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Abstract

This paper investigates the problem of personalization in massive open online
courses (MOOC) based on a target competency profile and a learning scenario
model built for the course. To use such a profile for adaptive learning and resource
recommendation, we need to be able to compare competencies to help match the
competencies of learners with those involved in other learning scenario components
(actors, activities, resources). We present a method for computing relations between
competencies based on a structured competency model. We use this method to
define recommendation agents added to a MOOC learning scenario. This approach
for competency comparison has been implemented within an experimental platform
called TELOS. We propose to integrate these functionalities to a MOOC platform
such as Open-edX. We present a personalization process and we discuss the tools
needed to implement the process.

Keywords: Adaptivity; Semantic referencing; User modeling; Smart learning
environments; MOOC scenarios; Recommendation; Personalization
Introduction - the semantic adaptive web
The advent of Massive Open Online Course (MOOC) (Hollands et al. 2014; Daniel

et al. 2012) raises the issue of personalization even more acutely than before. The same

course can be followed by thousands of learners in various parts of the world; all with

different background, knowledge and culture, which makes it difficult, if not impos-

sible, to provide an efficient one-size-fits-all learning environment.

The large number and the diversity of learners preclude providing human tutors, as

in distance learning university online courses. One solution for personalization is to

add “smartness” to MOOC learning environments by dynamically updating learner

profiles, recommend adapted resources and activities and adapt the initial scenario to

learner profiles.

Commercially mature recommender systems have been introduced during recent

years in popular e-commerce web sites such as Amazon or eBay with similar

personalization intents. Yet, according to Adomavicus and Tuzhilin (2005), new devel-

opments must “include, among others, the improved modeling of users and items, and

incorporation of the contextual information into the recommendation process”. The

development of the “Web of data” (Heath and Bizer 2011; Allemang and Hendler

2011) also leads to an “Adaptive Semantic Web” (Dolog et al. 2004b; Jannack et al.
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2011) where knowledge about users and context of use enables the personalization of

Web resources, including learning scenarios.

The present contribution addresses some of these major issues. We propose to pro-

vide a context for recommendation and personalization using a multi-actor learning

scenario (or workflow) model. This model provides a structure of the activities exe-

cuted by actors using various kinds of input resources, producing outcomes and inter-

acting with other actors. It is implemented in the TELOS system (Paquette 2010)

where an ontology-based competency model serves to annotate actors, activities and

resources, providing a “user and item” model for recommendation or scenario adapta-

tion, according to the learners’ competency profiles.

In section “Competency referencing of learning scenario components”, we present

the competency model used for recommendation and adaptation and a simple scenario

example which is used to illustrate the main concepts involved in our proposal. Unlike

other approaches for an ontology-based recommendation, such as OWL-OLM (Denaux

et al. 2005) or Personal Reader (Dolog et al. 2004a), this competency model extends be-

yond simple taxonomies of concepts. It uses an OWL ontology extended with mastery

levels, e.g. generic skills and performance levels applied to knowledge in the ontology.

Based on this model, domain-specific competencies are used to annotate actors,

activities and resources in the learning scenario. Having annotated all these elements

by a common referential is the first step towards a personalized learning environment.

The next challenge is to provide a sound method for comparing competency sets and

then to decide on particular actions to take to personalize the learning experience,

based on the outcome of this comparison. In section “Competency comparison” we ad-

dress the problem of competency comparison, providing some heuristics to help match

a user’s competency model with the competencies possessed by other actors or in-

volved in activities and resources in the scenario.

In section “Recommendations based on competency comparison”, we present the defin-

ition of rule-based advisory agents, where the competency relations defined in section

“Competency comparison” are used into the rules’ conditions. The corresponding rules’

actions help personalize the environment by showing or hiding resources, reorienting ac-

tivity paths, proposing additional elements or pointing toward relevant peers. As a proof

of concept, we present a scenario implemented within the TELOS ontology-driven system

(Paquette and Magnan 2008).

Section “Personalization of massive open online courses” describes the use of our

model and system for personalizing MOOCs. Two forms of personalization are ex-

emplified. The first one uses competency relations to automatically cluster MOOC

learners into subgroups that are more manageable for collaboration and for which

we can propose adapted scenario versions. The MOOC designer can customize the

personalization rules to decide whether to have competency homogenous groups or

on the contrary groups with skilled student helping less advanced ones. Secondly, we

integrate advisory agents as in the example of sections “Competency referencing of learn-

ing scenario components” and “Recommendations based on competency comparison” to

recommend adapted activities and resources to individual learners, whatever their

subgroup.

In section “Overview of the process and required tools for MOOC personalization”,

we conclude by presenting the overall scenario adaptation process from the viewpoint
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of the design team. We discuss possible extension of the process and the main tools

that will be needed to integrate the whole process in MOOC delivery platforms.
Competency referencing of learning scenario components
We present in this section a learning scenario model that will provide the operational

context for recommendation and adaptation. This model is implemented using our

graphical scenario editor, G-MOT and our compatible scenario manager and execution

engine, TELOS. Basically, the scenario model aggregates actors, the activities they per-

form and the resources they use and produce during the flow of activities.

Scenario models for learning contexts

Figure 1 shows a simple scenario model. There are four activities or tasks (ovals), two

actors (a professor and a student) and some resources (I/P linked) that are input to the

activities or produced by the actor responsible for the activity (identified by a R link).

Each activity is decomposed into sub-models (not shown on the figure), which describe

it more precisely on one or more levels. This scenario will serve to illustrate the con-

cepts presented in this paper.

In the first activity (Start), the student reads the general assignment for the scenario

and the list of target competencies he/she is supposed to acquire. In the second one,

using the information in a document called “Planet Properties”, the student builds a

table of planet properties that is validated by the professor (in a MOOC, this should be

automatically done by a software agent). In the third activity, using a version of this

“Validated table”, he compares properties of planets to find out relations between them,
Figure 1 An example of a scenario model.
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and writes a text, “Validated relations”, to present his findings. In the last activity he is

asked to order planets according to their distance to the Sun and to write his ideas on

planets that can sustain life.

On the right side of the figure, three agents (i.e. recommenders or advisor agents)

have been inserted to assist each student in executing the corresponding activity, by

providing personalized advice. These agents, further explained in section “Recommenda-

tions based on competency comparison”, are also used to update each learner’s competency

annotations with newly acquired competencies.
Semantic referencing of scenario components

As we have pointed out in (Paquette and Marino 2011), educational modeling lan-

guages and standards such as IMS-LD (2003) need to be improved with a structured

knowledge and competency representation, in order to add useful semantic annotations

to scenario components.

For semantic annotation, two main methods are generally used: annotation with con-

cepts belonging to a taxonomy or annotation with natural language statements defining

prerequisites and learning objectives.

We proposed to use a third approach based on competency referencing (Paquette

2007), where a competency can be understood as a skill applied to a knowledge, with a

certain level of performance; the knowledge element in this definition being defined in

a domain ontology.

A domain ontology needed for semantic annotations can be downloaded from ontology

repositories available on the Web for various subjects. Only if the teacher/designer cannot

find a suited one must he build it. Ontologies are “shared visualizations” of a knowledge

domain, thus largely independent from a particular teacher’s view. What are specific are

the skill and performance levels added to ontology components to define target

competencies.

Unlike other approaches based on ontologies, such as OWL-OLM (Denaux et al.

2005) or Personal Reader (Dolog et al. 2004a), our model generalizes taxonomy-based

annotations with OWL-DL ontologies annotations and adds mastery levels (generic

skills and performance levels) to ontology references.

Furthermore, to state only that a person has to “know” a concept is an ambiguous

statement. It does not say what exactly the person is able to do with the concept. For

example, stating that someone “knows a certain device” may mean competencies ran-

ging from “being able to describe its structure” to “being able to recognize its malfunc-

tion” to “being able to repair it”. Also, it is very different if a diagnosis is to be made in

a familiar or novel situation, or with or without help; these are examples of perform-

ance indicators or criteria adding precision to the statement of a generic skill.

We thus define each competency as a triple (K, S, P) where K is a knowledge elem-

ent, a class, a property or an individual from a domain ontology, S is a generic skill

(a verb) from a taxonomy of skills, and P is the result of combining performance cri-

teria values. Domain ontologies follow the W3C OWL-DL standard. The taxonomy of

skills is simplified to a 10-level scale (0-PayAttention, 1-Memorize, 2-Explicitate,

3-Transpose, 4-Apply, 5-Analyze, 6-Repair, 7-Synthetize, 8-Evaluate, 9-Self-Control).

The performance part is a combination of performance criteria values providing four
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performance levels (0.2-aware, 0.4-familiar, 0.6-productive, 0.8-expert), added to the

skill level.

We have developed a Competency editor inside the TELOS tool set, to create and

manipulate this kind of competency models. To connect competencies from a domain

specific competency model with a learning scenario relating to this competency model,

we developed another TELOS tool, called the Competency referencer. Using this tool,

one can specify learners’ actual competencies, activities’ and resources’ entry and target

competencies.

For example, using a domain ontology for solar system planets such as the one on

Figure 2 and a competency model based on this ontology, competencies can be associ-

ated to resources from the scenario (as shown on Figure 3). The entry and target com-

petencies describing such a resource, (“Planet Properties”), could be compared with the

actual competencies of a user to verify if he has all of them, or some, or none, in his

competency model, and offer a recommendation, such as to skip the resource (too easy

for this user) or to study a preliminary document (this user doesn’t have the compe-

tences needed to study it, that is this resource resource entry competencies).

Activities, resources and user competency models

Selected components of a scenario are thus referenced using comparable competencies,

based on the same domain ontologies and competency model. Resources and activities

in a scenario are referenced by two sets of competencies, one for prerequisite compe-

tencies, and the other, for target competencies (i.e. learning objectives).

In (Paquette and Marino 2011), we provided a multi-actor ontology-based assistance

model supported by a user competency model. This user model is composed of three

main parts (Moulet et al. 2008):

� List of the user’s actual competencies selected in one or more competency

referentials. As mentioned above, each user’s competencies (C) is described by its

knowledge (K), skills (S) and performance (P) components.
Figure 2 Domain ontology on solar system planets and some proximity relations.



Figure 3 An example of competency reference for a resource.
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� Documents (texts, exam results, videos, images, applications, etc.) structured into

an e-portfolio that presents evidence for the achievement of related competencies.

� Context in which a competency has been achieved. It includes the date of

achievement, the activities that led to it, the link to the evidence in the e-portfolio

and the evaluator of this evidence.

Figure 4 shows an example of a user portfolio that contains a list of competencies

from two domains, instructional design and solar system planets. On the right side of

the figure, evidences for the selected competency are shown as well as possible annota-

tion or comments from an evaluator.
Figure 4 An example of a user model in a TELOS portfolio tool.
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Competency comparison
Once actors, activities and resources in a learning scenario have been referenced using

a competency profile, we need to be able to compare competencies to find appropriate

actors, activities or resources that can support the learners in the scenario. This section will

provide such a comparison method that has been implemented within the TELOS system.
Knowledge and competency comparison relations

Consider two competencies C1 = (K1, S1, P1) and C2 = (K2, S2, P2). It will be rarely the

case that the three parts will coincide, but we can evaluate the semantic proximity or

nearness between C1 and C2, based on the respective positions of their knowledge parts

in the ontology and the levels associated with the skills and the performance parts.

Our recommendation/adaptation agents will evaluate if a user’s actual competency

coincides, is very near, near or far from the prerequisite or target competencies of a

resource or an activity, as well as compared to the actual competencies of another user.

These agents can also evaluate if a competency is stronger or weaker than another one

according to the levels of its skill and performance parts. Or it can determine if the

competency is more specific or more general according to the positions in the ontology

of the corresponding knowledge components.

Thus, to take advantage of the competency model, we need to establish a formal

framework for the evaluation of the proximity, strength or generality of competencies.

In the next section we define the semantic proximity between knowledge parts of a

competency. In section “Semantic relationships between Competencies” we extend the

comparison method to competencies by considering skills and performance.
Semantic proximity of the knowledge components

In this section, we focus only on the knowledge part of the competencies to be com-

pared. Maidel et al. (2008), propose an approach in which taxonomies are exploited.

Five different cases of matches between a concept A in the resource (or item) profile

and a concept B in the user profile are considered. Various matching scores are given

when a concept A in the item profile, a) is the same, b) is a parent, c) is a child, d) is a

grandparent or e) is a grandchild of a concept in the user profile. Then, a similarity

function is used to combine these scores to recommend resources to a user according

to his acquired concepts. Maidel et al. (2008) state that if the use of a taxonomy is not

considered, the recommendation quality significantly drops.

We agree with this statement but we believe that extending the comparison to ontology

components instead of only specialization relations between classes would provide a

stronger basis for competency comparison. Note for example that in the solar system

domain, property comparisons are more important than class relationships.

We thus propose to define the semantic proximity between knowledge elements, based

on their situation in the domain ontology. Knowledge references are components from

OWL-DL ontologies that describe the knowledge in a resource. A few examples of these

knowledge references are shown on Figure 2 that presents part of an ontology for solar

system planetsa. Knowledge references can take six different forms: SolarSystemPlanet is a

class reference (C); Neptune is an instance reference (I); SolarSystemPlanet/hasAtmosphere/

Atmosphere is an object property reference with its domain and range classes (D-oP-R);
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Earth/hasSatellite/Moon is an object property instance reference (I-oP-I’); SolarSystem-

Planet/hasOrbitalPeriod is a data property reference with its domain class (D-dP); Earth/

hasNumberOfSatellites is a data property instance reference (I-dP).

We have investigated systematically these six forms of OWL-DL references to decide

on the nearness of two references K1 and K2. For example, a concept (form C) is near

its sub classes, super classes, and instances. It is also near an object or data property

(forms D-oP-R and D-oP) that has a domain or range identical or equivalent to this

concept. A property reference, with its domain and range (form D-oP-R) is near a sub-

property or super-property with the same domain and range. It is also near to a sub-prop-

erty or a super-property with a subclass or superclass of its domain and range.

Another comparison criteria is concerned with a reference K1 being more general or

more specific than another one K2. For example, K1 is more general than K2 if K1 is a

superclass of K2, or has K2 as an instance, or appears as domain or range of a data or

object property reference K2, or contains an instance in the domain or range of a data

or object property instance reference K2.
Semantic relationships between competencies

We now extend the comparison to competencies, adding the skill (S) and performance

(P) components of the competency model. Figure 5 presents a few comparison cases

between two competencies C1 = (K1, S1, P1) and C2 = (K2, S2, P2) in the case where K1

is near K2. Other cases are not considered, i.e. comparison fails.

To illustrate the heuristics, the (S, P) couples are represented on a 2-dimensional

scale in Figure 5. Skills are ordered from 0 to 9 and grouped into four classes as

follows: . Performance indicators are grouped into four

decimal levels.

For example, a competency C1 with an analyze skill at an expert level is labeled 5.8

(S1 + P1). A competency C2 at a level 7.2 or 6.4 will be considered near and stronger

than C1 because the synthesize skill or the repair skill are in the same class than the

analyze skill, but one or two levels higher in the skill’s hierarchy. On the other hand,
Figure 5 Comparison criteria for two competencies with their knowledge parts near.
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a competency C2 at a level 5.2 will be considered very near and weaker than C1

because it has the same skill’s level but with a lower performance level. Other possible

competencies in the “far zone” will be considered too far to be comparable.

Also, depending on the relationship between K1 and K2, C2 will be defined as

equivalent, more general or more specific than C1. These relations between compe-

tencies can also be combined to define more complex relationships. For instance, it is

possible for a competency reference to be at the same time identical or very near/

near, stronger/weaker and more general/more specific than another one.

We have developed an inference system that deduces these relations from a competency

referential edited by a competency editor as presented above.
Recommendations based on competency comparison
In this section, we show how we use the competency comparison relations into the rule

conditions of the recommendation/adaptation software agents.
Competency-based conditions and rules

Recommendation agents are added to a scenario, linked to some of the activities or

functions (grouping of activities) called insertion points, as shown in Figure 1. The

designer defines these agents by creating a set of rules. In each rule, one and only one

of the actors linked (using R links) to the activity at the insertion point is chosen as the

receiver of the recommendation. If a triggering event occurs at run time such as “activity

completed”, “resource opened”, etc., each applicable rule condition is evaluated and its

actions are triggered or not, depending on the evaluation of the condition.

A competency-based condition takes the form of a triple:

� Quantification takes two values: HasOne or HasAll, which are abbreviations for

“the receiving user has one (or has all) of its competencies in some relation with an

object competency list”.

� Relation is one of the comparison relations between semantic references presented

above: Identical, Near, VeryNear, MoreGeneric, MoreSpecific, Stronger Weaker or

any consistent combination of these relations.

� ObjectCompetencyList is the list of prerequisite or target competencies of the

activity at the insertion point or of a resource input or output of this activity.
Let’s take the example of a condition like:

(user) HasAll (its competencies)/Near and MoreSpecific/(than) Target competencies for

Essay

When this condition is evaluated, competencies in the user’s model, for the specified

user at the insertion point, are retrieved, together with the list of target competencies for

the resource “Essay”. The evaluation of the relation “Near and MoreSpecific” provides a

true or false value according to the method exposed in section “Semantic relationships

between Competencies”.



Figure 6 Example of an agent’s rule based for updating a user’s competency model.
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Recommendation actions

The action part of an agent’s rule can perform a number of recommendations or adap-

tations in a scenario: give advice to an actor, notify another actor than the one targeted

by the rule, recommend various learning resources, update the user’s model, and

propose to jump to another activity or to another learning scenario.

All these possibilities have been implemented in TELOS. On Figure 1, we have presented

a simple scenario with three recommendation agents. For example, Recommender agent

#1 on Figure 1 will verify if the learner has succeeded the second activity in the scenario

(“Build a table…”). It has 3 rules, shown on the screen-shot of Figure 6: update model,

notify instructor or advice to learner.

The rule “Update User Model” transfers the list of target competencies associated to

the activity to the user’s model, if he has succeeded the activity, and built a validated

table of planet properties. If he has failed, the second rule will send a notification to the

professor to interact with the user. Finally, a third rule (selected on Figure 6) provides

an advice to a user that has partly succeeded the activity, recommending the resource

shown on the figure.
Multi-agent recommendation system

The recommendation system is epiphyte to the learning system, implying that it can

evolve and change without modifying the learning scenario. One can even have various

different recommendation systems for a same learning scenario, possibly for teachers of

the same course with different pedagogies. The system is based on production rules of

the form < actor, event, condition, action>. A particular action “delegate” allows the

propagation of an local event and its activation context to other scenario parts, for

instance to adapt the final exam content, based on a particular activity performance.
Personalization of massive open online courses
We will now address a typical MOOC scenario to illustrate a method for personalizing

a massive open online course. We aim to identify possible bottlenecks and critical tasks

where new or adapted tools are needed for the TELOS system or for MOOC platforms
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like Open-edX (2014). The goal here is to add to an initial MOOC scenario a number

of software advisors, as explained in the previous section, and a module that will help

cluster learners into subgroups where learners have similar competency profiles to provide

them with an adapted scenario.

The MOOC global scenario

Figure 7 present a MOOC scenario for a course on interviewing techniques to which a

preliminary module has been added for personnalization. Each of the five modules

(represented by single white ovals) spans on 1–2 weeks.

� Module 0 proposes preliminary activities evaluated using various methods to

subdivide the group of learners into subgroups having similar competencies; e.g.

three subgroups termed “novice”, “intermediate” or “advanced”. There could be

more subgroups but three seems sufficient for our illustration purpose.

� When the subgroups are created, each learner will afterwards (P link) do an activity

(represented by multiple ovals) where he/she will choose a plan for the rest of the

course adapted to his/her subgroups’ competency profile. This plan is produced by

an advisory agent that will propose an ordering of modules A, B and C, according

to the results of module 0. For the advanced subgroup for example, module B can

be skipped; for the intermediate subgroup, module B is proposed after module C as

enrichment; for the novice group, module A, B and C are done in that sequential

order.

� For all three subgroups, module D follows the other modules completion.

� For each of module A, B, C and D, the activities and the resources proposed to

learners will differ from one subgroup to the other, according to the

recommendations of the corresponding advisory agents.
Figure 7 A MOOC’s learning scenario (in TELOS editor) with subgroups creation and five advisory agents.
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� Another actor, the “Community Animator”, participates in module 0 and also

triggers the operation that sends automatic attestations to learners, after module D

is completed.
Creating the subgroups

We will now expand on Figure 8 the sub-model for module 0 where the subgroups are

created to help personalize the learning scenario. This module starts when the commu-

nity animator sends a notification to the learners to start the module’s first activity.

Before that, the community animator will have produced a self-evaluation question-

naire to be used by learners to assess their own competencies. For this, he triggers the

Q&A automatic production operation of Figure 8. This operation takes as input a Course

competency profile such as the one shown on Figure 9 and produces a Competency

self-evaluation questionnaire. This questionnaire presents each competency in the profile

to each learner and asks if he/she considers him/herself at one of these four levels:

aware, familiar, productive, or advanced. These levels are defined according to the

same competency performance criteria shown on Figure 9 and the definition of the

four levels are provided to the learners to help them select the right level that corresponds

to their situation.

This questionnaire will be used in the third activity of module 0. In the first activity,

each learner consults video and/or texts on interviewing techniques. Afterwards, they
Figure 8 Personalization scenario within a MOOC for the creation of subgroups.



Figure 9 Example of a competency profile in TELOS competency editor.
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pass a Q&A test on interviewing techniques, and the results are compiled automatically

for each learner. MOOC platforms usually provide such operations to assess learners.

The second activity engages learners to write an interview plan. The input is a Problem

statement where an organization aims to recruit new professionals to achieve strategic

functions within the organization. The Produced document will be automatically and

randomly distributed to a number of peer learners who will rate the documents assigned

to them using a questionnaire related to the competency profile for the course. The Plan

evaluation results of the second activity will be compiled by the operation Distribute to

peer learners and compile ratings shown of Figure 8.

In the third activity, each learner will assess his/her own competencies using the

Competency self-evaluation questionnaire prepared by the course designer as mentioned

before, therefore producing the Competencies evaluation results shown on Figure 8.

Finally, an operation for “Automatic classification in subgroups” will combine the

results data of the three activities, according to some weighting policy established by

the course designer, producing the list of learners for each subgroup and sending a

notification to each learner to inform them on their assigned subgroup.

Then the execution of module 0 stops and the flow of control in the scenario moves

back to the global scenario and to the other activities and modules of the MOOC.
Competency referencing of actors, modules and activities, and resources

Competency referencing plays a major role in the proposed personalization process. To

start the process, a specific competency profile or model must be built according to the

course content.

Such a profile, named here Interviewing competencies is built using the TELOS com-

petency editor shown on Figure 9. Other competency profiles have been built for other

course subject. Each profile follows the model presented in sections “Semantic referencing

of scenario components” and “Activities, resources and user competency models”. First the
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knowledge part is declared, then a generic skill is selected with its type (or meta-domain)

and finally the performance criteria are set, combined automatically to produce the

performance level for each competency.

The Interviewing competencies’ profile is shown on the left part of Figure 9. One of the

target competencies for the course labeled “1c-Select an adequate interview process” is se-

lected for edition and displayed on the right side of the figure. Its knowledge part is a

property of an interview process with its domain and co-domain classes; its generic skill

part is level 2-Explicitate and is typed “cognitive”; its performance part is at the level 6-pro-

ductive resulting from the combination of the five criteria below. These competency parts

are combined in a precise natural language statement: Define the best type of interview

process that allows an efficient evaluation of desired skills, without help, in any situation.

This competency profile has four sections corresponding to the various modules of

the course. These modules are referenced by the competencies in corresponding sections

of the profile; for example, module A is referenced by all the competencies in section

“Preparing for the interview”. Inside module A, the activities and resources are referenced

by only part of the competencies for the module. It is up to the designer to ensure that all

the competencies of the module are well covered and well distributed amongst the activ-

ities and the resources that compose the module.

The learner’s competencies are set initially at the end of the preliminary module 0. At

the end of this module, initial competencies have been attributed to the different

learners during the classification operation that has produced the subgroups of

learners. These initial competencies of individual learners will evolve throughout the

course scenario.

Consider an activity in module A that consists in selecting an adequate interview

process. After evaluation of this activity, depending on the quality of the outcome, a

competency similar to 1c, possibly with a lower performance level will be added to the

learner’s model in a similar way as explained in section “Multi-agent recommendation

system”. Also, an improvement activity will be proposed by an advisory agent to this

learner by providing additional resources to consult. Hopefully, at the end of the

course, the set of actual competencies of this learner will reach the targeted levels in

the competency profile for the course.
Overview of the process and required tools for MOOC personalization
In this concluding section we provide an overview of an adaptation/personalization

process that is integrated in the overall instructional engineering process. We also dis-

cuss some strategic tools that need to be developed or adapted to make the adaptation/

personalization process efficient for MOOCs.

The adaptation/personalization process

We now focus on the work of the design team. Figure 10 presents an abstracted

process from the example of the previous section. It starts with the “Original scenario”

and leads to the production of an “Adapted scenario”.

In a first activity, the design team will prepare a competency profile using a competency

editor. The TELOS competency editor presented on Figure 9 is one solution that provides

a natural language statement of the competencies, but more important it provides their



Figure 10 The general scenario adaptation process.
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underlying structure (K, S, P). Simpler solutions exist such as an outline/tree editor that is

available in any text editor, but it would have to be extended to provide the structural

parts of a competency on which competency comparison relations can be computed. One

could also use a simple taxonomy of concepts instead of a complete OWL ontology as we

have done in the examples here.

In the second activity we need to reference the MOOC modules with target comptencies

from the profile defined in the first activity. For this we need a semantic referencing tool to as-

sign target competency at least to each module of the course. The same tool would also en-

able designers to assign entry competencies to modules in order to notify learners who would

not have the capacity to start a module and to recommend preparatory activities in this case.

Inside the module, the design team would also annotate with competencies critical activities

and resources for which recommendations seem necessary.

The next two functions on Figure 10 represent the two methods of adaptation

employed in the example of section “Personalization of massive open online courses”.

They are detailed in sub-graphs that we will discuss in the following paragraphs.
Figure 11 The learner referencing and subgroups creation sub-process.
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Adding a preliminary module for creating subgroups

The first adaptation method is adding a preliminary module containing one or more

ways to evaluate the competencies of each learner. The evaluation results serve to

define subgroups of learner with similar, compatible or complementary competencies,

as well as provide a basis for identifying the competencies of individual learners. Figure 11

presents this sub-process.

The first design activity is to add a preliminary module to the original scenario and

reference the learning activities and resources within that module with competencies

as was done previously for the rest of the course. The new module will be created

using a scenario editor. It can be the same editor used to build the original scenario

or another one. For example, the new module could be built with Open-edX studio if

the original scenario had been built in this editor. The new module could also be

integrated in Open-edX by an external call to another scenario editor obtained by

specializing the TELOS editor used in section “Personalization of massive open online

courses”.

There are many options for the learning activities that can be inserted in the prelim-

inary module to evaluate learners’ competencies. In the example of section

“Personalization of massive open online courses”, we presented three main options that

we generalize in the design sub-process of Figure 11.

The first one is compulsory. It consists in automatically producing a questionnaire

from the competency profile to enable each learner to rate his own competencies for

the course. This competency questionnaire can be very simple, for example a set of

multiple-choice question based on the competency statements with choices such as

{unaware, familiar, productive, advanced} or any other set of value consistent with the

way competencies are defined. In this way, a distance between the actual competencies

of learners and the target competencies for a module, activity or resource can be

automatically computed for each learner. The same kind of competency comparison

can be done to check if a learner has the prerequisite competencies for a module,

activity or resource.

One might think it is not sufficient to have learners evaluate their own competencies.

Some learners might overestimate or underestimate themselves. Still, there is an incen-

tive for a learner to be as precise as possible because providing the best information

possible opens the possibility for better assistance to the learner from the system.

But additional ways to assess competencies are offered with the two other options of

Figure 11. In the first case, if video or text consultation activities are integrated to the

preliminary module scenario, a simple Q&A test can be added, producing evaluation

results automatically. In the second case, if there are production or construction activ-

ities (essays, problem solutions, graphs,…), the resulting productions can be distributed

to peer learners who will rate a limited number of their peers by filling a small assess-

ment questionnaire. In both cases, the Q&A and the peer assessment questionnaires

must be related to the competency statements for the course, so that the results can be

combined with the self-assessment results.

If two or more evaluation activities are inserted in the MOOC preliminary module,

we need to add some automatic operations in the system, one of the features in

TELOS. One operation simply combines the evaluation results using a weighting policy

before adding the result in the learner’s competency references. Another one is the
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integration of a learner clustering operation. This important operation combines the

various competency evaluation results using a clustering policy specified by the

designers. The policy will include at least the relative weights assigned to the various

evaluation methods, and a specified number of subgroups to be created. The tool will

create automatically the lists of subgroup members and notify the individuals on their

membership and their peers’ average competencies.

More advanced parameters can be included in the clustering policy. One way would be to

integrate in the same group learners with similar cognitive competencies, but with comple-

mentary technical or socio-affective competencies, so that collaboration inside a group can

be more productive. Another extension is to use historic data from previous instances of the

course, using learning analytics methods, to cluster learners according to a clustering policy.
Inserting recommenders/advisory agents in the scenario

Finally, to conclude the adaptation process, the design team will use a scenario editor

to insert recommenders or advisory agents for critical modules, activities or resources

in the course scenario in a way similar to the previous sections.

Right after the preliminary module, when the subgroups have been created, the de-

sign team can insert a plan recommender agent to propose to each subgroup an

adapted path within the course. For this, the initial scenario must be designed in a

modular way so that the modules can be followed in different orders, and also the ac-

tivities and resources within a module. Also options can be provided between modules

and/or activities and resources. This leads to a number of alternative plans that can be

proposed to the various subgroups.

Next, the design team will identify critical modules and activities where resource

recommender agents are inserted. At these corresponding insertion point, additional or

alternative resources can be proposed. Also, notification recommender agents can be

added to propose a change in the study plan. As long as a learner succeeds in some ac-

tivities, his actual competencies will evolve and he must be notified of the change. Also,

sometimes, the evolution of a learner’s competencies will create a situation where he

must be notified to switch to another subgroup plan.
Conclusion
In this paper we have presented a process for the adaptation of learning scenarios and

resources that we propose for semantic personalization of MOOC learning experiences.

This paper is a contribution to the general field of Differentiated Instruction. Differenti-

ated instruction is a framework or philosophy for effective teaching that involves pro-

viding different students with different avenues to learning. As proposed by

(Tomlinson 1999), by considering varied learning needs, teachers can develop personal-

ized instruction so that all children in the classroom can learn effectively.

We address this important preoccupation within the Adaptive Semantic Web frame-

work by pretesting MOOC learners on their actual competencies within a shared com-

petency model to form sub-groups with differentiated learning scenarios. Within these

scenarios, we provide, through a production rule system, various learning activities and

resources according to the gap between learners’ actual competencies and the target

competencies for the course.
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This approach is based on a competency model extending domain ontologies with

skills and with performance criteria, which serves as a common semantic referential for

activities, resources and learners in the learning scenario.

Several editing, execution and inference tools have been developed to support the

model and the design process. As a proof of concept, we have tested the model and the

tools on a limited number of scenarios. Although the definition of the agent’s rules

might be a demanding task, it is worth noticing that only a few activities per scenario

may need to be personalized to provide for a personal learning experience. Moreover,

recent work on semantic annotation of learning objects and repositories as well as on

e-portfolios standards open the door to automatic extraction of semantic information

both of the resources and of the learner.

The context of a MOOC provides the advantage of a large number of learners. Having

access to large sets of learner data will help refine the relation for semantic nearness

between OWL-DL references. Adding weights to the various cases would probably

improve the quality of the evaluations. For example, one could assert that a subclass or

superclass is closer to a class than its instances or one of its defining properties, especially

if there are many defining attributes for this class. This is an interesting path to be

investigated.

Another important future work is the method’s feasibility in practice. The model pre-

sented here is quite general and thus, it is not that simple to implement. We need to

identify important special cases in a MOOC context that are manageable for average

designers. To improve the practical use of approach in a MOOC, most of the tasks will

have to be at least partly automated to take in account that a human tutor approach is

not feasible. In the actual system, relations used in the rule conditions are derived auto-

matically from the ontology and competency structures. Also, the semantic tagging of

learner is done automatically through various forms of competency assessment. This is

part of the solution but we do not pretend that we have a complete practical solution.

Automatic or semi-automatic extraction of semantic tag for resources could be achieve

using text analysis techniques for example.

Still, the approach presented here sets the ground for an open and flexible method to

personalize MOOCs. This is a major issue for the quality of the learning environments,

which depends mainly on the capability to adapt course content seamlessly to learners’

prerequisite competencies and goals.
Endnote
aUnlike other graphic presentation of ontologies, properties are shown as objects

(hexagons) between their domain and range classes (rectangles). It this way, the rela-

tions between properties can be shown on the same graph. Individual are linked to

classes by an “I” link.
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