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Abstract
In this paper, we investigate many types of stability, like uniform stability, asymptotic
stability, uniform asymptotic stability, global stability, global asymptotic stability,
exponential stability, uniform exponential stability, of the homogeneous first-order
linear dynamic equations of the form

x�(t) = Ax(t), t > t0, t, t0 ∈ T x(t0) = x0 ∈ D(A),

where A is the generator of a C0-semigroup {T (t) : t ∈ T} ⊂ L(X), the space of all
bounded linear operators from a Banach space X into itself. Here, T ⊆ R

≥0 is a time
scale which is an additive semigroup with the property that a – b ∈ T for any a,b ∈ T

such that a > b. Finally, we give an illustrative example for a nonregressive
homogeneous first-order linear dynamic equation and we investigate its stability.

1 Introduction and preliminaries
The history of asymptotic stability of dynamic equations on a time scale goes back to
Aulbach and Hilger []. For a real scalar dynamic equation, stability and instability results
were obtained by Gard and Hoffacker []. Pötzche [] provides sufficient conditions for
the uniform exponential stability in Banach spaces, as well as spectral stability conditions
for time-varying systems on time scales. Doan, Kalauch, and Siegmund [] established a
necessary and sufficient condition for the existence of uniform exponential stability and
characterized the uniform exponential stability of a system by the spectrum of its matrix.
Properties of exponential stability of a time varying dynamic equation on a time scale have
been also investigated recently by Bohner and Martynyuk [], DaCunha [], Du and Tien
[], Hoffacker and Tisdell [], Martynyuk [], and Peterson and Raffoul [].
The theory of dynamic equations on time scales was introduced by Stefan Hilger in

 [], in order to unify continuous and discrete calculus [, ]. A time scale T is a
nonempty closed subset of R. The forward jump operator σ : T –→ T is defined by σ (t) =
inf{s ∈ T : s > t} (supplemented by inf∅ = supT) and the backward jump operator ρ : T –→
T is defined by ρ(t) = sup{s ∈ T : s < t} (supplemented by sup∅ = infT). The graininess
function μ : T –→ R

≥ is given by μ(t) = σ (t) – t. A point t ∈ T is said to be right-dense
if σ (t) = t, right-scattered if σ (t) > t, left-dense if ρ(t) = t, left-scattered if ρ(t) < t, isolated
if ρ(t) < t < σ (t), and dense if ρ(t) = t = σ (t). A time scale T is said to be discrete if t is
left-scattered and right-scattered for all t ∈ T, and it is called continuous if t is right-dense
and left-dense at the same time for all t ∈ T. Suppose that T has the topology inherited
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from the standard topology on R. We define the time scale interval [a,b] := [a,b] ∩ T.
Open intervals and open neighborhoods are defined similarly. A set we need to consider
is Tk which is defined as Tk = T\{M} if T has a left-scattered maximum M, and T

k = T

otherwise. A function f : T –→ X is called right dense continuous, or just rd-continuous,
if

(i) f is continuous at every right-dense point t ∈ T;
(ii) lims–→t– f (s) exists (finite) for every left-dense point t ∈ T.

The set of rd-continuous functions f : T –→ X will be denoted byCrd = Crd(T) = Crd(T,X).
A function f : T –→ X is called delta differentiable (or simply differentiable) at t ∈ T

k

provided there exists an α such that for every ε >  there is a neighborhood U of t with

∥∥f (σ (t)) – f (s) – α
(
σ (t) – s

)∥∥ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈U .

In this case, we denote the α by f �(t); and if f is differentiable for every t ∈ T
k , then f is

said to be differentiable on T. If f is differentiable at t ∈ T
k , then it is easy to see that

f �(t) =

⎧⎨
⎩

f (σ (t))–f (t)
μ(t) , if μ(t) > ;

lims–→t
f (t)–f (s)

t–s , if μ(t) = .

A function F : T –→ X is called an antiderivative of f : T –→ X if F�(t) = f (t), t ∈ T
k . The

Cauchy integral is defined by

∫ t

s
f (τ )�τ = F(t) – F(s), s, t ∈ T,

where F is an antiderivative of f . Every rd-continuous function f : T –→ X has an an-
tiderivative and F(t) =

∫ t
s f (τ )�τ is an antiderivative of f , i.e., F�(t) = f (t), t ∈ T

k . Equa-
tions which include �-derivatives are called dynamic equations. We refer the reader to
the very interesting monographs of Bohner and Peterson [, ].

Definition . A mapping A : T –→ L(X) is called regressive if I + μ(t)A(t) is invertible
for every t ∈ T, and we say that

x�(t) = A(t)x(t), t ∈ T

is regressive if A is regressive. We say that a real valued function p(t) on T is regressive
(resp. positively regressive) if  + μ(t)p(t) 
=  (resp.  + μ(t)p(t) > ), t ∈ T. The family of
all regressive functions (resp. positively regressive functions) is denoted by R (resp.R+).

It is well known that if A ∈ BCrdR(T,L(X)), the space of all right dense continuous and
regressive bounded functions from T to L(X), then the initial value problem (IVP)

x�(t) = A(t)x(t), t ∈ T, x(s) = xs ∈ X (.)

has the unique solution

x(t) = eA(t, s)xs.

http://www.advancesindifferenceequations.com/content/2012/1/143
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Here, eA(t, s) is the exponential operator function. For more details, see []. When X = R

and A(t) = p(t) is a real valued function, Eq. (.) yields

x�(t) = p(t)x(t), t ∈ T, x(s) = , (.)

whose solution has the closed form

x(t) = ep(t, s) = exp
∫ t

s
ξμ(τ )

(
p(τ )

)
�τ , (.)

where

ξμ(z) =

⎧⎨
⎩


μ
Log( +μz), if μ > ;

z, if μ = ,
(.)

and Log z = log |z|+ i arg z, –π < arg z ≤ π is the principal logarithm function. It is evident
that when p(τ ) ≥ , τ ∈ T, then

ξμ(τ )
(
p(τ )

)
=

⎧⎨
⎩


μ(τ ) log( +μ(τ )p(τ )), if μ(τ ) > ;

p(τ ), if μ(τ ) = 
(.)

= lim
u–→μ(τ )+

log( + up(τ ))
u

. (.)

It can be seen that for λ >  with –λ ∈R+, the following claim is true

e–λ(t, τ ) ≤ e–λ(t–τ ), t ≥ τ , t, τ ∈ T. (.)

Indeed, by taking p(τ ) = –λ in Eqs. (.) and (.), we have

ξμ(s)(–λ) =

⎧⎨
⎩


μ(s) ln( – λμ(s)), for μ(s) > ;

–λ, for μ(s) = ,
s ∈ T

= lim
u–→μ(s)+

log( – λu)
u

(.)

≤ –λ. (.)

This implies that the claim is true.
In the sequel, we denote by T ⊆ R

≥ for a time scale which is an additive semigroup
with the property that a – b ∈ T for any a,b ∈ T such that a > b. In this case, T is called a
semigroup time scale. We assume X is a Banach space. Finally, we assume that T = {T(t) :
t ∈ T} ⊂ L(X) is a C-semigroup on T, that is, it satisfies

(i) T(t + s) = T(t)T(s) for every t, s ∈ T (the semigroup property).
(ii) T() = I (I is the identity operator on X).
(iii) limt–→+ T(t)x = x (i.e., T(·)x : T –→ X is continuous at ) for each x ∈ X .

http://www.advancesindifferenceequations.com/content/2012/1/143
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If in addition limt–→+ ‖T(t) – I‖ = , then T is called a uniformly continuous semigroup.
A linear operator A is called the generator [] of a C-semigroup T if

Ax = lim
s–→+

T(μ(t))x – T(s)x
μ(t) – s

, x ∈D(A), (.)

where the domain D(A) of A is the set of all x ∈ X for which the above limit exists uni-
formly in t. Clearly, when T =R

≥, the concept of the generator defined by relation (.)
coincides with the classical definition by Hille. See [].
In Section  of this paper we present some results from [] that we need in our study.

One of them is that an abstract Cauchy problem

x�(t) = Ax(t), t > τ , t, τ ∈ T, x(τ ) = xτ ∈ D(A) (.)

has the unique solution

x(t) = T(t – τ )xτ , t ∈ T, t ≥ τ

when A is the generator of the C-semigroup T . When T =R
≥, we get the classical exis-

tence and uniqueness theorem of the abstract Cauchy problem (.); see []. The other
results include some properties of T and its generator A, which we use in the subsequent
sections. The solution x(t) = x(t, τ ,xτ ) is a function of the variables t, τ and the initial
value xτ . Generally, we consider τ and xτ as parameters. Therefore, when we investigate
the asymptotic behavior of x(t, τ ,xτ ) with respect toT, wemust investigate whether or not
the asymptotic behavior uniformly depends on τ or xτ . Accordingly, there are many types
of stability which we give in Section .
S. K. Choi, D. M. Im, and N. Koo in [, Theorem .] proved that the stability of the time

variant abstract Cauchy problem

x�(t) = A(t)x(t), x(t) = x, t ∈ T, (.)

where A ∈ CrdR(T,Mn(R)), n ∈ N and Mn(R) is the family of all n × n real matrices
is equivalent to the boundedness of all its solutions. DaCunha in [] defined the con-
cepts of uniform stability and uniform exponential stability. These two concepts in-
volve the boundedness of the solutions of the regressive time varying linear dynamic
Eq. (.). He established a characterization of uniform stability and uniform exponen-
tial stability in terms of the transition matrix for system (.). Also, he illustrated the
relationship between the uniform asymptotic stability and the uniform exponential sta-
bility.
In Section , we extend these results for the case where A is the generator of T and we

prove that the concepts of stability and uniform stability are same.
Sections  and  are devoted to establishing characterizations for many other types of

stability, like asymptotic stability, uniform asymptotic stability, global asymptotic stability,
exponential stability, and uniform exponential stability for the abstract Cauchy problem
(.).

http://www.advancesindifferenceequations.com/content/2012/1/143
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We end this paper with a new illustrative example including non-regressive dynamic
equation and we investigate its stability.

2 The existence and uniqueness of solutions of dynamic equations
Our aim in this section is to prove that the first order initial value problem

x�(t) = Ax(t), t ∈ T, x() = x ∈D(A) (.)

has the unique solution

x(t) = T(t)x, t ∈ T,

when A is the generator of a C-semigroup T = {T(t) : t ∈ T}.
At first, we establish some properties of T and its generator A which we use to arrive at

our aim.

Theorem . For x ∈ X, the following statements are true:
. For t ∈ T,

lim
s–→t


s – σ (t)

∫ s

σ (t)
T(τ )x�τ = lim

h–→


h –μ(t)

∫ h+t

μ(t)+t
T(τ )x�τ (.)

= T(t)x, (.)

and

lim
h–→


h –μ(t)

∫ h

μ(t)
T(τ )x�τ = x. (.)

. For t ∈ T,

∫ t


T(τ )x�τ ∈D(A),

and

A
(∫ t


T(τ )x�τ

)
= T(t)x – x. (.)

Proof . Set f (t) =
∫ t
 T(τ )x�τ . Then

lim
s–→t


s – σ (t)

∫ s

σ (t)
T(τ )x�τ = lim

s–→t


s – σ (t)

[∫ s


T(τ )x�τ –

∫ σ (t)


T(τ )x�τ

]

= lim
s–→t

f (s) – f (σ (t)
s – σ (t)

= f �(t)

= T(t)x.

http://www.advancesindifferenceequations.com/content/2012/1/143
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Also, we have

lim
h–→


h –μ(t)

∫ h+t

μ(t)+t
T(s)x�s = lim

h–→

f (h + t) – f (μ(t) + t)
h –μ(t)

= f �(t)

= T(t)x,

and

lim
h–→


h –μ(t)

∫ h

μ(t)
T(s)x�s = lim

u–→t+


u – σ (t)

∫ u–t

σ (t)–t
T(s)x�s

= lim
u–→t+


u – σ (t)

∫ u

σ (t)
T(s – t)x�s

= φ�(t)

= x,

where φ(u) =
∫ u
t T(s – t)x�s.

. Let h >  be a number in T. We have

A
∫ t


T(s)x�s = lim

h–→+


μ(t) – h

[∫ t


T

(
μ(t) + s

)
x�s –

∫ t


T(h + s)x�s

]

= lim
h–→+


μ(t) – h

[∫ μ(t)+t

t+h
T(s)x�s +

∫ h

μ(t)
T(s)x�s

]

= T(t)x – x by Eqs. (.), (.). �

Theorem . For x ∈D(A), the following statements are true:
. For t ∈ T, x(t) = T(t)x ∈D(A) and

x�(t) = AT(t)x = T(t)Ax. (.)

. For t, s ∈ T, we have

T(t)x – T(s)x =
∫ t

s
T(τ )Ax�τ (.)

=
∫ t

s
AT(τ )x�τ (.)

and

A
∫ t


T(τ )x�τ =

∫ t


T(τ )Ax�τ . (.)

Proof . Let x ∈ D(A). It is evident that T(t)x ∈D(A), t ∈ T.
Now, we show that x(t) = T(t)x solves the initial value problem

x�(t) = Ax(t), x() = x.

http://www.advancesindifferenceequations.com/content/2012/1/143
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We have either μ(t) =  or μ(t) > . The case μ(t) =  implies

lim
u–→t–

x(σ (t)) – x(u)
σ (t) – u

= lim
u–→t–

T(t)x – T(u)x
t – u

= lim
s–→+

T(t – s)
T(s)x – x

s

= T(t)Ax

= AT(t)x.

On the other hand,

lim
u–→t+

x(σ (t)) – x(u)
σ (t) – u

= lim
u–→t+

T(t)x – T(u)x
t – u

= lim
s–→+

T(t)
x – T(s)x

–s

= T(t)Ax

= AT(t)x.

When μ(t) > , we obtain

lim
u–→t

T(σ (t))x – T(u)x
σ (t) – u

=
T(μ(t) + t)x – T(t)x

μ(t)

= T(t)
T(μ(t))x – x

μ(t)

= T(t)Ax

= AT(t)x.

. Relations (.) and (.) can be obtained by integrating both sides of Eq. (.) from s
to t. Relation (.) follows from Eqs. (.) and (.). �

Corollary . If A is the generator of a C-semigroup T on T, then D(A) is dense in X and
A is a closed linear operator.

Proof For every x ∈ X and fixed t ∈ T, set

xh =


h –μ(t)

∫ h

μ(t)
T(s)x�s, h ∈ T.

Theorem . implies that

∫ h

μ(t)
T(s)x�s =

∫ h


T(s)x�s –

∫ μ(t)


T(s)x�s ∈D(A).

By the same theorem, xh –→ x as h –→ . So D(A), the closure of D(A), is equal to X. The
linearity of A is evident.

http://www.advancesindifferenceequations.com/content/2012/1/143
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To prove its closeness, let xn ∈ D(A), xn –→ x and Axn –→ y as n –→ ∞. In view of
equality (.), we obtain

T(h)xn – T
(
μ(t)

)
xn =

∫ h

μ(t)
T(s)Axn�s. (.)

The integrand on the right-hand side of (.) converges to T(s)y uniformly on bounded
intervals. Consequently, letting n –→ ∞ in (.), we get

T(h)x – T
(
μ(t)

)
x =

∫ h

μ(t)
T(s)y�s. (.)

Dividing Eq. (.) by h – μ(t), h >  and letting h –→ , we see, using identity (.), that
x ∈D(A) and Ax = y. �

Theorem . Equation (.) has the unique solution

x(t) = T(t)x, t ∈ T.

Proof The existence of the solution x(t) = T(t)x follows by Theorem .. To prove the
uniqueness, assume that V (t) is another solution. Consider the function

G(s) :=Ht(s)V (s), s ∈ [, t], s, t ∈ T,

where Ht(s) = T(t – s). We have

G�(s) =Ht
(
σ (s)

)
V�(s) +H�

t (s)V (s)

= T
(
t – σ (s)

)
AV (s) +H�

t (s)V (s).

On the other hand, we have

H�
t (s)x = lim

u–→s

T(t – σ (s)) – T(t – u)
σ (s) – u

x

= lim
r–→

T
(
t – σ (s)

) I – T(μ(s) – r)
μ(s) – r

x

= –T
(
t – σ (s)

)
Ax,

from which we obtain that G�(s) =  on [, t[. Then G(t) = G(), i.e. V (t) = T(t)V () =
T(t)x. �

3 Types of stability
In this section, the definitions of the various types of stability for dynamic equations of the
form

x�(t) = F(t,x), x(t) = x ∈ X, t, t ∈ T (.)

are presented, where F ∈ Crd(T × X,X) and x� is the delta derivative of x : T –→ X with
respect to t ∈ T

k . See [, ].

http://www.advancesindifferenceequations.com/content/2012/1/143
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Definition . Equation (.) is said to be stable if, for every t ∈ T and for every ε > ,
there exists a δ = δ(ε, t) >  such that, for any two solutions x(t) = x(t, t,x) and x(t) =
x(t, t,x) of Eq. (.), the inequality ‖x – x‖ < δ implies ‖x(t) – x(t)‖ < ε, for all t ≥ t,
t ∈ T.

Definition . Equation (.) is said to be uniformly stable if, for each ε > , there ex-
ists a δ = δ(ε) >  independent on any initial point t such that, for any two solutions
x(t) = x(t, t,x) and x(t) = x(t, t,x) of Eq. (.), the inequality ‖x – x‖ < δ implies
‖x(t) – x(t)‖ < ε, for all t ≥ t, t ∈ T.

Definition . Equation (.) is said to be asymptotically stable if it is stable and for
every t ∈ T, there exists a δ = δ(t) >  such that, the inequality ‖x‖ < δ implies
limt–→∞ ‖x(t)‖ = .

Definition. Equation (.) is said to be uniformly asymptotically stable if it is uniformly
stable and there exists a δ >  such that for every t ∈ T the inequality ‖x‖ < δ implies
limt–→∞ ‖x(t)‖ = , t ∈ T.

Definition . Equation (.) is said to be globally asymptotically stable if it is stable and
for any solution x(t) = x(t, t,x) of Eq. (.), we have limt–→∞ ‖x(t)‖ = .

Definition . Equation (.) is said to be exponentially stable if there exists α >  with
–α ∈ R+ such that for every t ∈ T, there is γ = γ (t) ≥  such that, for any two solu-
tions x(t) = x(t, t,x) and x(t) = x(t, t,x) of Eq. (.), we have ‖x(t) – x(t)‖ ≤ γ ‖x –
x‖e–α(t, t), for all t ≥ t, t ∈ T.

Definition . Equation (.) is said to be uniformly exponentially stable if there exists
α >  with –α ∈ R+ and there is γ ≥  independent on any initial point t such that, for
any two solutions x(t) = x(t, t,x) and x(t) = x(t, t,x) of Eq. (.), we have ‖x(t) – x(t)‖ ≤
γ ‖x – x‖e–α(t, t), for all t ≥ t, t ∈ T.

4 Characterization of stability and uniformly stability
In this section, we obtain some results concerning characterizations of stability and uni-
form stability of linear dynamic equations of the form

CP() : x�(t) = Ax(t), x(t) = x ∈ D(A), t ≥ t, t, t ∈ T,

where A is the generator of T . The initial value problem CP() has the unique solution

x(t) = T(t – t)x. (.)

In the following two lemmas, by linearity of CP(), we get an equivalent definition of
stability and uniform stability of CP().

Lemma . The following statements are equivalent:
(i) CP() is stable;

http://www.advancesindifferenceequations.com/content/2012/1/143
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(ii) For every t ∈ T and for every ε > , there exists δ = δ(ε, t) such that for any solution
x(t) = x(t, t,x) of CP(), we have

‖x‖ < δ =⇒ ∥∥x(t)∥∥ < ε.

Lemma . The following statements are equivalent:
(i) CP() is uniformly stable;
(ii) For every ε >  there exists δ = δ(ε) such that for any solution x(t) = x(t, t,x) of

CP(), we have

‖x‖ < δ =⇒ ∥∥x(t)∥∥ < ε.

S. K. Choi, D. M. Im, and N. Koo in [, Theorem .] proved that the stability of (.) is
equivalent to the boundedness of all its solutions when A ∈ CrdR(T,Mn(R)), n ∈N where
Mn(R) is the family of all n×n realmatrices. Also, DaCunha in [] proved that the uniform
stability of (.) is equivalent to the uniform boundedness of all its solutions with respect
to the initial point t, when A ∈ CrdR(T,Mn(R)).
In the following theorem, we extend these results for the case where A is the generator

of a C-semigroup T and we prove that the concepts of stability and uniform stability are
the same.

Theorem . The following statements are equivalent:
(i) CP() is stable.
(ii) {T(t) : t ∈ T} is bounded.
(iii) CP() is uniformly stable.

Proof (i) =⇒ (ii) Assume CP() is stable. Let t ∈ T. Fix ε = . There exists δ >  such that
for any solution x(t) = T(t – t)x, where x ∈ D(A), we have

‖x‖ < δ =⇒ ∥∥T(t – t)x
∥∥ < , ∀t ≥ t, t ∈ T.

Let  
= y ∈ D(A). Take x = δy
‖y‖ . Since ‖x‖ < δ, then

∥∥∥∥T(t – t)
δy

‖y‖
∥∥∥∥ < 

i.e.

∥∥T(t – t)y
∥∥ <


δ
‖y‖, ∀y ∈D(A) ∀t ≥ t, t ∈ T.

The density of D(A) in X, by Corollary ., implies that

∥∥T(t – t)x
∥∥ <


δ
‖x‖, ∀x ∈ X ∀t ≥ t, t ∈ T.

Thus, for every x ∈ X, {‖T(t–t)x‖ : t ∈ T, t ≥ t} is bounded. By the uniformboundedness
theorem [], {‖T(t)‖ : t ∈ T} is bounded.
(ii) =⇒ (iii) Assume that there isM >  such that ‖T(t)‖ ≤ M, t ∈ T. Clearly, condition (ii)

of Lemma . holds, because for ε > , choose δ = ε/M. �

http://www.advancesindifferenceequations.com/content/2012/1/143
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5 A characterization of global asymptotic stability
In the following result, we establish necessary and sufficient conditions for CP() to be
globally asymptotically stable.

Theorem . The following statement are equivalent:
(i) CP() is asymptotically stable;
(ii) limt–→∞ ‖T(t)x‖ = , for every x ∈ X ;
(iii) CP() is globally asymptotically stable;
(iv) CP() is uniformly asymptotically stable.

Proof (i) =⇒ (ii) Suppose that CP() is asymptotically stable. Let t ∈ T. There exists γ =
γ (t) >  such that any solution x(t) = x(t, t,x) of CP() with initial value x ∈ D(A),
vanishes at ∞ whenever ‖x‖ < γ . Fix  
= x ∈D(A). Then

lim
t–→∞

∥∥T(t – t)γ x/
(
‖x‖)∥∥ = .

Hence,

lim
t–→∞

∥∥T(t – t)x
∥∥ = , x ∈D(A).

Consequently, we obtain

lim
t–→∞

∥∥T(t)x∥∥ = , x ∈D(A).

By the boundedness of {T(t) : t ∈ T} and the density of D(A) in X, we deduce that

lim
t–→∞

∥∥T(t)x∥∥ = , x ∈ X.

(ii) =⇒ (iii) Condition (ii) implies that {‖T(t)x‖ : t ∈ T} is bounded for every x ∈ X. The
uniformboundedness theorem insures the boundedness of {‖T(t)‖ : t ∈ T}. Consequently,
CP() is stable, and by our assumption, CP() is globally asymptotically stable.
(iii) =⇒ (iv) Condition (iii) implies that {‖T(t)x‖ : t ∈ T} is bounded for every x ∈ X.

Again the uniform boundedness theorem guarantees the boundedness of {‖T(t)‖ : t ∈ T}.
Consequently, CP() is uniformly stable by Theorem ., and by our assumption, CP()
is uniformly asymptotically stable. �

6 A characterization of exponential stability and uniform exponential stability
We need the following lemmas to establish a characterization of the exponential stability
of CP(). Their proofs are straightforward and will be omitted.

Lemma. CP() is exponentially stable if and only if there existsα > with–α ∈R+ such
that for any t ∈ T, there exists γ = γ (t) ≥  such that for any solution x(t) = x(t, t,x) of
CP() with initial value x ∈ D(A) we have

∥∥x(t)∥∥ ≤ γ ‖x‖e–α(t, t), t ≥ t, t ∈ T.
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Lemma . CP() is uniformly exponentially stable if and only if there exists α >  with
–α ∈ R+ and there exists γ ≥  such that for any t ∈ T, and any solution x(t) = x(t, t,x)
of CP() with initial value x ∈D(A) we have

∥∥x(t)∥∥ ≤ γ ‖x‖e–α(t, t), t ≥ t, t ∈ T.

In the following two theorems, we extend the results of DaCunha [, Theorem .] when
A ∈ CrdR(T,Mn(R)) to the case where A is the generator of T .

Theorem . The following statements are equivalent:
(i) CP() is exponentially stable;
(ii) There exists α >  with –α ∈R+ such that for any t ∈ T, there exists γ = γ (t) ≥ 

such that

∥∥T(t)∥∥ ≤ γ e–α(t + t, t), t ∈ T.

Proof (i) =⇒ (ii) Let CP() be exponentially stable. Then there is α >  with –α ∈R+ such
that for any t ∈ T, there exists γ = γ (t) ≥  such that for any solution x(t) = T(t – t)x
of CP() with initial value x ∈ D(A), we have

∥∥T(t – t)x
∥∥ ≤ γ ‖x‖e–α(t, t), t ≥ t, t ∈ T.

Fix t ∈ T, and let  
= x ∈D(A). Then

∥∥T(t – t)x
∥∥ ≤ γ ‖x‖e–α(t, t), t ≥ t, t ∈ T.

Using D(A) is dense in X and Corollary ., we obtain

∥∥T(t – t)x
∥∥ ≤ γ ‖x‖e–α(t, t), x ∈ X, t ≥ t, t ∈ T.

This implies that

∥∥T(t)∥∥ ≤ γ e–α(t + t, t), t ∈ T.

(ii) =⇒ (i) Assume there exists α >  with –α ∈R+ such that for every t ∈ T, there exists
γ = γ (t) ≥  such that

∥∥T(t)∥∥ ≤ γ e–α(t + t, t), t ∈ T.

Let x(t, t,x) = T(t – t)x be any solution of CP() with initial value x. Then

∥∥x(t)∥∥ =
∥∥T(t – t)x

∥∥
≤ ∥∥T(t – t)

∥∥‖x‖
≤ γ e–α(t, t)‖x‖, t ≥ t, t ∈ T. �

By same way as in the proof of Theorem ., we can obtain the following result.
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Theorem . The following statements are equivalent:
(i) CP() is uniformly exponentially stable;
(ii) There exists α >  with –α ∈R+ and there exists γ ≥  such that for any t ∈ T,

∥∥T(t)∥∥ ≤ γ e–α(t + t, t), t ∈ T.

From Theorem . (Theorem .), Lemma . (Lemma .), and relation (.), we get
the following result.

Corollary . If CP() is (uniformly) exponentially stable, then CP() is (uniformly)
asymptotically stable.

7 Example
Choi in [] gave an example to illustrate many types of stability. He considered the linear
dynamic system

x�(t) = Ax, x() = x, t > , t ∈ T, (.)

where T ⊂ R
≥ is a time scale and A =

(  
 –

)
and investigated some types of stability of

Eq. (.) when A is regressive, i.e., μ(t) 
= 
 for all t ∈ T. In this case the equation has the

unique solution x(t) = eA(t, )x, where eA(t, ) is the matrix exponential function. It is
given by

eA(t, ) =

(
 
 e–(t, )

)
, t ∈ T. (.)

We see that the generalized exponential function e–(t, ) is given by

e–(t, ) = e–t , if t ∈ T =R
≥ (.)

and

e–(t, ) = ( – h)
t
h , if t ∈ T = hZ≥,h 
= 


. (.)

The following stability results [] for (.) were obtained in different cases of T.
() If T =R

≥, then (.) is uniformly stable, exponentially stable and asymptotically
stable, since ‖eA(t, )‖ = e–t –→  as t –→ ∞.

() If T = Z
≥, then (.) is uniformly stable but not asymptotically stable, since

‖eA(t, )‖ = .
() If T = hZ≥ with  < h <  and h 
= 

 , then (.) is not asymptotically stable.
However, e–(t, ) goes to zero as t –→ ∞.

() If T = hZ≥ with h > , then (.) is not asymptotically stable.
Nowwe consider the time scaleT = { n : n ∈ Z

≥}with the graininess functionμ(t) = /,
t ∈ T. So A is nonregressive and the matrix exponential function eA(t, ) does not exist.
On the other hand, A is the generator of the C-semigroup

T(t) =
(
I +



A

)t

, t ∈ T.
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Indeed, for x ∈ R
, we have

lim
s–→+

T(μ(t))x – T(s)x
μ(t) – s

= lim
s–→+

T(/)x – T(s)x

 – s

= 
[(

I +


A

)
x – x

]

= Ax.

Then

T(t) =

(
 
 

)
.

Consequently, ‖T(t)‖ = , t ∈ T which implies that Eq. (.) is uniformly stable but is not
asymptotically stable.
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