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Abstract

Background: Competing risks are a common occurrence in survival analysis. They arise when a patient is at risk of
more than one mutually exclusive event, such as death from different causes, and the occurrence of one of these
may prevent any other event from ever happening.

Methods: There are two main approaches to modelling competing risks: the first is to model the cause-specific
hazards and transform these to the cumulative incidence function; the second is to model directly on a
transformation of the cumulative incidence function. We focus on the first approach in this paper. This paper
advocates the use of the flexible parametric survival model in this competing risk framework.

Results: An illustrative example on the survival of breast cancer patients has shown that the flexible parametric
proportional hazards model has almost perfect agreement with the Cox proportional hazards model. However, the
large epidemiological data set used here shows clear evidence of non-proportional hazards. The flexible parametric
model is able to adequately account for these through the incorporation of time-dependent effects.

Conclusion: A key advantage of using this approach is that smooth estimates of both the cause-specific hazard
rates and the cumulative incidence functions can be obtained. It is also relatively easy to incorporate
time-dependent effects which are commonly seen in epidemiological studies.
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Background
In epidemiological studies two main measures of interest
are the risk of an event occurring (probability) and the rate
at which it occurs (hazard) [1]. Patients will often be at
risk from more than one mutually exclusive event and the
occurrence of one of these may alter or prevent the prob-
ability of any other event occurring [2]. In this paper we
focus on situations where the events are deaths from dif-
ferent causes and so it follows that any event will prevent
the others from occurring. In this competing risks sce-
nario, the cause-specific hazard will give the cause-specific
mortality rate and the cumulative incidence function will
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give the proportion of patients at any one time that have
died from a particular cause [3].
There are two main approaches to modelling competing

risks [4]. The first is to model the cause-specific hazards
and transform these to obtain the cumulative incidence
function. The second is to model the cumulative incidence
function directly [5]. We advocate the first approach as
both the cause-specific hazards and the cumulative inci-
dence function can provide a better understanding of risk
factors and their effect on the population as a whole [1].
Cause--specific hazards can inform us about the impact of
risk factors on rates of disease or mortality, while the cu-
mulative incidence functions provide an absolute measure
with which to base prognosis and clinical decisions on [6].
Competing risks analyses are being increasingly carried

out in epidemiological studies. However, the metho-
dology applied varies and is not always optimal. Often,
separate analyses will be carried out for each competing
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event and only the cause-specific hazard ratios will be
reported for each [7-9]. This method is not wrong if the
researchers are only interested in the rate of disease or
mortality. However, without estimating an absolute
measure such as the cumulative incidence function, it is
difficult to communicate these results in terms of the
impact that risk factors have at a population level. In
comparison, other researchers choose to model on the
cumulative incidence scale using the Fine and Gray
method and, therefore, provide no information on the
cause-specific hazards [10,11].
In many research papers, the model used to estimate

the cause-specific hazards will be different from the
model used to estimate the cumulative incidence func-
tions. For example, the cause-specific hazard ratios are
reported from a Cox proportional hazards regression
model but the cumulative incidence functions are esti-
mated non-parametrically and separately for different
subgroups of patient [12-14]. Whilst non-parametric
approaches are good for describing the data, there are
many advantages for the use of modelling techniques in
observational studies when there are a number of co-
variates that need to be adjusted for.
Many regression models used to estimate cumulative

incidence functions will assume proportional hazards.
In large epidemiological studies the assumption of pro-
portional hazards is often unreasonable. Therefore, a
model that can easily incorporate time-dependent effects
is desirable.
In summary, we would like to be able to model compe-

ting risks scenarios using the approach that estimates both
the cause-specific hazards and the cumulative incidence
functions as we believe both to be useful measures. We
would like to obtain smooth estimates for both of these
measures rather than considering a step function. Finally,
we want to be able to incorporate time-dependent
effects for one or all of the competing events. Whilst
the majority of the above can be addressed within a Cox
modelling framework, we feel that parametric models
have the advantage of directly estimating cause-specific
hazard rates in the model as well as handling non-
proportional hazards with ease. For these reasons, we
advocate the use of the flexible parametric survival
model to obtain both the cause-specific hazards and the
cumulative incidence function in a competing risks
framework.

Methods
Competing risks
If we assume that a patient is at risk from K different
causes, the cause-specific hazard for the kth cause, hk(t)
is the rate of failure at time t given that no failure from
cause k or any of the K-1 other causes has occurred [3].
When the competing events are death from different
causes these can be thought of as mortality rates. The
cause-specific hazard can be written as

hk tð Þ ¼ limΔt↓0
P t≤T < t þ Δt;K ¼ kjT≥tð Þ

Δt
ð1Þ

Assuming proportional hazards, the cause-specific
hazard rate for cause k for a patient with covariates xk
can be calculated using the equation

hk t xj Þ ¼ hk;0 tð Þexp βkxk
� �� ð2Þ

where hk,0(t) is the baseline cause-specific hazard for cause
k and βk are the covariate effects (log hazard ratios).
Once the cause-specific hazard has been estimated,

many researchers will transform to obtain a survival func-
tion, Sk(t), through the following transformation

Sk tð Þ ¼ exp �
Z t

0
hk uð Þdu

� �
ð3Þ

Under the assumption that the competing events are
independent (conditional on covariates), the comple-
ment of the cause-specific survival function can be inter-
preted as the probability of dying from cause k in a
hypothetical world where it is not possible to die from
anything else [15]. In many situations the assumption of
independence will not be reasonable in which case any
estimates obtained through Equation (3) are not inter-
pretable as probabilities. Even under the strong assump-
tion of independence, these estimates of cause-specific
survival are of little use to patients making decisions in
the real world where death from other causes play a big
role. Therefore, a better approach may be to acknow-
ledge that patients may die from something else other
than their cancer.
The cumulative incidence function, Ck(t), gives the

proportion of patients at time t who have died from
cause k accounting for the fact that patients can die
from other causes.

Ck tjxð Þ ¼
Z t

0
hk ujxð Þexp

�Z u

0
ΣK
k¼1hk vjxð Þdv

�
du

ð4Þ
The cumulative incidence function is not only a func-

tion of the cause-specific hazard for the event of interest
but also incorporates the cause-specific hazards for the
competing events [1]. Previous research has mainly fo-
cussed on the use of the Cox model or non-parametric
estimates in a competing risks framework [16,17]. Here,
we advocate the use of the flexible parametric model.

Flexible parametric model
We could apply Equation (4) to any standard parametric
model; however, there are very few real world examples
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where all of the competing events can be adequately
captured using a Weibull or exponential model for ex-
ample. The flexible parametric survival model was first
proposed by Royston and Parmar [18] for use with cen-
sored survival data. They proposed a range of models on
different scales. We concentrate on models on the log
cumulative hazard scale where the idea was to extend
the Weibull model, which is a parametric proportional
hazards model often criticised for the lack of flexibility
in the shape of the baseline hazard function. Using a
Weibull distribution the survival function can be writ-
ten as

S tð Þ ¼ exp �λtγð Þ ð5Þ

Transforming this to the log cumulative hazard scale
gives

ln H tð Þ ¼ ln λð Þ þ γln tð Þ ð6Þ

This is now a linear function of log-time. However, ra-
ther than assuming linearity with ln(t) the flexible para-
metric model uses restricted cubic splines for ln(t) [19].
The log cumulative hazard function is used as opposed
to the hazard function as the “end artefacts” in the fitted
spline functions at the extremes of the time scale are
more severe for the hazard function. Furthermore,
implementing on the log time scale means that the fitted
function is typically gently curved or nearly linear, and is
usually very smooth [18]. Finally, modelling on this scale
means it is easy to transform to the survival and hazard
functions [20].
Regression splines are piecewise polynomial functions

that are forced to join at predefined points on the x-axis.
These joining points are known as knots. In order to ob-
tain a smooth function the regression splines are also
forced to have continuous first and second derivatives.
For restricted cubic splines a further restriction forces
the splines to be linear beyond the boundary knots.
A restricted cubic spline function, s(ln(t)|γ, n0), with N

knots, a vector of knots n0 and parameters γ0,⋯,γN - 1

can be written as

s ln tð Þ γ;n0j Þ ¼ γ0þγ1z1 þ⋯þ γN�1zN�1
� ð7Þ

The derived variables z1⋯ zN - 1 are calculated as fol-
lows

z1 ¼ ln tð Þ ð8Þ

zj ¼ ln tð Þ � nj
� �3

þ �∅j ln tð Þ � n1ð Þ3þ
� 1�∅j
� �

ln tð Þ � nNð Þ3þ; j ¼ 2;⋯N � 1

ð9Þ

where
∅j
nN � nj
nN � n1

ð10Þ

and (u)+ = u if u > 0 and 0 if u ≤ 0. Thus, a model with N
knots for the baseline log cumulative hazard uses N-1
degrees of freedom.
The baseline log cumulative hazard in a proportional

hazards model incorporates the restricted cubic spline
function of s(ln(t)|γ, n0), with knot locations n0, and co-
variates x and can be written as

ln H t xj Þð � ¼ s ln tð Þ γ;n0j Þ þ xβð½ ð11Þ

Covariate effects can be interpreted as log hazard ratios
here under the assumption of proportional hazards. The
survival and hazard functions can be obtained through a
transformation of the model parameters

S t xj Þ ¼ exp �exp ln H t xj Þð �½ Þð Þðð ð12Þ

h tjxð Þ ¼ ds ln tð Þjγ;n0ð Þ
dt

exp ln H t xj Þð �½ Þð ð13Þ

One of the main advantages of the flexible parametric
approach is the ease with which time-dependent effects
can be fit [21]. Time-dependent effects can be incorpo-
rated into the model by forming interactions between
covariates and restricted cubic splines for ln(t) with
knots, nj, at centiles of the event times. If there are D
time-dependent effects, then we can extend Equation
(11) as follows:

ln H tjxð Þ½ � ¼ sð ln tð Þ γ;n0j Þ þ xβþ ΣD
j¼1s ln tð Þ δj;nj

�� �
xj

�
ð14Þ

The number of spline variables for a particular time-
dependent effect will depend on the number of knots,
nj [15].
As shown in Equation (4), the cumulative incidence is

a function of the cause-specific hazard functions. The
cause-specific hazard function can be obtained from the
flexible parametric model through Equation (13) by only
considering one cause of death at a time and censoring
competing events. Alternatively, we can stack the data
and fit one model for all K causes simultaneously. This
approach is described in further detail later in the paper.
The integral in Equation (4) can be obtained numerically.

The integration is performed using similar methods to
those proposed by Carstensen [22] and Lambert et al. [15].
The formulae for these methods are given in Appendix 1.
It is possible to construct confidence intervals for the cu-
mulative incidence function under the Cox model [23].
However, this is by no means a trivial task [23,24]. An ad-
vantage of our approach is that confidence intervals can be



Table 1 Number (%) of patients in each age group and
stage of breast cancer at diagnosis

Age group Localised Regional Distant Total

18-59 10,712 (55.6) 7,467 (38.8) 1,084 (5.6) 19,263 (100)

60-69 5,249 (64.3) 2,414 (29.6) 490 (6.1) 8,153 (100)

70-79 4,884 (68.1) 1,884 (26.2) 411 (5.7) 7,179 (100)

80+ 2,645 (67) 983 (24.9) 321 (8.1) 3, 949 (100)

Total 23,490 12,748 2,306 38,544
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obtained using the delta method as the baseline hazards
are estimated as part of the model (see Appendix 1).
Two user-friendly commands have been written in Stata

that implement the methodology described in this paper.
The command stpm2 will fit a flexible parametric survival
model [21] and the command stpm2cif can be used to ob-
tain the cumulative incidence functions through post-
estimation [25]. Example code for these commands can be
found in Appendix 2.

Relative measures
Once the cause-specific hazards and the cumulative inci-
dence function have been estimated it is possible to
obtain other useful measures through some simple ma-
nipulation of the estimates. The relative contribution to
the total mortality can be derived as:

Ck tð Þ
ΣK
k¼1Ck tð Þ ð15Þ

This can be interpreted as the probability of having
died from cause k given that a death has occurred by
time t.
The relative contribution to the overall hazard can be

derived as:

hk tð Þ
ΣK
k¼1hk tð Þ ð16Þ

This can be interpreted as the probability of having
died from cause k given that a death has occurred at
time t.

Illustrative example
One research area that is increasingly making use of
competing risks methodology is population based cancer
studies. Here we use data obtained from the SEER public
use dataset [26] on survival of breast cancer patients.
The patients analysed were all white females aged between
18 and 103 and were diagnosed between the years 1996
and 2005. Patients that were diagnosed at death or autopsy
(n = 509) or had an unknown cause of death (n = 546)
were excluded from the analyses. Only patients with a first
primary malignant indicator were included (n = 18,433
excluded). If the stage of breast cancer was unknown then
the patient was also excluded (n = 991). This left a total of
38,544 patients to be analysed.
Cause of death was categorised into breast cancer, other

cancer, diseases of the heart and other causes. Age at diag-
nosis was categorised into the groups 18–59, 60–69, 70–
79 and 80+. Staging of the cancer was classified as loca-
lised, regional or distant. Diagnosis of breast cancer was
considered as the time origin and follow-up was restricted
to 10 years. Table 1 gives the number of patients within
each age group and stage of cancer.
It is possible to fit 4 separate models, one for each

cause, to obtain 4 cause-specific hazards. However, to
allow for potential shared covariate effects over two or
more causes we can fit one model for all 4 causes simul-
taneously. In order to do this the data needs to be
stacked so that each individual patient has 4 rows of
data, one for each of the 4 causes [16]. Table 2 illustrates
how the SEER breast cancer data should look once it
has been stacked. Each patient has the opportunity to
fail from one of four causes. Patient 1 is at risk from all
four causes for 10 years but does not experience any of
them and so is censored. Patient 2 is at risk from all four
causes for 6.5 years but then dies from heart disease and
so is no longer at risk from any of the four causes.

Results and discussion
Proportional hazards models
Both a Cox-proportional hazards model and a flexible
parametric proportional hazards model were fitted in
order to make a comparison of the two models in terms
of both the cause-specific hazard ratios and the cumula-
tive incidence function. The Cox proportional hazards
model does not directly estimate the baseline hazard,
hk,0(t), therefore, when obtaining the cumulative inci-
dence functions the Breslow method for the cumulative
baseline hazard needs to be substituted into Equation
(4). However, if the cause-specific hazard rates were
required then the baseline hazards would need to be
estimates through post-estimation using, for example,
kernel smoothing [21]. For the flexible parametric model
the baseline knots were positioned differently for each of
the four causes. The knot locations were chosen by tak-
ing the first and last event times along with the 25th,
50th and 75th centiles of the event times for each of the
four causes.
As shown in Table 2, the data has been stacked so that

each patient now has four rows of data, one for each
cause. If the effects of age and stage were believed to be
the same for each of the four causes of death then the
stacked data format would allow us to share the para-
meters across all four causes. However, in this example,
the effects of both age group and stage at diagnosis are



Table 2 Expanding the data set

ID Age Time Cause Status

1 50 10 Breast Cancer 0

1 50 10 Other Cancer 0

1 50 10 Heart Disease 0

1 50 10 Other Causes 0

2 70 6.5 Breast Cancer 0

2 70 6.5 Other Cancer 0

2 70 6.5 Heart Disease 1

2 70 6.5 Other Causes 0
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different for each cause. We could revert to fitting a sep-
arate model for each of the four causes of death but for
demonstrative purposes we have instead fitted inter-
action terms between each cause and each of the two
variables. Further details of this can be seen in the Stata
code in Appendix 2.
Table 3 gives the hazard ratios from both the Cox pro-

portional hazards model and the flexible parametric pro-
portional hazards model. The hazard ratios and their
confidence intervals are very similar for both models. It
is well known that mortality rates increase with age at
diagnosis and this is evident for all four causes of death
in this case. The results also show that the rate of death
for all four causes increases with severity of breast can-
cer staging.
Figure 1 shows the cumulative incidence functions for

each of the four causes of death broken down by stage
Table 3 Comparison of Cox proportional hazards model (Cox
(FPM), hazard ratios (95% confidence intervals)

Breast cancer

Cox FPM

Ages 18-59 1.00 1.00

Ages 60-69 0.90 (0.83, 0.97) 0.90 (0.83, 0.98)

Ages 70-79 1.27 (1.17, 1.37) 1.27 (1.17, 1.37)

Ages 80+ 2.08 (1.90, 2.28) 2.09 (1.91, 2.29)

Localised 1.00 1.00

Regional 4.15 (3.85, 4.47) 4.15 (3.85, 4.47)

Distant 33.68 (31.08, 36.50) 33.84 (31.23, 36

Heart disease

Cox FPM

Ages 18-59 1.00 1.00

Ages 60-69 4.76 (3.62, 6.24) 4.76 (3.62, 6.24)

Ages 70-79 17.05 (13.42, 21.67) 17.07 (13.43, 21

Ages 80+ 70.57 (55.84, 89.17) 70.75 (55.99, 89

Localised 1.00 1.00

Regional 1.42 (1.27, 1.60) 1.42 (1.27, 1.60)

Distant 2.44 (1.89, 3.14) 2.46 (1.91, 3.16)
for patients aged 60–69. The estimates taken from the
Cox model and the flexible parametric model are so
similar that the two sets of curves overlay each other.
Figure 2 shows the cause-specific hazards from the

flexible parametric proportional hazards model for ages
60–69 by stage at diagnosis. As follow-up time increases,
the mortality rate for breast cancer decreases for all
three stages. However, the mortality rate for heart dis-
ease and other causes increases with time.
Previous studies have shown a relationship between ra-

diation therapy and cardiovascular mortality [27-29] and a
similar relationship for chemotherapy [30]. The likelihood
of receiving either radiotherapy or chemotherapy as a
treatment for breast cancer increases with the severity of
the staging. This could again explain the increased risk of
death from heart disease with increasing severity of breast
cancer staging [31].
Figure 2 illustrates how the proportional hazard assump-

tion forces the log hazard functions for the three stages to
be parallel to each other. We can relax this assumption by
incorporating time-dependent effects in the model.

Time-dependent models
For the remaining analyses we only considered a flexible
parametric non-proportional hazards model. This model
included time-dependent effects for age groups 60–69,
70–79 and 80+ for breast cancer and other causes and
also for regional and distant stages for breast cancer,
other cancer and other causes. These were selected
using likelihood ratio tests (p-value < 0.05). All the time-
) and flexible parametric proportional hazards model

Other cancer

Cox FPM

1.00 1.00

2.12 (1.52, 2.94) 2.12 (1.52, 2.95)

3.18 (2.31, 4.37) 3.19 (2.32, 4.38)

6.59 (4.73, 9.17) 6.63 (4.76, 9.23)

1.00 1.00

2.15 (1.61, 2.88) 2.16 (1.61, 2.88)

.67) 25.58 (19.18, 34.12) 25.82 (19.36, 34.44)

Other causes

Cox FPM

1.00 1.00

3.46 (2.89, 4.14) 3.46 (2.89, 4.14)

.69) 10.22 (8.73, 11.96) 10.22 (8.73, 11.96)

.40) 31.54 (27.00, 36.84) 31.60 (27.07, 36.91)

1.00 1.00

1.11 (1.01, 1.26) 1.11 (1.02, 1.22)

2.08 (1.67, 2.58) 2.09 (1.68, 2.60)
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dependent effects were fitted using 4 degrees of freedom
and had the same knot locations as those used in the
proportional hazards model.
Figure 3 shows the cumulative incidence function and

the cause-specific hazard function for both breast cancer
and other causes of death. Separate curves are given for
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proportional hazards assumption is not reasonable. The
differences between the proportional and non-proportional
hazards models in terms of the cumulative incidence func-
tion are also visible. For example, reading from Figure 3
the probability of death from breast cancer for those aged
60–69 with distant stage cancer at 10 years post diagnosis
is approximately 0.75 in the proportional hazards model
but approximately 0.7 in the non-proportional hazards
model - a difference of 0.05.
Figure 4 shows the cumulative incidence functions for

each cause stacked on top of each other for the age
groups 60 to 69 and 80+. This allows us to visualise the
total probability of death and see how it is broken down
by the different causes. If we concentrate on localised
stage breast cancer, the total probability of death at 10
years for those aged 60–69 is 0.16 compared to 0.71 for
those aged 80+. For those aged 60–69 with regional
stage cancer, the most common cause of death is breast
cancer. However, for those aged 80+ with regional stage
cancer, deaths from heart disease and other causes are
just as prominent as deaths from breast cancer.
Relative measures
Figure 5 shows the contribution to the total mortality
for ages 60–69 and 80+. There is a clear peak in the
probability of dying from breast cancer in the localised
and regional stage groups. Focussing on regional stage
cancer, by 6 years after diagnosis from breast cancer, if a
patient aged 60–69 has died then there is a probability
of 0.7 that it was from breast cancer, 0.04 that it was
from another cancer, 0.1 that it was from diseases of the
heart and 0.16 that it was from other causes. If a patient
aged 80+ has died by 6 years then the probability it was
from breast cancer is 0.32, from another cancer is 0.03,
from diseases of the heart is 0.32 and from other causes
is 0.33.
Figure 6 shows the contribution to the overall hazard.

Notice that there is a steeper decline in the proportion
of breast cancer deaths compared to Figure 5 as we are
now considering the instantaneous risk of death from
each cause. If we focus on regional stage cancer if a pa-
tient aged 60–69 dies at 6 years then there is a probabi-
lity of 0.63 that it was from breast cancer, 0.03 that it
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was from a another cancer, 0.14 that it was from diseases
of the heart and 0.2 that it was from other causes. If a
patient aged 80+ dies at 6 years then the probability it
was from breast cancer is 0.21, from another cancer is
0.02, from diseases of the heart is 0.38 and the from
other causes is 0.39.

Confidence intervals
Figure 7 shows the estimated cumulative incidence func-
tions and corresponding 95 per cent confidence intervals
for breast cancer, other cancers, heart disease and other
causes for those aged 60 to 69 with distant stage cancer.
The confidence intervals were calculated using the delta
method as described in the Appendix and also by using
bootstrapping with 1000 replications. The bias-corrected
method was used to calculate the percentile-based boot-
strapped confidence intervals [32]. In order to speed up
the bootstrap process, the estimations were carried out
on a subset of the data where only patients in the age
group 60–69 were considered. The figure clearly indi-
cates that the two methods show agreement in both the
upper and lower bounds of the confidence interval. The
bootstrapped confidence intervals took a considerably
longer amount of time to estimate than those obtained
through the delta method (just over one hour for the
bootstrapping as opposed to a couple of seconds for the
delta method). Using bootstrapping on the full data set
would take substantially longer.

Sensitivity to number of knots
All the non-proportional hazard analyses in this paper
were carried out using 4 degrees of freedom for both the
baseline effects and the time-dependent effects. As a
sensitivity analysis, four further models were fitted that
compared the number and locations of the knots for the
baseline effects and the time-dependent effects of age
group and stage. Table 4 describes the models used in
the sensitivity analysis. Model 1 refers to the non-
proportional hazards model used throughout this paper.
In terms of the AIC, model 1 is the best fitting model
but in terms of the BIC, model 4 is the best fitting
model. However, Figure 8 demonstrates that, with excep-
tion to model 6, the overall shape of the cause-specific
hazard function is very much the same and the choice of
model has little impact on the cumulative incidence func-
tion. Model 6 only considers 3 degrees of freedom for
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both the baseline effects and the time-dependent effects
and so is most likely not able to fully capture the shapes of
the underlying baseline hazards for the 4 causes.

Conclusions
We have shown how to estimate both the cause-specific
hazards and the cumulative incidence functions using a
flexible parametric survival model. This approach provides
smooth estimates of the cause-specific hazard and the cu-
mulative incidence function, both of which we consider to
be measures of interest. The flexible parametric model can
easily incorporate time-dependent effects for one or more
of the competing events. We have also illustrated two
other useful measures that can be obtained with some
simple manipulation of the cause-specific hazard and cu-
mulative incidence estimates.
The flexible parametric proportional hazards model pro-

duces very similar estimates to the Cox proportional
hazards model in terms of both the cause-specific hazard
ratios and the cumulative incidence functions. A further
alternative is to use a mixture model for competing risks
data as proposed by Larson and Dinse [4,33]. However,
this approach has two main disadvantages: it is time
consuming and the estimated distribution will depend on
the length of follow-up [34].
The confidence intervals obtained through the delta

method have been shown to be very similar to those
obtained through bootstrapping but have the added ad-
vantage of taking considerably less time to compute.
The assumption of proportional hazards is often unrea-

sonable in epidemiological studies. It is important to
understand the changing effect of a covariate over the
time period rather than just assuming a constant hazard.
For example, a treatment may have a large impact on mor-
tality early on in the follow-up period but this effect could
diminish as time goes on [35]. It is, therefore, important
to consider methods such as those described in this paper,
that can account for time-dependent effects. The flexible
parametric model may be criticized as the number and lo-
cation of the knots are subjective. However, the sensitivity
analysis demonstrates that the knot location has very little
impact in terms of the cumulative incidence function.
Similar results have been reported elsewhere in relation to
the sensitivity of the knots [15,18,20,36].
In this paper we have grouped age into four categories

for simplicity whilst illustrating the method. However, it
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Table 4 Models with varying degrees of freedom for the
baseline time-dependent effects, dfb and the additional
time-dependent effects, dft

Baseline dfb Time-dependent dft AIC BIC

Model 1 4 4 61841.19 62459.84

Model 2 5 5 61945.39 62606.23

Model 3 5 3 61963.30 62483.53

Model 4 7 3 61947.53 61783.53

Model 5 7 4 61938.33 62585.10

Model 6 3 3 61962.75 62426.74

For 3 df knots are placed at centiles (0, 33, 67, 100), for 4 df at centiles
(0, 25, 50, 75, 100), for 5 df at centiles (0, 20, 40, 60, 80, 100) and for 7 df at
centiles (14, 29, 43, 57, 71, 86). These are placed on the distribution of
uncensored event times.
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may be preferable to model age continuously using re-
gression splines as has been done in previous papers
[37,38].
The main advantages of the flexible parametric model

are in large studies where time-dependent effects will often
play a prominent role. In much smaller studies where there
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plotted on the graph, 5 curves are overlaying on the cause-specific hazard
are fewer events there may not always be sufficient infor-
mation to adequately estimate the underlying hazard using
this model.
This paper describes modelling cause-specific hazards

and using these to obtain the cumulative incidence func-
tion. Alternatively, the cumulative incidence function
can be modelled directly using, for example, Fine and
Grays subdistribution approach [5]. This may be useful
when interest only lies in obtaining estimates of the cumu-
lative incidence function for one of the competing events.
However, if interest lies in visualising the overall probabil-
ity broken down by specific events, such as those shown
in Figure 2, then it should be noted that the direct regres-
sion approach does not have a boundary condition and so
in some cases the overall probability may exceed one. We
believe that the cause-specific approach, as described here,
is advantageous for a full understanding of risk factors and
real world implications.
Unlike measures of net survival, the cumulative inci-

dence function allows us to present “real world” prob-
abilities where a patient is not only at risk of dying from
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their cancer but also from any other cause of death. We
can also estimate these “real world” probabilities using
relative survival [15]. The advantage of the cause-
specific approach is that we can examine more causes of
death but this is at the expense of having to rely on
cause of death information.
Finally, a user friendly program has been written in Stata

to enable users to implement the methodology described
in this paper. This command is called stpm2cif and is
available from the Statistical Software Components (SSC)
archive [25,39].

Appendix 1–Details of the delta-method used to
calculate confidence intervals
The integral in Equation (4) can be obtained numerically.
Using similar methods to those proposed by Carstensen
[22] and Lambert et al. [15] the integration is performed
through the following steps:

1. The time scale is split into a large number, m, of
small intervals.

2. The integrand of the cumulative incidence function,
f̂ tm x0j Þð , is predicted for a particular covariate
vector, x0 at each of the m time intervals, tm.

3. The variance-covariance matrix for the integrand
f̂ tm x0j Þð , is obtained at each time interval using the
delta method. The Stata command predictnl calculates
the observation-specific derivatives for each parameter
in the model. If we let G be the m × p matrix of
observation-specific derivatives then the variance-
covariance matrix can be estimated using the equation

Var f̂ tmð Þ
� �

¼ GV̂ G

where V̂ is the estimated variance matrix for the
model parameters.

4. The cumulative incidence function can then be
calculated by summing the values of the integrand
for the m time intervals. In order to do this, a
triangular matrix L needs to be created. For example,
for three intervals this looks like

Ck tð Þ ¼ l �
1 0 0
1 1 0
1 1 1

2
4

3
5 f̂ t1ð Þ

f̂ t2ð Þ
f̂ t3ð Þ

2
4

3
5 ¼ L

f̂ t1ð Þ
f̂ t2ð Þ
f̂ t3ð Þ

2
4

3
5

where l is the interval length.
5. The variance-covariance matrix for the cumulative
incidence function of the kth cause is then calculated
using
Var Ck tð Þ ¼ LGV̂ G0L0

Appendix 2–Stata analysis code for flexible
parametric model section of illustrative example.
For more information see the Stata help file [38]
or the Stata Journal article [30]
***Expand the data so that each patient has 4 rows –
one for each cause of death***
expand 4
bysort id: gen cause = _n
***Generate indicator variables for each cause of death

along with an overall indicator ***
gen breast = cause==1
gen cancer = cause==2
gen heart = cause==3
gen other = cause==4
gen event = (cause==cod)
***Create interactions between age group and causes***
gen agebreast = agegrp*breast
gen agecancer = agegrp*cancer
gen ageheart = agegrp*heart
gen ageother = agegrp*other
***Create dummy variables for each age cause

interaction***
tab agebreast, gen(agebreast)
tab agecancer, gen(agecancer)
tab ageheart, gen(ageheart)
tab ageother, gen(ageother)
***Re-name age cause dummy variables ***
foreach var in breast cancer heart other {

rename age`var'2 age`var'1
rename age`var'3 age`var'2
rename age`var'4 age`var'3
rename age`var'5 age`var'4

}
*** Create interactions between stage and causes***
gen stagebreast = seerhistoricstage*breast
gen stagecancer = seerhistoricstage*cancer
gen stageheart = seerhistoricstage*heart
gen stageother = seerhistoricstage*other
***Create dummy variables for each stage cause

interaction***
tab stagebreast, gen(stagebreast)
tab stagecancer, gen(stagecancer)
tab stageheart, gen(stageheart)
tab stageother, gen(stageother)
*** Re-name stage cause dummy variables ***
foreach var in breast cancer heart other {

rename stage`var'2 stage`var'1
rename stage`var'3 stage`var'2
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rename stage`var'4 stage`var'3

}
***stset the data to tell Stata we are dealing with sur-

vival data***
stset exit, origin(dx) failure(event) scale(365.24) exit

(time dx + (10*365.24))
*** Fit a flexible parametric proportional hazards

model using stpm2 command***
stpm2 breast cancer heart other agebreast? agecancer?

ageheart? ageother? ///

stagebreast? stagecancer? stageheart? stageother?, ///
scale(hazard) rcsbaseoff nocons ///
tvc(breast cancer heart other) initstrata(cause) ///
knotstvc(breast 1.37 2.62 4.70 ///
cancer 1.00 2.95 5.87 ///
heart 1.79 3.87 6.37 ///
other 1.95 3.95 6.46) ///
bknotstvc(breast 0.038 9.96 ///
cancer 0.04 9.96 ///
heart 0.04 9.96 ///
other 0.04 9.96)

***Predict the cumulative incidence functions, the
cause-specific hazard rates, the contribution to the total
mortality and the contribution to the overall hazard for
each covariate pattern using stpm2cif command***

forvalues l = 1/3 {
if `j'! = 1 {
if `l'==1 {

stpm2cif breast`j'`l' cancer`j'`l' heart`j'`l'
other`j'`l', ///

cause1(breast 1 agebreast`j' 1) ///
cause2(cancer 1 agecancer`j' 1) ///
cause3(heart 1 ageheart`j' 1) ///
cause4(other 1 ageother`j' 1) haz

conthaz contmort
}

if `l'! = 1 {
stpm2cif breast`j'`l' cancer`j'`l' heart`j'`l'

other`j'`l', ///
cause1(breast 1 agebreast`j' 1

stagebreast`l' 1) ///
cause2(cancer 1 agecancer`j' 1

stagecancer`l' 1) ///
cause3(heart 1 ageheart`j' 1

stageheart`l' 1) ///
cause4(other 1 ageother`j' 1

stageother`l' 1) haz conthaz contmort

}

}
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