowing for
complex microarray analysis like pre-processing, quality
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assessment, differential expression, clustering and classifi-
cation, and gene set enrichment analysis. Other examples
of open source software are the TM4 Microarray Software
Suite [6] and GenePattern [7]. Whilst other software pack-
ages allow very advanced data processing, performing a
meta-analysis with data from multiple studies and plat-
forms is still difficult for a “bench” scientist, and there is a
lack of user-friendly software allowing researchers do so in
a fast and easy way. A remarkable online tool, INMEX [8],
has recently been published, providing user-friendly web-
based platform for meta-analysis, but other available tools
require substantial bioinformatics skills perform cross-
platform meta-analysis [8,9]. Here, we present a LabVIEW
program, Array Data Extractor (ADE), which allows users
to extract expression information for a list of genes from
multiple datasets, merge it into one output file, and per-
form basic statistics. Although e.g. INMEX can perform
much more advanced meta-analysis, ADE allows working
offline with large datasets, easy modification of the code
(see below), and to prioritize and exclude array spots
according to their specificity.
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LabVIEW is a graphical programming language, where
code is written by wiring together graphical modules.
While LabVIEW contains the same concepts found in
most traditional programming languages, such as differ-
ent data types, loops, variables, and object-oriented
programming, the visual representation allows for easy
access and modification of the code, in contrast to pro-
gramming languages where the code is written in text. It
must be noted that the user needs a licensed copy of the
basic LabVIEW software. The LabVIEW code can be
compiled into an executable file if wished. LabVIEW was
chosen as the programming platform, because (I) the
graphical programming interface allows users without
profound programming skills to edit the program, (II)
many processing subroutines (statistics, data sorting,
fitting) are built-in and can be applied to the program,
(III) it is platform independent, and (IV) LabVIEW is an
established software platform used for various research
purposes in many laboratories. Program structures can
be assigned to existing projects, which is why several
LabVIEW programs for various purposes have been
published [10-18].

Implementation
Data extraction
The user provides basic information needed to process
the data, organized as depicted in Figure 1. Sample files
and detailed formatting informations are included in the
supplementary files. First, a text file “Genes of interest.
txt” has to be generated where the user defines the genes
that he is interested in. Second, expression data has to
Figure 1 File organization. Files have to be organized as depicted. Folde
numbers are separated with a space from rest of the name. If data in a stu
folder name. The folder SubVIs contains LabVIEW VI files that are required f
be downloaded from e.g. the Gene Expression Omnibus
(GEO) database. The user has to generate “Annotation.
txt” files for each study containing information on how
the genes of interest are named on the respective gene
array (ID). GEO normally provides array annotations, or
they can be obtained from the array manufacturer and
copy-pasted into the Annotations.txt file. If wished,
other unique identifiers like the Entrez Gene ID can be
used instead, although in many cases the annotation files
of the manufacturers are kept up-to-date and using gene
names will make working with the output file easier.
The user also defines the groups in the study (e.g. con-
trol, disease 1, disease 2) in the “Data Description.txt”
file (see Additional file 1).
The program interface is depicted in Figure 2. Once

started, ADE will perform a series of tasks, which are
summarized in Figure 3. First, the software will extract
all data for the genes defined (or e.g. Entrez IDs) in
“Genes of interest.txt” from the “Data.txt” files. Extracted
data will be saved in a new folder called “Extracted Data”
for each study individually as “output.txt” files. Existing
“output.txt” files will not be overwritten, as in some
cases complete ADE runs are not needed, for instance
when only one new study is added.

Data refinement
Defined Groups will be clustered together correctly
(because in some data files they are not) and a ratio of
the means or medians (can be selected by the user on
the interface) from the defined groups to the control
group will be calculated. Because some studies provide
r names can be chosen differently, as long as they are numbered and
dy is non-logarithmic, user can include “NOLOG” in the respective data
or ADE function.



Figure 2 Program interface. While running, the program will indicate which genes were found in the dataset, which ones were not present in
the array annotation (Annotation.txt file), and which genes are present in the chip annotation but not in the dataset. Progress bars indicate
progress for data extraction, refinement, merging, and statistics. Statistics will only be performed when button is activated. In the settings tab on
the left, the user can choose between median and mean values to be used for spot selection and ratio calculations. Further, Stouffer’s Z-transform
method or Fisher’s method can be chosen to combine p-values from the studies. The user can also chose between automatic Log2 detection, or
manual definition. In the latter case “NOLOG” has to be assigned to the folder names of the studies not Log2 transformed.

Kurtenbach et al. BMC Research Notes 2013, 6:496 Page 3 of 7
http://www.biomedcentral.com/1756-0500/6/496
their data non-logarithmic, the user can add “NOLOG”
to the folder name of the respective study, which ADE
will recognize, or turn on the automatic Log2 detection
on the software interface. If automatic Log2 detection is
turned on, ADE will display which studies it finds to be
Log2 performed (please check if correct!).
In some gene expression arrays, multiple spots can be

present for the same gene and there are several ways to
deal with multiple probe sets [19]. ADE can automatic-
ally prioritize or exclude samples by their name on the
gene array: Affymetrix platforms usually provide infor-
mation about spot specificity in the spot ID name (e.g.
“_s_at”). By adding a list of extensions to the fourth col-
umn of the “Annotation.txt” file (see Additional file 1)
users can define which samples shall be included and in
which priority. If information about specificity is avail-
able but not included in the probes names (e.g. for
some Illumina arrays), the user can add this informa-
tion in the third row of the “Annotation.txt” file. If
there are multiple spots for one gene with highest pri-
ority (or if no priorities are defined), ADE will select
the spot with the highest mean/median value of the
control group by default. Refined data will be placed in
a “Refined Data” folder. ADE will not overwrite existing
files.

Data merging
ADE will merge the ratio values for each gene and study
into a single spreadsheet. Further, it will insert the correct
group names, the study number, and information about
the sample sizes (N). ADE will not overwrite an existing
file, but perform statistics on it if selected (see below).

Statistical analysis
If the “Make statistics?” button is activated, ADE will per-
form a statistical analysis of the data and provide a com-
bined p-value for a gene being up- or down-regulated in all
studies in the merged output file. As ADE will not over-
write existing files, it is possible to perform statistical ana-
lysis after an initial run, allowing the user to delete fractions
(genes, studies, columns) or sort the merged output file
before performing statistics (the first column, containing
the gene names/IDs, and the column labels at the bottom
of the file (for the remaining columns) must remain un-
changed). ADE will first calculate p-values for each gene in
the respective studies by performing a one-tailed Student’s
t-test. To merge p-values, we included Stouffer’s Z-
transform method [20] and Fischer’s method [21]. For
Stouffer’s Z-transform method, p-values are first tra-
nsformed to Z scores, with Zi =Φ− 1(p1),Φ(⋅) being the
standard normal cumulative distribution function (CDF).
Z-Scores receive signs according to the gene being up- or
down-regulated and summed to an overall Z-Score (Zs),
with Zs ¼ ∑N

i¼1Zi=
ffiffiffiffi

N
p

, N being the number of Z-scores.
Z-scores are not weighted in this approach. Zs is finally
transformed to a combined two-sided p-value (ps) with
ps = 2Φ (Zs). Fisher’s method uses χ22k ¼ −2∑k

i¼1 In pið Þ,
where χ22k is a chi-squared distribution with 2k degrees



Figure 3 Overview over ADE workflow.
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of freedom, k being the number of p-values. We found
Stouffer’s method to be more restrictive, but other statistical
approaches may also be considered [22-25].

Findings
Hundreds of G protein-coupled receptors (GPCRs) are
known to be expressed in the heart, some of which
linked to heart disease formation [26-28]. To demon-
strate ADE function, we downloaded a list containing
288 class A GPCRs from the International Union of
Basic and Clinical Pharmacology database website [29]
(www.iuphar-db.org) and expression data from 12 stud-
ies comparing normal and diseased human hearts
(GSE3586 [30], GSE3585 [30], GSE4172 [31], GSE36961,
GSE1869 [32], GSE32453, GSE29819 [33], GSE21610
[34], GSE9800, GSE5406 [35], GSE2656, GSE1145) from
the GEO database. Datasets contained data for various
disease groups. Downloading and organizing all files for
ADE will take ~15 min per study initially, but once pre-
pared files can be stored and reused for ADE runs. After
preparation, ADE took ~5 minutes to extract and refine
the data for all GPCRs on a standard desktop computer.
Groups with less than 5 samples and genes covered by less
then five studies were deleted manually from the merged
output. Further, genes where <75% of the studies agreed on
up-or down-regulation were excluded. P-values were calcu-
lated for the remaining 25 groups and 14 different heart dis-
ease conditions (for detailed information see Table 1). It may
be considered to separate/exclude certain disease groups, but
here we exemplarily performed statistics on the complete
data. Statistical analysis took ~10 minutes to process.
The analysis reported 43 class A GPCRs as differen-

tially expressed in diseased human hearts with a p-value
< 0.001 (Table 1), according to Stouffer’s Z-transform
method. The confirmation of published experimental
data demonstrates the functionality of the ADE software.

http://www.iuphar-db.org


Table 1 Class A GPCRs significantly regulated in human heart disease

Gene p-value +/− Gene p-value +/− Gene p-value +/−

P2RY13 0.00E + 00 + NPBWR1 7.37E-08 - GPR78 3.46E-05 -

P2RY14 0.00E + 00 + PTGER2 7.82E-08 - HCRTR2 5.29E-05 +

S1PR3 9.04E-52 - P2RY12 7.98E-08 + S1PR2 6.57E-05 -

GPR4 2.80E-31 - GPR3 9.09E-08 - OPN3 7.01E-05 -

P2RY2 3.08E-30 - CMKLR1 1.07E-07 + F2RL1 1.07E-04 -

ADRB1 7.41E-21 - LPAR3 1.50E-07 - HTR7 1.37E-04 -

MRGPRF 5.41E-19 - P2RY11 1.68E-07 - S1PR4 1.50E-04 -

C5AR1 3.34E-14 - TAAR1 1.21E-06 - GPR171 1.93E-04 +

PTGER3 3.91E-13 - GPR84 1.25E-06 - MRGPRX2 2.40E-04 -

GPR34 1.94E-12 + GALR2 1.64E-06 - GPR37L1 4.36E-04 -

CXCR4 1.77E-11 + GPR161 2.88E-06 - HRH2 4.47E-04 -

DARC 3.48E-10 - RXFP3 3.60E-06 - CCR2 7.51E-04 -

LTB4R 2.98E-09 - TSHR 5.54E-06 - BDKRB1 7.96E-04 -

FPR2 6.92E-09 - ADRA1B 7.49E-06 -

HTR2B 3.19E-08 + P2RY6 8.14E-06 -

47 of 288 class A GPCRs are differentially expressed in heart disease (p < 0.001). List of receptors was derived from the website of the International Union of Basic
and Clinical Pharmacology (www.iuphar-db.org). Data was combined from 12 studies, containing 25 groups and 14 different cardiomyopathies: human
arrhythmogenic right ventricular cardiomyopathy (ARVC, 1 group, 12 samples, 12 controls), dilated cardiomyopathy (DCM, 13 groups, 241 samples, 127 controls),
doxorubicin induced cardiomyopathy (DOX, 1 group, 7 samples, 8 controls), fetal cardiomyopathy (FCM, 1 group, 5 samples, 5 controls), valvular cardiomyopathy
(VCM, 1 group, 7 samples, 11 controls), hypertrophic cardiomyopathy (HCM, 3 groups, 119 samples, 55 controls), and ischemic cardiomyopathy (ICM, 5 groups,
166 samples, 52 controls). p-value represents combined p-values using Stouffer’s Z-transform method. +/− indicates up- or down-regulation reported by > 75% of
the studies.
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For example, we found a highly significant down-
regulation of the beta 1 adrenergic receptor (ADRB1) in
19/21 groups, which is well known for its crucial role in
heart function and down-regulation in heart failure
[36-38]. Other interesting candidates for in depth ana-
lysis were predicted, like P2Y receptor subunits, a recep-
tor class expressed in various heart cells and regulating
cardiovascular function in health and disease [39-46].
We also found a high significance for sphingosine-1-
phospate receptor 3 (S1PR3) being down-regulated in
14/14 groups. Other S1PRs were differentially expressed
with lower significances. S1PRs have multiple functions
in the cardiovascular system including modulation of the
heart rate, cardioprotection and vascular contraction
[47-54]. A third interesting candidate among the ten most
significantly regulated class A GPCRs is the prostaglandin
E receptor 3 (PTGER3) in 21/22 groups. Activation of
PTGER3 was shown to protect cardiomyocytes from oxi-
dative stress [55] and reduce ischemia-induced arrhyth-
mias and infarct size [56]. Overexpression was shown to
promote hypertrophy [57] and changes in EP3 receptor
density were reported after occlusion of the left anterior
descending coronary artery [58]. These results exemplify
how ADE can be utilized to quickly compare expression
data as a starting point for further research. In summary,
our analysis of diverse datasets from different heart disease
groups strongly suggests that a substantial amount of class
A GPCRs are significantly regulated.
Conclusions
We introduce an easy-to-use software tool to extract
and analyze normalized expression data. This program
provides researchers with a tool to analyze gene array
data utilizing publicly available normalized expression
data. Beyond this scope, far more sophisticated tools
(cited above) may be used for more detailed analysis.

Troubleshooting

– Be sure to use “.” as decimal separators.
– Avoid duplicate gene names in “Genes of Interest. txt”.
– If ADE reports that it can’t open a file, be sure the

format of files is correct (.txt), and/or use sample
files provided to test.

– Moving Data folders between Mac and Windows
systems may cause problems. Be sure to:

○ Delete the complete “Refined Data” and
“Extracted Data” folders.

○ Check the Data Folder names, special characters
may cause problems.
Availability and requirements
Project name: Array Data Extractor (ADE)
Project home page: Software and sample data is in-
cluded in the supplement. Webpage will be designed
upon publication.
Operating systems: Mac OS X, Windows, and Linux

http://www.iuphar-db.org
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Programming language: LabVIEW (National Instruments)
Other requirements: LabVIEW (National Instruments)
License: GNU

Additional file

Additional file 1: Contains a text file describing how the files have
to be formatted, aswell as the program and sample files. Sample
files include three data files downloaded from the GEO database [30,31].
With these files ADE can be directly tested without further modification.
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