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Abstract
We consider the situation when an elliptic problem in a subdomain �1 of an
n-dimensional bounded domain � is coupled via inhomogeneous canonical
transmission conditions to a parabolic problem in � \ �1. In particular, we can treat
elliptic-parabolic equations in bounded domains with discontinuous coefficients.
Using Fourier multiplier techniques, we prove an a priori estimate for strong solutions
to the equations in Lp-Sobolev spaces.
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1 Introduction
In the present paper we prove a priori estimates in Lp-Sobolev spaces for the solution of
a transmission problem of elliptic-parabolic type with discontinuous coefficients. More
precisely, we consider a bounded domain � ⊂ R

n which is divided into two subdomains
�, � separated by a closed contour � ⊂ � and a boundary value problem of the form

A(x,D)u = f in �,(
A(x,D) – λ

)
u = f in �, (.)

C(x,D)u = h on ∂�.

Here A(x,D) is a differential operator of order m, C(x,D) is a column of boundary op-
erators C, . . . ,Cm, and λ is a complex parameter. We assume fk ∈ Lp(�k) and are looking
for a solution u ∈W m

p (�). The top-order coefficients of the operator A(x,D) are assumed
to be continuous up to the boundary in each subdomain �k but may have jumps across
the interface �. The condition u ∈W m

p (�) leads to the canonical transmission conditions
along �, given by

[[
∂ j–
ν u

]]
=  (j = , . . . , m), (.)

where [[∂ j–
ν u]] stands for the jump of the (j – )th normal derivative of u along the inter-

face�. Generalizing (.), we will consider inhomogeneous transmission conditions of the
form

B(x,D)u = g, (.)
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where B = (B, . . . ,Bm)� with

Bj(x,D)u := ∂ j–
ν u – ∂ j–

ν u (j = , . . . , m).

Here we have set uk := u|�k for k = , .
The aim of the paper is to prove uniform a priori estimates for the solutions of (.)

and (.) under suitable ellipticity and smoothness assumptions on A and C, see Section 
below for the precise formulations. To give an idea of our results, let us for the moment
assume that f = f =  and h =  in (.) and (.). In classical elliptic theory, in the case of
an uncoupled system we would expect a uniform a priori estimate of the form

‖u‖Wm
p (�) ≤ C

( m∑
j=

‖gj‖Wm–j+–/p
p (�) + ‖u‖Lp(�)

)
.

On the other hand, the classical parabolic (in the sense of parameter-elliptic) a priori es-
timate would read

‖|u‖|Wm
p (�) ≤ C

m∑
j=

‖|gj‖|Wm–j+–/p
p (�).

Here ‖| · ‖|Ws
p := ‖ · ‖Ws

p + |λ|s/m‖ · ‖Lp is the typical parameter-dependent norm appearing
in parabolic theory. Concerning the coupled system (.), (.), the question arises if we
still have similar estimates for u and u. We will see below that this is true in some sense.
More precisely, we will obtain

‖u‖Wm
p (�) + ‖u‖Wm

p (�) ≤ C

( m∑
j=

‖gj‖Wm–j+–/p
p (�) + ‖u‖Lp(�)

)
,

|λ|/‖u‖Wm
p (�) + ‖|u‖|Wm

p (�) ≤ C

( m∑
j=

‖|gj‖|Wm–j+–/p
p (�) + |λ|/‖u‖Lp(�)

)
.

This can be seen as a mixture of elliptic and parabolic a priori estimates. Note that we do
not reach the full order m with respect to u in the first inequality and not the full power
|λ| with respect to u in the second inequality. The general result for f �=  and h �=  and
the precise formulation are stated in Section  below.
Applications of problem (.), (.) (in its parabolic form, i.e., the parameter λ being

replaced by the time derivative) can be found, e.g., in [], including the heat equation in
a domain with vanishing thermal capacity in some subdomain and a model of an electric
field generated by a current in a partially non-conducting domain. On the other hand, the
problem under consideration is closely related to spectral problems with indefinite weight
functions of the form

(
A(x,D) – λω(x)

)
u = f in �, C(x,D)u =  on ∂�.

Here ω is a weight function which may change sign and may vanish on a set of positive
measure. Such spectral problems have been investigated, e.g., in a series of papers by Faier-
man (see [–]) and by Pyatkov [, ], see also [] and the references therein. In particular,

http://www.boundaryvalueproblems.com/content/2014/1/22
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in the paper [] a Calderón method of reduction to the boundary was applied to deal with
the case where ω vanishes on a set � of positive measure. For this, unique solvability of
the Dirichlet boundary value problem in � had to be assumed. Transmission problems
of purely parabolic type (where the parameter λ is present in each subdomain) and Lp-a
priori estimates for their solution were considered in [] and []. Transmission problems
in Lp were also studied, with the same methods as in the present note, by Shibata and
Shimizu in [].
A standard approach to treat transmission problems is to use (locally) a reflection tech-

nique in one subdomain resulting in a system of differential operators which are coupled
by the transmission conditions. A general theory of parameter-dependent systems can
be found in a series of papers by Volevich and his co-authors (see [] and the refer-
ences therein). Here the so-called Newton polygon method leads to uniform a priori esti-
mates for the solution. However, in the present case the Newton polygon is of trapezoidal
form and thus not regular. Therefore, the Newton polygon approach cannot be applied to
the transmission problem (.). On the other side, the resulting system is not parameter-
elliptic in the classical sense ([]) and is not covered by the standard parameter-elliptic
theory. We also note the connection to singularly perturbed problems where a similar
Newton polygon structure appears, cf. []. The analysis of the elliptic-parabolic system
below also serves as a starting point for more general (and nonlinear) elliptic-parabolic
systems as, for instance, appearing in lithium battery models (see []). A detailed inves-
tigation of the nonlinear elliptic-parabolic lithium battery model and solvability in Lp-
Sobolev spaces can be found in the second author’s thesis []. In [] and [] mathe-
matical models for lithium battery systems can be found which lead to inhomogeneous
transmission conditions.
In Section  we will state the precise assumptions and the main result of the present

paper. The boundary value problem is analyzed by a localization method and the investi-
gation of the model problem in the half-space. An explicit description of the solution of
the model problem (in terms of Fourier multipliers) and resulting estimates can be found
in Section . Finally, the proof of the main a priori estimate is given in Section .

2 Statement of the problem andmain result
Let  < p < ∞, n ∈ N, k ∈ N := {, , , . . .}, and � ⊂ Rn be open. By (Lp(�),‖ · ‖,p,�) and
(Wk

p (�),‖ · ‖k,p,�) we denote the Lebesgue and Sobolev spaces on � with their standard
norms. We will further make use of the seminorms

|u|k,p,� :=
∑
|α|=k

∥∥Dαu
∥∥
,p,�

(
k ∈N,u ∈Wk

p (�)
)
,

where we used the standard notation Dα := (–i)|α|( ∂
∂x

)α · · · ( ∂
∂xn )

αn . For real non-integer
s >  let Ws

p(�) := Bs
pp(�) denote the Besov space on � with its standard norm. Be-

sides the standard norms, for the treatment of parameter-elliptic problems the following
parameter-dependent norms will be convenient: Let θ ∈ (,π ] and let λ ∈ �θ be a com-
plex parameter, varying in a closed sector �θ with vertex at  where �θ := {z ∈ C \ {} :
| arg(z)| < θ}. Then form ∈N and k ∈ {, , . . . , m}, we define

‖|u‖|k,p,� := ‖u‖k,p,� + |λ| k
m ‖u‖,p,�

(
u ∈Wk

p (�)
)
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/22
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On the boundary, we will consider parameter-dependent trace norms given by

‖|u‖|k–/p,p,� := ‖u‖k–/p,p,� + |λ| k–/pm ‖u‖,p,�
(
u ∈ Wk–/p

p (�)
)
.

ByFuwe denote the Fourier transformof u, and (F ′u)(ξ ′,xn) stands for the partial Fourier
transform with respect to the first n –  variables x′ := (x, . . . ,xn–).
Let � ⊂ R

n be a bounded domain with boundary ∂� of class Cm–,, and let � be a
closed Cm–, Jordan contour in �, having no points with ∂� in common. Denote by �

and � the resulting subdomains such that � ∩ � = ∅, ∂� = �, and � = � ∪ �. Note
that, due to our assumptions, there is no contact point of � and ∂�. We define ui := u|�i

and will consider the differential operators A(x,D) = A(x,D) for x ∈ � and Ã(x,D) –
λ = A(x,D) – λ for x ∈ �. Slightly generalizing the form of equation (.), we consider
differential operators of even order m of the following structure:

A(x,D) =
∑

|α|≤m

a()α (x)Dα and Ã(x,D,λ) =
∑

|α|+k≤m

a()αk (x)λ
k/mDα

withm ∈N and λ ∈ �θ for some θ ∈ [,π ). Furthermore, let the boundary operators Cj of
order ≤mj ≤ m –  be of the form

Cj(x,D) =
∑

|γ |≤mj

cjγ (x)Dγ ,

being defined on ∂�. We will write for short (A,C, . . . ,Cm) when we refer to the boundary
value problem (.).

Assumption .
() Smoothness assumptions on the coefficients. We assume

a()α ∈
⎧⎨⎩C(�) (|α| = m),

L∞(�) (|α| < m),
a()αk ∈

⎧⎨⎩C(�) (|α| = m),

L∞(�) (|α| < m)

for the coefficients of the differential operators and cjγ ∈ Cm–mj–,(∂�) for the
coefficients of the boundary operators.

(a) Ellipticity of A. For the principal symbol A
 (x, ξ ) :=

∑
|α|=m a()α (x)ξα , we have

A
 (x, ξ ) �=  (x ∈ �, ξ ∈ R

n \ {}).
(b) Ellipticity with parameter of the boundary value problem (Ã,C, . . . ,Cm). The

principal symbol of Ã satisfies

Ã
(x, ξ ,λ) :=

∑
|α|+k=m

a()αk (x)λ
k/mξα �= 

for all x ∈ � and all (ξ ,λ) ∈ (Rn × �θ ) \ {(, )}, and the Shapiro-Lopatinskii
condition is satisfied for (Ã,C, . . . ,Cm) at each point x ∈ ∂�. If
C
j (x,D) =

∑
|γ |=mj

cjγ (x)Dγ denotes the principal symbol of the boundary
operator, this condition reads as follows: For x ∈ ∂� let the boundary value
problem (Ã,C, . . . ,Cm) be rewritten in local coordinates associated with x, i.e. in

http://www.boundaryvalueproblems.com/content/2014/1/22
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coordinates resulting from the original ones by rotation and translation such that
the positive xn-axis coincides with the direction of the inner normal vector. Then
for all (ξ ′,λ) ∈ (Rn– × �θ ) \ {(, )} and hj ∈C, the ODE problem on the halfline

Ã

(
x, ξ ′,Dn,λ

)
v(xn) =  in (,∞),

C
j
(
x, ξ ′,Dn

)
v(xn) = hj at xn =  (j = , . . . ,m),

v(xn)→  (xn → ∞)

admits a unique solution. Here, Dn := –i ∂
∂xn .

() Assumptions on the data. We assume f ∈ Lp(�), f ∈ Lp(�), gj ∈W m–j+–/p
p (�)

for j = , . . . , m, and hj ∈W m–mj–/p
p (∂�) for j = , . . . ,m.

() In addition, we assume proper ellipticity, i.e. the polynomials A
 (x, ξ ′, t) and

Ã
(x, ξ ′, t,λ) ∈C[t] of order m from conditions (a) and (b) have exactlym roots

in each half-plane C± := {z ∈ C :± Im z > } for all x ∈ � and x ∈ �, respectively,
and for all ξ ′ ∈R

n– \ {} and λ ∈ �θ . Proper ellipticity allows a decomposition of
the form A

 (x, ξ ′, t) = A+(x, ξ ′, t)A–(x, ξ ′, t) with

A+
(
x, ξ ′, t

)
:=

m∏
j=

(
t – τj

(
x, ξ ′)) and

A–
(
x, ξ ′, t

)
:=

m∏
j=m+

(
t – τj

(
x, ξ ′)),

(.)

where τj denote the roots in C+ (j ≤m) and C– (j >m), respectively. A similar
decomposition with an additional dependence on λ also holds for Ã

 . We remark
that proper ellipticity holds automatically if n≥ .

Under these assumptions, we consider the inhomogeneous transmission boundary
value problem

A(x,D)u = f in �,

Ã(x,D,λ)u = f in �,

Bj(x,D)u = gj on � (j = , . . . , m),

Cj(x,D)u = hj on ∂� (j = , . . . ,m).

(.)

Here we have set Bj(x,D)u := ∂
j–
ν u – ∂

j–
ν u where ∂ν denotes the derivative in direction

of the outer normal with respect to �. Our main result is the following a priori estimate
for solutions to (.). Here, a solution of (.) is defined as a pair (u,u) belonging to the
Sobolev space W m

p (�) × W m
p (�) for which the system (.) is satisfied as equality of

Lp-functions.

Theorem . (A priori estimate for the transmission boundary value problem) Let As-
sumption . be satisfied and let u = (u,u) ∈ W m

p (�) × W m
p (�) be a solution to the

transmission problem (.). Then there exists λ >  such that for all λ ∈ �θ with |λ| ≥ λ

http://www.boundaryvalueproblems.com/content/2014/1/22
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the following estimates hold:

‖u‖m,p,� + ‖u‖m,p,� + |λ|/‖u‖,p,�

≤ C

(
‖f‖,p,� + ‖f‖,p,� + ‖u‖,p,�

+
m∑
j=

‖gj‖m–j+–/p,p,� +
m∑
j=

‖|hj‖|m–mj–/p,p,∂�

)
, (.)

‖u‖m,p,� + |λ|/‖u‖m,p,� + ‖|u‖|m,p,�

≤ C

(
|λ|/‖f‖,p,� + ‖f‖,p,� + |λ|/‖u‖,p,�

+
m∑
j=

‖|gj‖|m–j+–/p,p,� +
m∑
j=

‖|hj‖|m–mj–/p,p,∂�

)
. (.)

Note that with respect to g , inequality (.) is of elliptic type and (.) is of parameter-
elliptic type. Due to the fact that the boundary operators Cj act on u, we have parameter-
elliptic norms with respect to hj in both inequalities.

Remark . Our main task will be to study the problem for constant coefficient oper-
ators A(D) and Ã(D,λ) in the half-spaces Rn± without lower order terms. This simpli-
fication can be justified by performing a localization procedure, using a finite covering
� ⊂ ⋃N

k=Uk with appropriate open sets Uk , a corresponding partition of unity and per-
turbation results. For a detailed explanation of the localization procedure, we refer to
[], pp.-, but here we briefly list the types of local problems one has to deal with.
If Uk ⊂ �i, one faces a local elliptic (i = ) or parameter-elliptic (i = ) operator in the
whole space. For these situations, the estimates for ui are well-known results, see [],
Theorem .., for the elliptic and [], Proposition ., for the parameter-elliptic case. If
Uk ∩ ∂� �= ∅, the local problem is a standard boundary value problem in the half-space
and the desired estimate is contained in [], Proposition .. It remains to consider the
case whereUk intersects both � and �, and in the sequel we restrict our considerations
to the corresponding local model problem. This reads

A(D)u = f in R
n
+,

Ã(D,λ)̃u = f̃ in R
n
–, (.)

Dj–
n (u – u) = gj on R

n– (j = , . . . , m).

The reflection τn : Rn → R
n, x �→ (x′, –xn) will be useful to treat problem (.). There-

fore, we will use the notation A(ξ ,λ) := Ã(τn(ξ ),λ) = Ã(ξ ′, –ξn,λ) for the symbol of
the reflected operator, which is parameter-elliptic in R

n
+. We set u(x) := ũ(τn(x)) and

f(x) := f̃(τn(x)).
By this substitution, we may rewrite (.) as a system in the half-space Rn

+:

A(D,λ)u = f in R
n
+,

Dj–
n

(
u + (–)ju

)
= gj (j = , . . . , m) on R

n–.
(.)

http://www.boundaryvalueproblems.com/content/2014/1/22
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Here we have set

A(D,λ) :=

(
A(D) 
 A(D,λ)

)
,

u :=

(
u
u

)
, f :=

(
f
f

)
.

Remark . We see that the determinant of the principal symbol det(A(ξ ,λ)) = det(A(ξ ,
λ)) = A(ξ )A(ξ ,λ) vanishes at the points (,λ) ∈ R

n × (,∞). Hence the standard theory
for parameter-elliptic systems is not applicable in this case. Due to continuity and homo-
geneity of the principal symbols we have the estimate

∣∣A(ξ )A(ξ ,λ)
∣∣ ≥ C|ξ |m(|λ| + |ξ |m)

(.)

with a constant C > . Operators whose principal symbols allow an estimate of the form
(.) are also called N-elliptic with parameter. Here the ‘N’ stands for the Newton polygon
which is related to the principal symbol. In the case of (.), the Newton polygon is not
regular, and therefore this equation is not covered by the results on N-ellipticity as in [].

Remark . The boundary conditions in (.) are called canonical transmission condi-
tions. In the case gj = , they are equivalent to the condition U ∈W m

p (Rn) for

U
(
x′,xn

)
:=

⎧⎨⎩u(x′,xn) (xn ≥ ),

ũ(x′,xn) (xn < ).

Note that in (.) the number of conditions equals the order of the operator, in contrast
to boundary value problems. We will show in Lemma . below that the ODE system cor-
responding to the transmission problem (.) is uniquely solvable. This is an analogue
of the Dirichlet boundary conditions which are absolutely elliptic, i.e., for every properly
elliptic operator the Dirichlet boundary value problem satisfies the Shapiro-Lopatinskii
condition.

3 Fundamental solutions and solution operators
To represent the solution in terms of fundamental solutions, we start with the observation
that the ODE system obtained from (.) by partial Fourier transform is uniquely solvable.
This is the analogue of the Shapiro-Lopatinskii condition for transmission problems. For
detailed discussions of this condition for boundary value problems, we refer to [], Sec-
tion . and [], Chapter . The assertion of the following lemma is formulated for our
situation of one elliptic and one parameter-elliptic operator but of course it also holds in
the cases when both operators are of the same type.
To simplify our notation, we define q := λ/m and consider the differential operator

Ã(D,q) =
∑

|α|+k≤m a()αkqkDα with q ∈ � :=�θ/(m).

Lemma . Suppose the operators A(x,D) and Ã(x,D,q) are elliptic and parameter-
elliptic in �, respectively. Fix x ∈ ∂�, ξ ′ ∈ R

n– \ {}, q ∈ � and let hj ∈ C (j = , . . . , m).

http://www.boundaryvalueproblems.com/content/2014/1/22
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Then the ODE problem

A

(
x, ξ ′,Dn

)
u =  (xn > ),

Ã

(
x, ξ ′,Dn,q

)̃
u =  (xn < ),

Dj–
n (u – ũ)|xn= = hj (j = , . . . , m), (.)

u(xn) →  (xn → ∞),

ũ(xn) →  (xn → –∞)

admits a unique solution.

Proof In the sequel, we do not write down the dependence of the polynomials and their
roots on x explicitly and fix ξ ′ ∈ R

n– \ {} as well as q ∈ �. We decompose A
 (ξ ′, t) and

Ã
(ξ ′, t,q) as indicated in (.) into A

i±(ξ ′, t). LetM denote the m-dimensional space of
stable solutions to

A

(
ξ ′,Dn

)
v =  (xn > ), v→  (xn → ∞)

and letM denote them-dimensional space of stable solutions to

Ã

(
ξ ′,Dn,q

)
w =  (xn < ),w→  (xn → –∞).

Let B := {v, . . . , vm} and B := {w, . . . ,wm} be a basis of M and M, respectively. Then
B := B ∪B is obviously a subset of the m-dimensional space of solutions to the equation

P
(
ξ ′,Dn,q

)
u(xn) := A

+
(
ξ ′,Dn

)
A

–
(
ξ ′,Dn,q

)
u(xn) =  on R (.)

and B is linearly independent: Suppose there are nontrivial αj,βj ∈C (j = , . . . ,m) with

m∑
j=

αjvj =
m∑
j=

βjwj.

Then (.) would possess a solution which is bounded on the entire real line, which con-
tradicts the fact that the polynomial P(ξ ′, t,q) has only roots with nonzero imaginary part.
Hence B is a fundamental system to (.) and the determinant of the Wronskian matrix
W (xn) is nonzero:

detW (xn) = det

⎛⎜⎜⎝
v(xn) · · · wm(xn)

...
...

Dm–
n v(xn) · · · Dm–

n wm(xn)

⎞⎟⎟⎠ �=  (xn ∈R). (.)

Now suppose that (v,w) is a solution to (.). Then there exist constants αi,βi ∈ C for
i = , . . . ,m, such that

v(xn) =
m∑
j=

αjvj(xn) and w(xn) = –
m∑
j=

βjwj(xn).

http://www.boundaryvalueproblems.com/content/2014/1/22
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If we plug in this approach into the transmission conditions, we obtain the system of linear
equations to determine αj and βj:

⎛⎜⎜⎝
v() · · · wm()
...

...
Dm–

n v() · · · Dm–
n wm()

⎞⎟⎟⎠
⎛⎜⎜⎝

α
...

βm

⎞⎟⎟⎠ =

⎛⎜⎜⎝
h
...

hm

⎞⎟⎟⎠ .

From (.) it now follows that the coefficients exist and are uniquely determined, which
proves the assertion. �

From now on, we restrict ourselves to the model problem (.) which is the only non-
standard step in the proof of the main theorem, see Remark ..We first consider the case
f =  in (.), i.e. we study

A(D,q)u =  in R
n
+,

B(Dn)u = g on R
n–.

(.)

Here u = (u,u)�, g = (g, . . . , gm)�,

A(D,q) =

(
A(D) 
 A(D,q)

)
, B(Dn) =

(
B(,)(Dn) B(,)(Dn)
B(,)(Dn) B(,)(Dn)

)

with

B(,)(Dn) :=
(
Dj–

n
)
j=,...,m, B(,)(Dn) :=

(
(–)jDj–

n
)
j=,...,m,

B(,)(Dn) :=
(
Dj–

n
)
j=m+,...,m, B(,)(Dn) :=

(
(–)jDj–

n
)
j=m+,...,m.

Note that B(,)(Dn) and B(,)(Dn) are also called generalized Dirichlet and Neumann con-
ditions, respectively.
Due to Lemma ., the ODE system corresponding to (.) is uniquely solvable. The

main step in the proof of Theorem . will be to find a priori estimates for the fundamental
solutions of this ODE system. In the following, Ik stands for the (k × k)-dimensional unit
matrix.

Definition . The fundamental solution

ω :
(
R

n– \ {}) × (,∞)× � →C
×m,

(
ξ ′,xn,q

) �→ ω
(
ξ ′,xn,q

)
is defined as the unique solution of the ODE system (in xn)

A
(
ξ ′,Dn,q

)
ω

(
ξ ′,xn,q

)
=  (xn > ),

B(Dn)ω
(
ξ ′,xn,q

)|xn= = Im,

ω
(
ξ ′,xn,q

) →  (xn → ∞).
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Following an idea of Leonid Volevich [], we represent the solutions in a specific
way. For this, we consider the elliptic boundary value problem (A(D),B(,)(Dn)) and
the parameter-elliptic boundary value problem (A(D,q),B(,)(Dn)) separately. It is well
known that the (generalized) Dirichlet and Neumann boundary conditions are absolutely
elliptic, hence the Shapiro-Lopatinskii condition holds for both subproblems. We will call
the canonical basis for these boundary value problems the basic solutions Y () and Y ().
More precisely, we define the following.

Definition . We define the basic solution

Y () :
(
R

n– \ {}) × (,∞)→C
×m,

(
ξ ′,xn

) → Y ()(ξ ′,xn
)
,

as the unique solution of the ODE system

A
(
ξ ′,Dn

)
Y ()(ξ ′,xn

)
=  (xn > ),

B(,)(Dn)Y ()(ξ ′,xn
)|xn= = Im,

Y ()(ξ ′,xn
) →  (xn → ∞).

(.)

Analogously, the basic solution

Y () :
(
R

n– \ {}) × (,∞)× � →C
×m,

(
ξ ′,xn,q

) �→ Y ()(ξ ′,xn,q
)
,

is defined as the unique solution of the ODE system

A
(
ξ ′,Dn,q

)
Y ()(ξ ′,xn,q

)
=  (xn > ),

B(,)(Dn)Y ()(ξ ′,xn,q
)|xn= = Im,

Y ()(ξ ′,xn,q
) →  (xn → ∞).

(.)

We set

Y
(
ξ ′,xn,q

)
=

(
Y (j)
k

(
ξ ′,xn,q

))
j=,
k=,...,m

:=

(
Y ()(ξ ′,xn) 

 Y ()(ξ ′,xn,q)

)
.

The advantage of the basic solutions Y (), Y () lies in the fact that classical (parame-
ter-)elliptic estimates are easily available for them. We have to compare these solutions
with the fundamental solution ω. Let j ∈ {, . . . , m}. As the function ωj is a solution of
A(ξ ′,Dn)ωj =  (xn > ), it can be written as a linear combination of the basic solutions.
Therefore, we can write

ωj
(
ξ ′,xn,q

)
=

m∑
k=

Y ()
k

(
ξ ′,xn,q

)
ψkj

(
ξ ′,q

)
with unknown coefficients ψkj. The analogous representation holds for ωj. In matrix no-
tation, we obtain

ω
(
ξ ′,xn,q

)
= Y

(
ξ ′,xn,q

)
�

(
ξ ′,q

)

http://www.boundaryvalueproblems.com/content/2014/1/22
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with �(ξ ′,q) = (ψkj(ξ ′,q))k,j=,...,m. By the definition of the fundamental solution, we have

Im = B(Dn)ω
(
ξ ′,xn,q

)|xn=
= B(Dn)Y

(
ξ ′,xn,q

)|xn=�(
ξ ′,q

)
.

Therefore,

�
(
ξ ′,q

)
=

(
Im B(,)(Dn)Y ()(ξ ′,xn,q)|xn=

B(,)(Dn)Y ()(ξ ′,xn)|xn= Im

)–

. (.)

Remark . Due to the unique solvability of equations (.) and (.), we have for (ξ ′,q) ∈
(Rn– \ {})× � the following scaling properties for all r > :

Y ()
(

ξ ′

r
, rxn

)
= Y ()(ξ ′,xn

)
�(r),

Y ()
(

ξ ′

r
, rxn,

q
r

)
= Y ()(ξ ′,xn,q

)
�(r),

where we used the abbreviations

�(r) := diag
(
, r, . . . , rm–),

�(r) := diag
(
rm, . . . , rm–) = rm�(r).

(See also (.) below for an explicit representation of Y () and Y ().) We will apply this
with r := |ξ ′| for Y () and r := |ξ ′|+ |q| for Y (). Note that these scaling properties also yield
the identities

B(,)(Dn)Y ()(ξ ′, 
)
=�(r)B(,)(Dn)Y ()

(
ξ ′

r
, 

)
�(r)–,

B(,)(Dn)Y ()(ξ ′, ,q
)
=�(r)B(,)(Dn)Y ()

(
ξ ′

r
, ,

q
r

)
�(r)–.

(.)

We summarize the representation of the solution in form of solution operators:

Lemma . Let g ∈ ∏m
j= W

m–j+–/p
p (Rn–), and let u ∈W m

p (Rn
+) be a solution of (.). Let

g̃ ∈ ∏m
j= W

m–j+
p (Rn

+) be an extension of g to the half-space. Then u has the form

u = T̃g + T(∂ñg),

where ∂n := ∂
∂xn and where the solution operators T and T are given by

(Tϕ)
(
x′,xn

)
= –

∫ ∞



(
F ′)–(∂nY )(ξ ′,xn + yn,q

)
�

(
ξ ′,q

)(
F ′ϕ

)(
ξ ′, yn

)
dyn,

(Tϕ)
(
x′,xn

)
= –

∫ ∞



(
F ′)–Y (

ξ ′,xn + yn,q
)
�

(
ξ ′,q

)(
F ′ϕ

)(
ξ ′, yn

)
dyn.

Here the basic solution Y (ξ ′,xn,q) is defined in Definition ., and the coefficient matrix
�(ξ ′,q) is defined in (.).

http://www.boundaryvalueproblems.com/content/2014/1/22
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Proof By definition of the fundamental solution, we have u = (F ′)–ω(·,xn)Fg . Writing
this in the form

u = –
∫ ∞



∂

∂yn

[(
F ′)–ω(·,xn + yn)

(
F ′̃g

)
(·, yn)

]
dyn,

(‘Volevich trick’) and noting that ω(ξ ′,xn,q) = Y (ξ ′,xn,q)�(ξ ′,q), we obtain the above rep-
resentation. �

Our proofs are based on the Fourier multiplier concept, see, e.g., []. Here a function
m ∈ L∞(Rn) is called an Lp-Fouriermultiplier ifTm : S(Rn) → L∞(Rn), f �→F–mF (being
defined on the Schwartz space S(Rn)) extends to a continuous mapping Tm ∈ L(Lp(Rn)).
We will apply Michlin’s theorem to prove the Fourier multiplier property. For this, we
introduce the notion of a Michlin function.

Definition . Let M : (Rn– \ {}) × � → C
k×� be a matrix-valued function. Then we

call M a Michlin function if M(·,q) ∈ C[ n ]+(Rn– \ {}) for all q ∈ � and if there exists a
constant C > , independent of q, γ ′, and ξ ′, such that

∣∣ξ ′∣∣|γ ′|∣∣∂γ ′
ξ ′ M

(
ξ ′,q

)∣∣ ≤ C
(

ξ ′ ∈R
n– \ {},q ∈ �,γ ′ ∈N

n–
 with

∣∣γ ′∣∣ ≤
[
n


]
+ 

)
.

Remark . (a) Michlin’s theorem (see [], Section ..) states that everyMichlin func-
tion is an Lp-Fourier multiplier for all p ∈ (,∞).
(b) By the product rule one immediately sees that the product of Michlin functions is a

Michlin function, too.
(c) LetM : (Rn– \ {})× � →C

k×k be a Michlin function, and letM(ξ ′,q) be invertible
for all ξ ′ and q. If the norm of the inverse matrix is bounded by a constant independent of
ξ ′ and q, then also (ξ ′,q) �→M(ξ ′,q)– is aMichlin function. This follows iteratively noting
that

ξj∂ξjM
(
ξ ′,q

)– =M
(
ξ ′,q

)–(
ξj∂ξjM

(
ξ ′,q

))
M

(
ξ ′,q

)–.
Now we will show that the basic solution Y as well as the coefficient matrix � satisfy

uniform estimates. Here and in the following, C stands for a generic constant which may
vary from inequality to inequality but is independent of the variables appearing in the
inequality. We will scale the functions with |ξ ′| and with

ρ := ρ
(
ξ ′,q

)
:=

∣∣ξ ′∣∣ + |q|. (.)

Lemma . (a) For all � ∈N and all xn > , the function

M(�)


(
ξ ′,xn,q

)
:= xn

(
|ξ ′|–� 
 ρ–�

)
∂�+
n Y

(
ξ ′,xn,q

)(
�(|ξ ′|) 

 �(ρ)

)

is a Michlin function with constant independent of xn ∈ (,∞).
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(b) The functions

C
(
ξ ′,q

)
:=�(ρ)–

(
B(,)(Dn)Y ())(ξ ′, ,q

)
�(ρ),

C
(
ξ ′) :=�

(∣∣ξ ′∣∣)–(B(,)(Dn)Y ())(ξ ′, 
)
�

(∣∣ξ ′∣∣)
are Michlin functions.

Proof We use an explicit description of the basic solutions. According to [], Section ,
there exist polynomials (with respect to τ ) N(ξ ′, τ ), . . . ,Nm(ξ ′, τ ) and Nm+(ξ ′, τ ,q), . . . ,
Nm(ξ ′, τ ,q) such that


π i

∫
γ

Nk(ξ ′, τ )
A+(ξ ′, τ )

τ j– dτ = δjk (j,k = , . . . ,m),


π i

∫
γ

Nk(ξ ′, τ ,q)
A+(ξ ′, τ ,q)

τ j– dτ = δjk (j,k =m + , . . . , m)

with δjk being the Kronecker delta symbol. Here γ = γ(ξ ′) is a smooth closed contour in
the upper half-plane C+, depending on ξ ′ and enclosing the m roots of the polynomial
A(ξ ′, ·) with positive imaginary part, while γ = γ(ξ ′,q) is a smooth closed contour in
C+ depending on (ξ ′,q) and enclosing the m roots of A(ξ ′, ·,q) in C+. Moreover, Nk is
positively homogeneous in its arguments of degree m – k for k = , . . . , m while A+ and
A+ are positively homogeneous in their arguments of degreem.
This leads to the following representation for the basic solutions Y () = (Y ()

k )k=,...,m and
Y () = (Y ()

k )k=m+,...,m:

Y ()
k =


π i

∫
γ

Nk(ξ ′, τ )
A+(ξ ′, τ )

eixnτ dτ (k = , . . . ,m),

Y ()
k =


π i

∫
γ

Nk(ξ ′, τ ,q)
A+(ξ ′, τ ,q)

eixnτ dτ (k =m + , . . . , m).
(.)

To prove part (a), we will show that for all j ∈N

xn
∣∣ξ ′∣∣k–j∂ j

nY
()
k

(
ξ ′,xn

)
and xnρk–j∂ j

nY
()
k

(
ξ ′,xn,q

)
(.)

are Michlin functions. Setting j := � +  and noting the definitions of � and �, this im-
mediately implies (a). Similarly, to show (b) we have to prove that

∣∣ξ ′∣∣k–j–∂ j
nY

()
k

(
ξ ′, 

)
and ρk–j–∂ j

nY
()
k

(
ξ ′, ,q

)
(.)

are Michlin functions. We will restrict ourselves to Y ()
k , the result for Y ()

k follows in the
same way.
For j ∈N and k ∈ {m + , . . . , m}, we substitute τ �→ τ /ρ in the integral representation

(.) and obtain

∂
γ ′
ξ ′

[
xnρk–j∂ j

nY
()
k

(
ξ ′,xn,q

)]
=


π i

∫
γ(ξ ′ ,q)

∂
γ ′
ξ ′

[
ρk–j Nk(ξ ′, τ ,q)

A+(ξ ′, τ ,q)

]
τ jxneixnτ dτ

http://www.boundaryvalueproblems.com/content/2014/1/22
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=


π i

∫
γ(ξ ′/ρ,q/ρ)

∂
γ ′
ξ ′

[
ρk–j Nk(ξ ′,ρτ ,q)

A+(ξ ′,ρτ ,q)

]
(ρτ )jxneiρxnτ ρ dτ

=


π i

∫
γ̃

ρ j∂
γ ′
ξ ′

[
Hk

(
ξ ′,ρτ ,q

)]
τ j(ρxn)eiρxnτ dτ

with Hk(ξ ′,ρ, τ ) := ρk–jNk(ξ ′,ρτ ,q)/A+(ξ ′,ρτ ,q). Note for the first equality that it is not
necessary to differentiate the contour γ(ξ ′,q) because it may be chosen locally indepen-
dent of ξ ′. In the last equality, we replaced the contour γ( ξ ′

ρ
, q

ρ
) by a fixed contour γ̃ which

is possible by a compactness argument.
Due to the properties of Nk and A+, the functionHk is homogeneous of degree –j in its

arguments. Therefore, ∂γ ′
ξ ′ Hk is homogeneous of degree –j– |γ ′| in its arguments, and we

obtain

∂
γ ′
ξ ′

[
Hk

(
ξ ′,ρτ ,q

)]
= ρ–j–|γ ′|(∂γ ′

ξ ′ Hk
)(ξ ′

ρ
, τ ,

q
ρ

)
.

From the fact that γ̃ may be chosen in C+ and the elementary inequality te–t ≤  (t ≥ )
we get

∣∣(ρxn)eiρxnτ
∣∣ = (ρxn)e–ρxn Im τ ≤ 

Im τ
≤ C

for τ ∈ γ̃. Inserting this and the homogeneity of Hk into the above representation, we see∣∣∂γ ′
ξ ′

[
xnρk–j∂ j

nY
()
k

(
ξ ′,xn,q

)]∣∣ ≤ Cρ jρ–j–|γ ′| ≤ C
∣∣ξ ′∣∣–|γ ′|

which shows (.). In the same way, for the proof of (.) we set xn =  in the above
integral representation and obtain

∣∣∂γ ′
ξ ′

[
ρk–j–∂ j

nY
()
k

(
ξ ′, ,q

)]∣∣ = ∣∣∣∣ 
π i

∫
γ̃

ρ j∂
γ ′
ξ ′

[
Hk

(
ξ ′,ρτ ,q

)]
τ j dτ

∣∣∣∣
≤ Cρ jρ–j–|γ ′| ≤ C

∣∣ξ ′∣∣–|γ ′|.

This finishes the proof of (.) and (.) for Y ()
k . For Y ()

k , we use the substitution
τ �→ τ /|ξ ′| in the integral representation. As indicated above, (a) and (b) are immediate
consequences of (.) and (.), respectively. �

The last lemma in connection with the following result is the essential step for the proof
of the a priori estimates from the main theorem.

Lemma . The functions

M
(
ξ ′,q

)
:=

(
�(|ξ ′|)– 

 |ξ ′|–m�(ρ)–

)
�

(
ξ ′,q

)(
�(|ξ ′|) 

 |ξ ′|m�(ρ)

)
,

M̃
(
ξ ′,q

)
:=

(
|ξ ′|–Im 

 ρ–Im

)
M

(
ξ ′,q

)(
|ξ ′|Im 
 ρIm

)

are Michlin functions.

http://www.boundaryvalueproblems.com/content/2014/1/22


Denk and Seger Boundary Value Problems 2014, 2014:22 Page 15 of 23
http://www.boundaryvalueproblems.com/content/2014/1/22

Proof By Lemma .(b), we have

�
(
ξ ′,q

)
=

(
Im �(ρ)C(ξ ′,q)�(ρ)–

�(|ξ ′|)C(ξ ′)�(|ξ ′|)– Im

)–

with Michlin functions C and C. ForM we obtain

M
(
ξ ′,q

)
=

(
Im ( |ξ ′|

ρ
)m�( ρ

|ξ ′| )C(ξ ′,q)
�( |ξ ′|

ρ
)C(ξ ′) Im

)–

. (.)

By a homogeneity argument we see that �(|ξ ′|/ρ) and (|ξ ′|/ρ)m�(ρ/|ξ ′|) are Michlin
functions, and therefore the matrix on the right-hand side of (.) is a Michlin function.
In order to apply Remark .(c), we have to show that the norm of M(ξ ′,q) is uniformly
bounded.
For this, we write M(ξ ′,q) in the form of a Schur complement: For an invertible block

matrix, we have(
Im A(,)

A(,) Im

)–

=

(
Im +A(,)S–A(,) –A(,)S–

–S–A(,) S–

)

with S := Im –A(,)A(,). Applied to the matrixM, we obtain

M
(
ξ ′,q

)
=

(
Im + ( |ξ ′|

ρ
)m�( ρ

|ξ ′| )CS–�( |ξ ′|
ρ
)C –( |ξ ′|

ρ
)m�( ρ

|ξ ′| )CS–

–S–�( |ξ ′|
ρ
)C S–

)
(.)

with

S
(
ξ ′,q

)
:= Im –

( |ξ ′|
ρ

)m

�

( |ξ ′|
ρ

)
C

(
ξ ′)�

(
ρ

|ξ ′|
)
C

(
ξ ′,q

)
. (.)

By (.), the matrices C and C and, consequently, the matrix M are homogeneous of
degree  in their arguments. Thus we can write S in the form

S
(
ξ ′,q

)
= S

(
ξ ′

|ξ ′| ,
q

|ξ ′|
) (

ξ ′ ∈ R
n– \ {},q ∈ �

)
.

We set η′ := ξ ′/|ξ ′| and

� :=
ρ

|ξ ′| =
|ξ ′| + |q|

|ξ ′| =  +
|q|
|ξ ′|

and write S as

S
(
ξ ′,q

)
= Im –�–m�

(

�

)
C

(
η′)�(�)C

(
η′,

q
|ξ ′|

)
.

The matrices C, C, and �(/�) are bounded for all ξ ′ ∈ R
n– \ {} and q ∈ �. By

|�(�)| ≤ C�m– for all � ≥ , we see that there exists a � >  such that∣∣∣∣�–m�

(

�

)
C

(
η′)�(�)C

(
η′,

q
|ξ ′|

)∣∣∣∣ ≤ 
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holds for all ξ ′ ∈ R
n– \ {} and q ∈ � with |q| ≥ �|ξ ′|. For these ξ ′ and q, a Neumann

series argument shows that the norm of S–(ξ ′,q) is bounded by .
For ξ ′ ∈ Rn– \ {} and q ∈ � with |q| ≤ �|ξ ′|, the tuple (ξ ′/|ξ ′|,q/|ξ ′|) belongs to the

compact set {(η′, q̃) : |η′| = , q̃ ∈ �, |̃q| ≤ �}. Nowweuse the fact that for all ξ ′ ∈R
n–\{}

and q ∈ �, the matrix B(Dn)Y (ξ ′, ,q) is invertible, and therefore the matrix on the right-
hand side of (.) is invertible, too. This yields the invertibility of S, and by continuity the
inverse matrix S–(ξ ′,q) is bounded for these ξ ′ and q.
Therefore, we have seen that |S–(ξ ′,q)| ≤ C holds for all ξ ′ ∈Rn– \ {} and q ∈ �. From

the explicit description of M(ξ ′,q) in (.) and the uniform boundedness of the other
coefficients in (.), we see that |M(ξ ′,q)| ≤ C holds for all ξ ′ and q. By Remark .(c),
M is a Michlin function.
The above proof also shows that the modification M̃ is a Michlin function. Note that

S(ξ ′,q) remains unchanged and that we obtain an additional factor ρ/|ξ ′| in the right upper
corner which does not affect the boundedness. �

4 Proof of the a priori estimate
In this section, we will investigate the mapping properties of the solution operators T,
T introduced in Lemma .. As above, let ρ := |ξ ′| + |q|. In the following, we will use the
abbreviations D′ := –i( ∂

∂x
· · · ∂

∂xn–
) and L(D′,q) := (F ′)–L(ξ ′,q)F ′. Based on Lemma .

and . and on the continuity of the Hilbert transform, it is not difficult to obtain the
following result.

Lemma . (a) Let

L
(
ξ ′,q

)
:=

(
ρm|ξ ′|m 

 ρm

)
,

L
(
ξ ′,q

)
:=

(
ρm|ξ ′|m�(|ξ ′|)– 

 ρm�(ρ)–

)
.

Then for all ϕ ∈ S(Rn
+)m and all � ∈N we have∥∥∥∥∥L(D′,q

)(
|D′|–� 
 (|D′| + |q|)–�

)
∂�
nTϕ

∥∥∥∥∥
Lp(Rn

+)

≤ C
∥∥L(D′,q

)
ϕ
∥∥
Lp(Rn

+)
.

The same holds when L and L are replaced by L() := |ξ ′|mρ–mL and L() := |ξ ′|mρ–mL,
respectively.
(b) Let

L̃
(
ξ ′,q

)
:=

(
ρm|ξ ′|m–�(|ξ ′|)– 

 ρm–�(ρ)–

)
.

Then for all ϕ ∈ S(Rn
+)m and all � ∈N we have∥∥∥∥∥L(D′,q

)(
|D′|–� 
 (|D′| + |q|)–�

)
∂�
nTϕ

∥∥∥∥∥
Lp(Rn

+)

≤ C
∥∥̃L(D′,q

)
ϕ
∥∥
Lp(Rn

+)
.
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Proof (a) For fixed � ∈N, let ϕ̃ := L(D′,q)ϕ and

ũ := L
(
D′,q

)(
|D′|–� 
 (|D′| + |q|)–�

)
∂�
nTϕ.

We have to show that ‖̃u‖Lp(Rn
+) ≤ C‖ϕ̃‖Lp(Rn

+). For this, we write

L
(
ξ ′,q

)(
|ξ ′|–� 
 ρ–�

)
∂�+
n Y

(
ξ ′,xn,q

)
�

(
ξ ′,q

)
L

(
ξ ′,q

)–
= x–n M(�)


(
ξ ′,xn,q

)(
ρm|ξ ′|mIm

)
M

(
ξ ′,q

)(
ρ–m∣∣ξ ′∣∣–mIm)

= x–n M(�)


(
ξ ′,xn,q

)
M

(
ξ ′,q

)
.

Inserting this into the definition of the solution operator, we obtain

ũ = –
∫ ∞




xn + yn

(
F ′)–M(�)


(
ξ ′,xn + yn,q

)
M

(
ξ ′,q

)
F ′ϕ̃

(
ξ ′, yn

)
dyn.

Therefore,

‖̃u‖pLp(Rn
+)

=
∫ ∞



∥∥F ′̃u(·,xn)
∥∥p
Lp(Rn–) dxn

≤
∫ ∞



[∫ ∞




xn + yn

∥∥(
F ′)–M(�)


(
ξ ′,xn + yn,q

)
×M

(
ξ ′,q

)
F ′ϕ̃

(
ξ ′, yn

)∥∥
Lp(Rn–) dyn

]p
dxn

≤ C
∫ ∞



[∫ ∞




xn + yn

∥∥ϕ̃(·,xn)
∥∥
Lp(Rn–) dyn

]p

dxn

≤ C
∫ ∞



∥∥ϕ̃(·, yn)
∥∥p
Lp(Rn–) dyn

= C‖ϕ̃‖pLp(Rn
+)
.

Here we used the fact thatM(�)
 andM are Michlin functions and therefore Fourier mul-

tipliers and that the (one-sided) Hilbert transform

φ �→Hφ, (Hφ)(xn) :=
∫ ∞



φ(yn)
xn + yn

dyn

induces a bounded operator in Lp((,∞)) for every p ∈ (,∞).
This shows the first statement in (a). Obviously, the uniform estimate also holds in the

case when L and L are multiplied with the same factor, as this factor cancels out.
The proof of (b) follows exactly in the same way with M being replaced by M̃ from

Lemma .. �

The next result shows the key estimate for the solution of (.).

Theorem . Let u ∈ (W m
p (Rn

+)) be a solution of A(D,q)u = , B(Dn)u = g with g ∈∏m
j= W

m–j+–/p
p (Rn–). Let g̃ ∈ ∏m

j= W
m–j+
p (Rn

+) be an extension of g to the half-space.
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Let q > . Then for all q ∈ � with |q| ≥ q, the inequalities

|u|m,p,Rn
+ + |u|m,p,Rn

+ + |q|m|u|,p,Rn
+ ≤ C

m∑
j=

‖̃gj‖m–j+,p,Rn
+ ,

|u|m,p,Rn
+ + |q|m|u|m,p,Rn

+ + ‖|u‖|m,p,Rn
+ ≤ C

m∑
j=

‖|̃gj‖|m–j+,p,Rn
+

hold.

Proof In this proof, we will write ‖ · ‖ := ‖ · ‖Lp(Rn
+). We use the equivalences

|ϕ|k,p,Rn
+ ≈

k∑
�=

∥∥∣∣D′∣∣k–�
∂�
nϕ

∥∥, ‖|ϕ‖|k,p,Rn
+ ≈

k∑
�=

∥∥(∣∣D′∣∣ + |q|)k–�
∂�
nϕ

∥∥
which can easily be seen by a Michlin type argument. With this, we get

|u|m,p,Rn
+ + |q|m|u|m,p,Rn

+ + ‖|u‖|m,p,Rn
+

≈
m∑
�=

∥∥∣∣D′∣∣m–�
∂�
nu

∥∥ +
m∑

�=

|q|m∥∥∣∣D′∣∣m–�
∂�
nu

∥∥
+

m∑
�=

∥∥(∣∣D′∣∣ + |q|)m–�
∂�
nu

∥∥
≤ C

m∑
�=

∥∥∥∥∥L(D′,q
)(

|D′|–� 
 (|D′| + |q|)–�

)
∂�
nu

∥∥∥∥∥
and

∥∥L(D′,q
)̃
g
∥∥ ≈

m∑
j=

∥∥(∣∣D′∣∣ + |q|)m∣∣D′∣∣m–j+g̃j
∥∥ +

m∑
j=m+

∥∥(∣∣D′∣∣ + |q|)m–j+g̃j
∥∥

≈
m∑
j=

|̃gj|m–j+,p,Rn
+ + |q|m

m∑
j=

|̃gj|m–j+,p,Rn
+

+
m∑

j=m+

‖|̃gj‖|m–j+,p,Rn
+ .

Let u ∈ (W m
p (Rn

+)) be a solution of A(D,q)u = , B(Dn)u = g , and let g̃ be an extension
of g . By a density argument, we may assume that u ∈ (S(Rn

+)). By Lemma ., we have
u = T̃g + T(∂ñg). Applying Lemma ., we get

|u|m,p,Rn
+ + |q|m|u|m,p,Rn

+ + ‖|u‖|m,p,Rn
+

≤ C

[ m∑
j=

(|̃gj|m–j+,p,Rn
+ + |q|m |̃gj|m–j+,p,Rn

+

)
(.)

+
m∑

j=m+

‖|̃gj‖|m–j+,p,Rn
+
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+
m∑
j=

|∂ñgj|m–j,p,Rn
+ + |q|m|∂ñgj|m–j,p,Rn

+ +
m∑

j=m+

‖|∂ñgj‖|m–j,p,Rn
+

]

≤ C

[ m∑
j=

(‖̃gj‖m–j+,p,Rn
+ + |q|m‖̃gj‖m–j+,p,Rn

+

)
(.)

+
m∑

j=m+

‖|̃gj‖|m–j+,p,Rn
+

]
. (.)

Inserting the inequality

‖̃gj‖m–j+,p,Rn
+ + |q|m‖̃gj‖m–j+,p,Rn

+ ≤ C‖|̃gj‖|m–j+,p,Rn
+

into the right-hand side, we see that

|u|m,p,Rn
+ + |q|m|u|m,p,Rn

+ + ‖|u‖|m,p,Rn
+ ≤ C

m∑
j=

‖|̃gj‖|m–j+,p,Rn
+ . (.)

On the other hand, inserting the inequality

‖̃gj‖m–j+,p,Rn
+ + |q|m‖̃gj‖m–j+,p,Rn

+ ≤ C|q|m‖̃gj‖m–j+,p,Rn
+

(which holds for all |q| ≥ q with a constant C depending on q), we get in particular

‖|u‖|m,p,Rn
+ ≤ C|q|m

m∑
j=

‖̃gj‖m–j+,p,Rn
+ .

Dividing by |q|m, we see that this implies

|u|m,p,Rn
+ + |q|m‖u‖ ≤ C

m∑
j=

‖̃gj‖m–j+,p,Rn
+ . (.)

In the same way as above, we can apply Lemma . with L() and L() instead of L and L,
respectively. We see that

|u|m,p,Rn
+ ≈

m∑
�=

∥∥∣∣D′∣∣m–�
∂�
nu

∥∥
≤ C

m∑
�=

∥∥∥∥∥L()
(
D′,q

)(
|D′|–� 
 (|D′| + |q|)–�

)
∂�
nu

∥∥∥∥∥
≤ C

(∥∥L()
(
D′,q

)̃
g
∥∥ +

∥∥̃L()
(
D′,q

)
∂ñg

∥∥)
≤ C

( m∑
j=

∥∥∣∣D′∣∣m–j+g̃j
∥∥ +

m∑
j=m+

∥∥∣∣D′∣∣m(∣∣D′∣∣ + |q|)m–j+g̃j
∥∥

+
m∑
j=

∥∥∣∣D′∣∣m–j
∂ñgj

∥∥ +
m∑

j=m+

∥∥∣∣D′∣∣m(∣∣D′∣∣ + |q|)m–j
∂ñgj

∥∥)
.
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With the inequality

∥∥∣∣D′∣∣m(∣∣D′∣∣ + |q|)m–j+g̃j
∥∥ ≤ C

∥∥∣∣D′∣∣m–j+g̃j
∥∥ (j =m + , . . . , m)

this gives

|u|m,p,Rn
+ ≤ C

m∑
j=

‖̃gj‖m–j+,p,Rn
+ .

This and equations (.) and (.) yield the statements of the theorem. �

Now we can consider the problem A(D,q)u = f , B(Dn)u = g in the half-space. As men-
tioned in Remark ., this finishes the proof of the main theorem.

Theorem . Let u ∈ (W m
p (Rn

+)) be a solution of A(D,q)u = f , B(Dn)u = g with f ∈
(Lp(Rn

+)) and g ∈ ∏m
j= W

m–j+–/p
p (Rn–). Let q > . Then for all q ∈ � with |q| ≥ q the

following a priori estimates hold:

‖u‖m,p,Rn
+ + ‖u‖m,p,Rn

+ + |q|m‖u‖,p,Rn
+

≤ C

(
‖f‖,p,Rn

+ + ‖f‖,p,Rn
+ +

m∑
j=

‖gj‖m–j+–/p,p,Rn– + ‖u‖,p,Rn
+

)
, (.)

‖u‖m,p,Rn
+ + |q|m‖u‖m,p,Rn

+ + ‖|u‖|m,p,Rn
+

≤ C

(
|q|m‖f‖,p,Rn

+ + ‖f‖,p,Rn
+ +

m∑
j=

‖|gj‖|m–j+–/p,p,Rn– + |q|m‖u‖,p,Rn
+

)
. (.)

Proof (i) We start the proof with some preliminary remarks. Let r+ : ϕ �→ ϕ|Rn
+ be the re-

striction operator fromR
n toRn

+. Then r+ is a retraction fromWk
p (Rn) toWk

p (Rn
+) for every

k ∈ N, and there exists a co-retraction (independent of k), i.e. a total extension operator
e+ ∈ L(Wk

p (Rn
+),Wk

p (Rn)) satisfying r+e+ = idWk
p (Rn

+) for all k (see [], Theorem .).

For every j ∈ {, . . . ,k – }, the trace operator to the boundary γju := ∂
j
nu|Rn– is a

bounded operator from Wk
p (Rn

+) to Wk–/p
p (Rn–). This holds both with respect to the

parameter-independent norms ‖ · ‖ and the parameter-dependent norms ‖| · ‖|. For the
latter, we refer to [], Proposition .. There exists a parameter-dependent extension op-
erator Eq ∈ L(Wk–/p

p (Rn–),Wk
p (Rn

+)) which satisfies γEq = idWk–/p
p (Rn–) and whose oper-

ator norm with respect to the parameter-dependent norms ‖| · ‖| is bounded by a constant
independent of q for all q ∈ � with |q| ≥ q (see, e.g., [], Proposition .). In particular,
we will consider E which is a parameter-independent continuous extension operator.
Let ψ ∈ C∞(Rn) with  ≤ ψ ≤ , ψ(ξ ) =  for |ξ | ≤  and ψ(ξ ) =  for |ξ | ≥ . Then

a simple application of Michlin’s theorem shows that R(D) :=F–ψ(ξ )A–
 (ξ )F induces a

bounded linear operatorR(D) ∈ L(Wk
p (Rn),Wk+m

p (Rn)) for all k ∈N. Due to the compact
support of  –ψ , the related operator ( –ψ)(D) belongs to L(Lp(Rn),Wk

p (Rn)) for all k ∈
N. Note that A(D) and ψ(D) commute due to A(D)ψ(D) =F–A(ξ )ψ(ξ )F .
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(ii) Let u ∈ (W m
p (Rn

+)) be a solution ofA(D)u = f , B(D)u = g , and let q ∈ � with |q| ≥ q.
We define f̃ := A(D)e+u. Then f̃ ∈ Lp(Rn) and r+̃f = A(D)r+e+u = A(D)u = f. For

v := r+
[
( –ψ)(D)e+u + R(D)̃f

]
,

we obtain v ∈W m
p (Rn

+) and

A(D)v = r+A(D)( –ψ)(D)e+u + r+A(D)R(D)̃f

= r+( –ψ)(D)A(D)e+u + r+
(
AψA–


)
(D)̃f

= r+( –ψ)(D)̃f + r+ψ(D)̃f = r+̃f = f.

By the continuity of the involved operators, we have

‖v‖m,p,Rn
+ ≤ C

(‖u‖,p,Rn
+ + ‖f‖,p,Rn

+

)
. (.)

(iii) Similarly, we set v := r+A(D,q)–e+f. It is well known (or easily seen by Michlin’s
theorem) that v ∈ W m

p (Rn
+) with A(D,q)v = f and

‖|v‖|m,p,Rn
+ ≤ C‖f‖,p,Rn

+ . (.)

(iv)We define v := (v, v)� ∈ (W m
p (Rn

+)) andw := u–v. Then w is a solution ofA(D)w =
, B(D)w = g –B(D)v. Applying the parameter-independent extension operator E to every
component of g , we define g̃ := Eg ∈ ∏m

j= W
m–j+
p (Rn

+). An extension h̃ of B(D)v is given
by omitting the trace to the boundary. Note that h̃j = ∂

j–
n v ± ∂

j–
n v.

For the left-hand side of (.), we remark that for w = (w,w)� we have

‖w‖m,p,Rn
+ ≤ C

(|w|m,p,Rn
+ + ‖w‖,p,Rn

+

)
.

By Theorem ., we obtain

‖w‖m,p,Rn
+ + ‖w‖m,p,Rn

+ + |q|m‖w‖,p,Rn
+

≤ C

(
‖f ‖,p,Rn

+ +
m∑
j=

∥∥̃gj + ∂ j–
n (v ± v)

∥∥
m–j+,p,Rn

+
+ ‖w‖,p,Rn

+

)
. (.)

From (.) we see that

∥∥∂ j–
n v

∥∥
m–j+,p,Rn

+
≤ C‖v‖m,p,Rn

+ ≤ C
(‖u‖,p,Rn

+ + ‖f‖,p,Rn
+

)
.

For v we obtain ‖∂ j–
n v‖m–j+,p,Rn

+ ≤ C‖f‖,p,Rn
+ in the same way from (.). Inserting this

into (.), we obtain the first inequality (.) of the theorem.
(v) The proof of (.) follows the same lines. However, here we start with the refined

estimate (.). For the left-hand side of (.), we note that

‖u‖m,p,Rn
+ + |q|m‖u‖m,p,Rn

+ ≤ C
(|u|m,p,Rn

+ + |q|m|u|m,p,Rn
p + |q|m‖u‖,p,Rn

+

)
.
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Nowwe define g̃ := Eqg with the parameter-dependent extension operator Eq from part (i).
Then the term on the right-hand side of (.) equals

m∑
j=

∥∥̃gj + ∂ j–
n (v ± v)

∥∥
m–j+,p,Rn

+

+ |q|m
m∑
j=

∥∥̃gj + ∂ j–
n (v ± v)

∥∥
m–j+,p,Rn

+

+
m∑

j=m+

∥∥∣∣̃gj + ∂ j–
n (v ± v)

∥∥∣∣
m–j+,p,Rn

+
. (.)

For j = , . . . ,m, we can estimate

‖̃gj‖m–j+,p,Rn
+ + |q|m‖̃gj‖m–j+,p,Rn

+ ≤ C‖|̃gj‖|m–j+,p,Rn
+

≤ C‖|gj‖|m–j+–/p,p,Rn– .

Concerning the terms involving v, we use∥∥∂ j–
n v

∥∥
m–j+,p,Rn

+
+ |q|m∥∥∂ j–

n v
∥∥
m–j+,p,Rn

+

≤ ‖v‖m,p,Rn
+ + |q|m‖v‖m,p,Rn

+ ≤ C|q|m‖v‖m,p,Rn
+

≤ C|q|m(‖u‖,p,Rn
+ + ‖f‖,p,Rn

+

)
for j = , . . . ,m and

∥∥∣∣∂ j–
n v

∥∥∣∣
m–j+,p,Rn

+
≤ C|q|m‖v‖m,p,Rn

+ ≤ C|q|m(‖u‖,p,Rn
+ + ‖f‖,p,Rn

+

)
for j =m + , . . . , m. Finally, the terms involving v can be estimated by

∥∥∣∣∂ j–
n v‖|m–j+,p,Rn

+ ≤ C
∥∥∣∣v‖|m,p,Rn

+ ≤ C‖f‖,p,Rn
+ .

So we see that all terms in (.) can be estimated by the right-hand side of (.), and the
proof of (.) is finished. �

Remark . (a) The estimate (.) does not imply uniqueness of a solution to (.) be-
cause the elliptic part u of the solution appears in a norm of lower order on the right-
hand side of the estimate. Nevertheless, in bounded domains such estimates give rise to
the Fredholm property of a corresponding solution operator.
(b) For g =  and f = , we obtain in particular

|λ|‖u‖,p,Rn
+ ≤ C

(‖f‖,p,Rn
+ + |λ|/‖u‖,p,Rn

+

)
from (.). This is the basis for resolvent estimates and spectral properties of the corre-
sponding Lp-realization in the case where the Dirichlet problem for A(x,D) in � is in-
vertible. Herewe have a connection to eigenvalue problemswithweights and theCalderón
method as studied in, e.g., [].
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