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Abstract

In this article, we establish some common fixed and common coincidence point
theorems for expansive type mappings in the setting of cone metric spaces. Our
results extend some known results in metric spaces to cone metric spaces. Also, we
introduce some examples the support the validity of our results.
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1. Introduction
Huang and Zhang [1] introduced the notion of cone metric spaces as a generalization

of metric spaces. They replacing the set of real numbers by an ordered Banach space.

Huang and Zhang [1] presented the notion of convergence of sequences in cone metric

spaces and proved some fixed point theorems. Then after, many authors established

many fixed point theorems in cone metric spaces. For some fixed point theorems in

cone metric spaces we refer the reader to [2-30].

In the present article, E stands for a real Banach space.

Definition 1.1. Let P be a subset of E with Int(P) �=� 0. Then P is called a cone if the

following conditions are satisfied:

(1) P is closed and P ≠ {θ}.

(2) a, b Î R+, x, y Î P implies ax + by Î P.

(3) x Î P ∩ -P implies x = θ.

For a cone P, define a partial ordering ≼ with respect to P by x ≼ y if and only if y -

x Î P. We shall write x ≺ y to indicate that x ≼ y but x ≠ y, while x ≪ y will stand for

y - x Î Int P. It can be easily shown that lInt(P) ⊆ Int(P) for all positive scalar l.
Definition 1.2. [1]Let X be a nonempty set. Suppose the mapping d : X × X ® E

satisfies

(1) θ ≺ d(x, y) for all x, y Î X and d(x, y) = θ if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y Î X.

(3) d(x, y) ≼ d(x, z) + d(y, z) for all x, y Î X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
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Definition 1.3. [1]Let (X, d) be a cone metric space. Let (xn) be a sequence in X and

x Î X. If for every c Î E with θ ≪ c, there is an N Î N such that d(xn, x) ≪ c for all n

≥ N, then (xn) is said to be convergent and (xn) converges to x and x is the limit of (xn).

We denote this by limn®+∞ xn = x or xn ® x as n ® +∞. If for every c Î E with θ ≪ c

there is an N Î N such that d(xn,xm) ≪ c for all n,m ≥ N, then (xn) is called a Cauchy

sequence in X. The space (X,d) is called a complete cone metric space if every Cauchy

sequence is convergent.

The cone P in a real Banach space E is called normal if there is a number l > 0 such

that for all x,y Î E,

θ � x � y implies ‖x‖ ≤ λ
∥∥y∥∥ .

Iiker Ṣahin and Mustafa Telci [30] studied a theorem on common fixed points of

expansive type mappings in cone metric spaces.

Definition 1.4. [30]Let E and F be real Banach spaces and P and Q be cones in E

and F, respectively. Let (X, d) and (Y, r) be cone metric spaces, where d : X × X ® E

and r : Y × Y ® F. A function f : X ® Y is said to be continuous at x0 Î X, if for every

c Î F with 0 ≪ c, there exists b Î E with 0 ≪ b such that r(fx, fx0) ≪ c whenever x Î
X and d(x, x0) ≪ b.

Lemma 1.1. [30]Let (X, d) and (Y, r) be cone metric spaces. A function f : X ® Y is

continuous at a point x0 Î X if and only if whenever a sequence (xn) in X converges to

x0, the sequence (fxn) converges to fx0.

Theorem 1.1. [30]Let (X, d) be a complete cone metric space and P be a cone. Let f

and g be surjective self-mappings of X satisfying the following inequalities

d(g fx, fx) � ad
(
fx, x

)
,

d
(
f gx, gx

)
� bd

(
gx, x

)

for all x Î X, where a,b > 1. If either f or g is continuous, then f and g have a com-

mon fixed point.

The aim of this article is to study new theorems of common fixed and coincidence

point for expansive mappings in cone metric spaces under a set of conditions. Our

results generalize several well known comparable results in the literature. Also, we

introduced some examples to support the validity of our results.

2. Main results
We start with the following theorem

Theorem 2.1. Let (X, d) be a cone metric space with a solid cone P. Let T, f : X ® X

be mappings satisfying:

d
(
Tx,Ty

)
� ad

(
fx, fy

)
+ bd(fx,Tx) + cd(fy,Ty) (1)

for all x, y Î X where a,b,c ≥ 0 with a + b +c > 1. Suppose the following hypotheses:

(1) b < 1 or c < 1.

(2) fX ⊆ TX.

(3) TX is a complete subspace of X.

Then T and f have a coincidence point.
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Proof. Let x0 Î X. Since fX ⊆ TX, we choose x1 Î X such that Tx1 = fx0. Again, we

can choose x2 Î X such that Tx2 = fx1. Continuing in the same way, we construct a

sequence (xn) in X such that Txn+1 = fxn for all n Î N ∪ {0}.

If fxm-1 = fxm for some m Î N, then Txm = fxm. Thus xm is a coincidence point of T

and f.

Now, assume that xn-1 ≠ xn for all n Î N.

Case (1): Suppose b < 1.

By (1), we have

d
(
f xn−1, f xn

)
= d (Txn,Txn+1)

� ad
(
f xn, f xn+1

)
+ bd(f xn,Txn) + cd(f xn+1,Txn+1)

= ad
(
f xn, f xn+1

)
+ bd(f xn, f xn−1) + cd

(
f xn+1, f xn

)
.

Thus, we have

(1 − b)d
(
f xn−1, f xn

)
� (a + c)d

(
f xn+1, f xn

)
.

Hence

d
(
f xn+1, f xn

)
� 1 − b

a + c
d
(
f xn−1, f xn

)
. (2)

Case (2): Suppose c < 1.

By (1), we have

d(f xn, f xn−1) = d (Txn+1,Txn)

� ad(f xn+1, f xn) + bd(f xn+1,Txn+1) + cd(f xn,Txn)

= ad
(
f xn, f xn+1

)
+ bd(f xn+1, f xn) + cd(f xn, f xn−1).

Thus, we have

(1 − c) d(f xn−1, f xn) � (a + b)d
(
f xn+1, f xn

)
.

Hence

d
(
f xn+1, f xn

)
� 1 − c

a + b
d
(
f xn−1, f xn

)
. (3)

In Case (1), we let

λ =
1 − b
a + c

and in Case (2), we let

λ =
1 − c

a + b
.

Thus in both cases, we have l < 1 and

d
(
f xn+1, f xn

)
� λd(f xn−1, f xn). (4)
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By (4), we have

d(f xn+1, f xn) � λd(f xn−1, f xn)

� λ2d(f xn−2, f xn−1)

...

� λnd(f x0, f x1).

So for m >n, we have

d(f xn, f xm) � d(f xn, f xn+1) + d(f xn+1, f xn+2) + · · · + d(f xm−1, f xm)

� (λn + λn+1 + · · · + λm−1)d(f x0, f x1)

� λn
+∑
i=0

∞λid(f x0, f x1)

=
λn

1 − λ
d(f x0, f x1).

Let θ ≪ c be given, choose δ > 0 such that c + Nδ(0) ⊆ P, where

Nδ(0) = {y ∈ E :
∥∥y∥∥ < δ}.

Also, choose a natural number N1 such that

λn

1 − λ
d(f x0, f x1) ∈ Nδ(0),

for m ≥ N1. Then

λn

1 − λ
d(f x0, f x1) � c,

for all m ≥ N1. Thus,

d(f xn, f xm) �
λn

1 − λ
d(f x0, f x1) � c,

for all m > n. Therefore (Txn) is a cauchy sequence in (TX, d). Since (TX, d) is a

complete cone metric space, there is u Î X such that (Txn) converges to Tu as n ®
+∞. Hence fxn converges to Tu as n ® +∞. Since a + b + c > 1, we have a, b and c

are not all 0. So we have the following cases.

Case 1: If a ≠ 0, then

d(Txn,Tu) � ad(f xn, fu) + bd(f xn,Txn) + cd(fu,Tu) � ad(f xn, fu).

Hence

d(f xn, fu) �
1
a
d(Txn,Tu).

Let θ ≪ c be given, choose δ > 0 such that c + Nδ(0) ⊆ P, where

Nδ(0) = {y ∈ E :
∥∥y∥∥ < δ}.
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Since 1
a d(Txn,Tu) → θ. We choose a natural number n0 Î N such that

1
a
d(Txn,Tu) ∈ Nδ(0),

for n ≥ n0. Then

1
a
d(Txn,Tu) � c,

for all n ≥ n0. Thus,

d(f xn, fu) �
1
a
d(Txn,Tu) � c,

for all n ≥ n0. Thus fxn ® fu as n ® +∞. By uniqueness of limit, we have Tu = fu.

Therefore T and f have a coincidence point.

Case 2: If b ≠ 0, then

d(Tu,Txn) � ad(f xn, fu) + bd(fu,Tu) + cd(f xn,Txn) � bd(fu,Tu).

Hence

d(fu,Tu) � 1
b
d(Txn,Tu).

As similar proof of Case (1), we can show that fu = Tu. Thus f and T have a coinci-

dence point.

Case 3: If c ≠ 0, then

d(Txn,Tu) � ad(f xn, fu) + bd(f xn,Txn) + cd(Tu, fu) � cd(fu,Tu).

Hence

d(fu,Tu) � 1
c
d(Txn,Tu).

As similar proof of Case (1), we can show that fu = Tu. Thus f and T have a coinci-

dence point.

Corollary 2.1. Let (X,d) be a cone metric space with a solid cone P. Let T, f : X ® X

be mappings satisfying:

d(Tx,Ty) � ad(fx, fy) + bd(fx,Tx)

for all x, y Î X where a, b ≥ 0 with a + b > 1 and b < 1. Suppose the following

hypotheses:

(1) fX ⊆ TX.

(2) TX is a complete subspace of X.

Then T and f have a coincidence point.

Corollary 2.2. Let (X, d) be a complete cone metric space with a solid cone P. Let T, f

:X ® X be mappings satisfying:

d(Tx,Ty) � ad(fx, fy)
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for all x, y Î X where a > 1. Suppose the following hypotheses:

(1) fX ⊆ TX.

(2) TX is a complete subspace of X.

Then T and f have a coincidence point.

Corollary 2.3. Let (X, d) be a complete cone metric space with a solid cone P. Let T :

X ® X be a surjective mapping satisfying:

d(Tx,Ty) � ad(x, y) + bd(x,Tx) + cd(y,Ty)

for all x, y Î X where a,b,c ≥ 0 with a + b + c > 1. Suppose b < 1 or c < 1. Then T

has a fixed point.

Proof. Follows from Theorem 2.1 by taking f = I, the identity map.

Corollary 2.4. Let (X, d) be a complete cone metric space with a solid cone P. Let T :

X ® X be a surjective mapping satisfying:

d(Tx,Ty) � ad(x, y)

for all x, y Î X where with a > 1. Then T has a fixed point.

Putting E = R, P = {x Î R : x ≥ 0} and d : X × X ® R in Corollaries 2.1 and 2.2, we

have the following results:

Corollary 2.5. Let (X, d) be a complete metric space. Let T : X ® X be a surjective

mapping satisfying:

d(Tx,Ty) ≥ ad(x, y) + bd(x,Tx)

for all x, y Î X where a, b ≥ 0 with a + b > 1 and b < 1. Then T has a fixed point.

Corollary 2.6. Let (X, d) be a complete metric space. Let T : X ® X be a surjective

mapping satisfying:

d(Tx,Ty) ≥ ad(x, y) + bd(y,Ty)

for all x, y Î X where a, b ≥ 0 with a + b > 1 and b < 1. Then T has a fixed point.

Now, we present a fixed point theorem for two maps.

Theorem 2.2. Let T, S : X ® X be two surjective mappings of a complete cone metric

space (X, d) with a solid cone P. Suppose that T and S satisfying the following inequal-

ities

d(T(Sx), Sx) + kd(T(Sx), x) � ad(Sx, x) (5)

and

d(S(Tx),Tx) + kd(S(Tx), x) � bd(Tx, x) (6)

for all x Î X and some nonnegative real numbers a, b and k with a > 1 + 2k and b

>1 + 2k. If T or S is continuous, then T and S have a common fixed point

Proof. Let x0 be an arbitrary point in X. Since T is surjective, there exists x1 Î X

such that x0 = Tx1. Also, since S is surjective, there exists x2 Î X such that x2 = Sx1.

Continuing this process, we construct a sequence (xn) in X such that x2n = Tx2n+1 and

x2n+1 = Sx2n+2 for all n Î N ∪ {0}. Now, for n Î N ∪ {0}, we have

d(T(Sx2n+2), Sx2n+2) + kd(T(Sx2n+2), x2n+2) � ad(Sx2n+2, x2n+2).
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Thus, we have

d(x2n, x2n+1) + kd(x2n, x2n+2) � ad(x2n+1, x2n+2),

which implies that

d(x2n, x2n+1) + kd(x2n, x2n+1) + kd(x2n+1, x2n+2) � ad(x2n+1, x2n+2).

Hence

d(x2n+1, x2n+2) �
1 + k
a − k

d(x2n, x2n+1) (7)

On other hand, we have

d(S(Tx2n+1),Tx2n+1) + kd(S(Tx2n+1), x2n+1) � bd(Tx2n+1, x2n+1).

Thus, we have

d(x2n−1, x2n) + kd(x2n−1, x2n+1) � bd(x2n,x2n+1).

Since d(x2n-1,x2n) + d(x2n, x2n+1) ≽ d(x2n-1,x2n+1), we have

d(x2n−1, x2n) + kd(x2n−1, x2n) + kd(x2n, x2n+1) � bd(x2n, x2n+1).

Hence

d(x2n, x2n+1) �
1 + k
b − k

d(x2n−1, x2n) (8)

Let

λ = max
{
1 + k
a − k

,
1 + k
b − k

}
.

Then by combining (7) and (8), we have

d(xn, xn+1) ≤ λd(xn−1, xn) ∀n ∈ N ∪ {0}. (9)

Repeating (9) n-times, we get

d(xn, xn+1) � λnd(x0, x1).

Thus, for m >n, we have

d(xn, xm) � d(xn, xn+1) · · · + d(xm−1, xm)

� (λn + · · · + λm−1)d(x0, x1)

� λn

1 − λ
d(x0, x1).

As similar arguments to proof of Theorem 2.1, we can show that (xn) is a Cauchy

sequence in the complete cone metric space (X, d). Then there exists v Î X such that

xn ® v as n ® +∞. Therefore x2n+1 ® v and x2n+2 ® v as n ® +∞. Without loss of

generality, we may assume that T is continuous, then Tx2n+1 ® Tv as n ® +∞. But

Tx2n+1 = x2n ® v as n ® +∞. Thus, we have Tv = v. Since S is surjective, there exists

w Î X such that Sw = v. Now,

d(T(Sw), Sw) + kd(T(Sw),w) � ad(Sw,w),
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implies that kd(v,w) ≽ ad(v,w). Thus

d(v,w) � k
a
d(v,w).

Since a > k, we conclude that d(v, w) = θ. So v = w. Hence Tv = Sv = v. Therefore v

is a common fixed point of T and S.

By taking b = a in Theorem 2.2, we have the following result.

Corollary 2.7. Let T, S : X ® X be two surjective mappings of a complete cone metric

space (X, d) with a solid cone P. Suppose that T and S satisfying the following inequal-

ities

d(T(Sx), Sx) + kd(T(Sx), x) � ad(Sx, x) (10)

and

d(S(Tx),Tx) + kd(S(Tx), x) � ad(Tx, x) (11)

for all x Î X and some nonnegative real numbers a and k with a > 1 + 2k. If T or S

is continuous, then T and f have a common fixed point

By taking S = T in Corollary 2.7, we have the following corollary.

Corollary 2.8. Let T : X ® X be a surjective mapping of a complete cone metric

space (X, d) with a solid cone P. Suppose that T satisfying

d(T(Tx),Tx) + kd(T(Tx), x) � ad(Tx, x) (12)

for all x Î X and some nonnegative real number a and k with a > 1 + 2k. If T is con-

tinuous, then T has a fixed point.

Now, we present some examples to illustrate the useability of our results.

Example 2.1. (The case of normal cone) Let X = [0,+∞), E = R2. Let P = {(a, b) :a ≥

0,b ≥ 0} be the cone with d(x, y) = (|x - y|, |x - y|). Then (X, d) is a complete cone

metric space. Define T : X ® X by Tx = 2x. Then T has a fixed point.

Proof. Note that

d(T(Tx),Tx) + d(T(Tx), x) ≥ 4d(Tx, x)

for all x Î X. Thus T satisfies all the hypotheses of Corollary 2.8 and hence T has a

fixed point. Here 0 is the fixed point of T.

Example 2.2. (The case of non-normal cone) Let X = [0, 1], E = C1
R([0, 1]). Let P =

{j Î E: j(t) ≥ 0, t Î [0, 1]}. Define the mapping d : X × X ® E by

d(x, y)(t) :=
∣∣x − y

∣∣ φ(t),
where j Î P is a fixed function, for example j(t) = et. Define T, f : X ® X by

fx = 1
16xand fx = 1

16x. Then T and f have a coincidence point.

Proof. Note that

d(Tx,Ty)(t) =

∣∣∣∣14x − 1
4
y

∣∣∣∣ et

= 4

∣∣∣∣ 1
16

x − 1
16

y

∣∣∣∣ et
= 4d(fx, fy)(t)
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for all x, y Î X and t Î [0, 1]. Thus T and f satisfy all the hypotheses of Corollary 2.2

and hence T and f have a coincidence point. Here 0 is the coincidence point of T and

f.

Remarks:

(1) Theorem 4.1 of [29] is a special case of Theorem 2.2.

(2) Corollary 4.1 of [29] is a special case of Corollary 2.8.

(3) Theorem 4 of [31] is a special case of Corollary 2.8.
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