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Abstract
This paper is concerned with the existence of solutions for boundary value problems
of fractional differential equations and inclusions supplemented with nonlocal and
average-valued (integral) boundary conditions. The existence results for the
single-valued case (equations) are obtained by means of fixed point theorems due to
O’Regan and Sadovski, whereas the existence of solutions for the multivalued case
(inclusions) is established via nonlinear alternative for contractive maps. The obtained
results are well illustrated by examples.
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1 Introduction
The study of fractional differential equations has recently attracted the attention of many
researchers and modelers. The interest in the subject owes to its widespread applica-
tions in a variety of applied sciences and engineering disciplines such as biological sci-
ences, ecology, aerodynamics, control theory, viscoelasticity, electro-dynamics of complex
medium, electron-analytical chemistry, environmental issues, et cetera. The recent trend
in the mathematical modeling of several phenomena indicates the popularity of fractional
calculus modeling tools due to the nonlocal characteristic of fractional-order differential
and integral operators, which are capable of tracing the past history of many materials and
processes; see, for instance, [–] and the references therein.

Differential inclusions, regarded as a generalization of differential equations and in-
equalities, have very important and interesting applications in optimal control theory and
stochastic processes []. In fact, the tools of differential inclusions facilitate the investiga-
tion of dynamical systems having velocities not uniquely determined by the state of the
system.

Boundary value problems of fractional-order differential equations and inclusions sup-
plemented with several kinds of conditions such as classical, nonlocal, multipoint, pe-
riodic/antiperiodic, fractional-order, and integral boundary conditions have extensively
been investigated by many researchers. In particular, the study of nonlocal boundary value
problems finds interesting applications in physical and chemical processes, where the
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classical initial/boundary conditions fail to describe some peculiar phenomena occurring
inside the domain. On the other hand, integral boundary conditions help to formulate
computational fluid dynamics (blood flow) problems in a better way as such conditions
allow one to describe the cross-section of vessels in a more realistic arbitrary manner
instead of always assuming circular type cross-section []. Also, ill-posed parabolic back-
ward problems in time partial differential equations can be regularized with the aid of
integral boundary conditions; see, for example, mathematical models for bacterial self-
regularization []. For details and examples, we refer the reader to a variety of results
[–]. In a recent article [], the authors studied a boundary value problem of frac-
tional differential equations with nonlocal and average-type integral boundary conditions
given by

⎧
⎪⎨

⎪⎩

cDαx(t) = f (t, x(t), cDβx(t)),  < t < ,
x() + x′() = h(x),

∫ η

 x(t) dt = ξ ,  < η < , ξ ∈ R,
x′′() = x′′′() = · · · = x(n–)() = ,

(.)

where cDα and cDβ denote the Caputo fractional derivatives of orders α and β with n –
 < α < n (n ≥ ) and  < β < , and f : [, ] × R × R → R and h : C([, ],R) → R are
continuous functions. Applying the Leray-Schauder nonlinear alternative, Krasnoselskii’s
fixed point theorem and Banach’s fixed point theorem together with Hölder inequality,
some existence results for problem (.) were obtained.

The objective of the present paper is to continue the study initiated in [] and provide a
variety in the existence criteria for solutions of the problem at hand. Precisely, we establish
two more existence results for problem (.), which are based on fixed point theorems due
to O’Regan and Sadovski (Section ). Then we switch onto investigating the multivalued
analogue of (.)

⎧
⎪⎨

⎪⎩

cDαx(t) ∈ F(t, x(t), cDβx(t)),  < t < ,
x() + x′() = h(x),

∫ η

 x(t) dt = ξ ,  < η < ,
x′′() = x′′′() = · · · = x(n–)() = ,

(.)

where F : [, ] × R × R → P(R) is a multivalued map, and P(R) is the family of all
nonempty subsets of R. In Section , we discuss the existence of solutions for problem
(.) by means of the nonlinear alternative for contractive maps.

2 Preliminaries
In this section, we present some basic definitions on fractional calculus and an auxiliary
lemma [, ].

Definition . The fractional integral of order r with the lower limit zero for a function
f is defined as

Irf (t) =


�(r)

∫ t



f (s)
(t – s)–r ds, t > , r > ,

provided that the right-hand side is pointwise defined on [,∞), where � is the gamma
function defined by �(r) =

∫ ∞
 tr–e–t dt.
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Definition . The Riemann-Liouville fractional derivative of order r > , n –  < r < n,
n ∈ N , of a function f is defined as

Dr
+f (t) =


�(n – r)

(
d
dt

)n ∫ t


(t – s)n–r–f (s) ds,

provided that the function f has absolutely continuous derivatives up to order (n – ).

Definition . The Caputo derivative of order r of a function f : [,∞) → R is defined as

cDrf (t) = Dr

(

f (t) –
n–∑

k=

tk

k!
f (k)()

)

, t > , n –  < r < n.

Remark . If f (t) ∈ Cn[,∞), then

cDrf (t) =


�(n – r)

∫ t



f (n)(s)
(t – s)r+–n ds = In–rf (n)(t), t > , n –  < q < n.

We need the following known lemma [].

Lemma . Let y ∈ AC[, ] and x ∈ ACn[, ]. Then the linear problem

⎧
⎪⎨

⎪⎩

cDαx(t) = y(t),  < t < ,
x() + x′() = h(x),

∫ η

 x(t) dt = ξ ,  < η < ,
x′′() = x′′′() = · · · = x(n–)() = ,

(.)

is equivalent to the fractional integral equation

x(t) =
∫ t



(t – s)α–

�(α)
y(s) ds +

( – t)
η( – η)

ξ +
t – η

 – η
h(x)

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
y(s) ds. (.)

3 Existence results for a single-valued problem
Define the space X = {x|x ∈ C([, ],R) and cDβx ∈ C([, ],R)} equipped with the norm
‖x‖X = ‖x‖ + ‖cDβx‖ = supt∈[,] |x(t)| + supt∈[,] |cDβx(t)|. Clearly, (X,‖ · ‖X) is a Banach
space [].

In view of Lemma ., we introduce the operator F : X → X by

F(x)(t) =
∫ t



(t – s)α–

�(α)
f
(
s, x(s), cDβx(s)

)
ds +

( – t)
η( – η)

ξ +
t – η

 – η
h(x)

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f
(
s, x(s), cDβx(s)

)
ds,

which can be expressed as

(Fx)(t) = (Fx)(t) + (Fx)(t), t ∈ [, ], (.)
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where F, : X → X are given by

(Fx)(t) =
∫ t



(t – s)α–

�(α)
f
(
s, x(s), cDβx(s)

)
ds

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f
(
s, x(s), cDβx(s)

)
ds, (.)

(Fx)(t) =
( – t)
η( – η)

ξ +
t – η

 – η
h(x). (.)

For computational convenience, we set the notations

� :=


�(α + )
+


η�(α + )

+


�(α – β + )
+


η�( – β)


�(α + )

(.)

and

� :=
|ξ |
η

(

 +


�( – β)

)

, � =  + η +


�( – β)
. (.)

Our first existence result relies on a fixed point theorem of O’Regan [].

Lemma . Denote by U an open set in a closed convex set C of a Banach space E. Assume
that  ∈ U . Also assume that F(Ū) is bounded and that F : Ū → C is given by F = F + F,
where F : Ū → E is continuous and completely continuous, and F : Ū → E is a nonlin-
ear contraction (i.e., there exists a nonnegative nondecreasing function φ : [,∞) → [,∞)
such that φ(z) < z for z >  and ‖F(x) – F(y)‖ ≤ φ(‖x – y‖) for all x, y ∈ Ū). Then, either

(C) F has a fixed point u ∈ Ū ; or
(C) there exist a point u ∈ ∂U and λ ∈ (, ) with u = λF(u), where Ū and ∂U ,

respectively, represent the closure and boundary of U .

In the proof of the next result, we use the notations

�r =
{

x ∈ X : ‖x‖X < r
}

and

Mr = max
{∣
∣f (t, x, y)

∣
∣ : (t, x) ∈ [, ] × [–r, r] × [–r, r]

}
.

Theorem . Assume that:

(A) h : C([, ],R) →R is a continuous function satisfying the condition
∣
∣h(u) – h(v)

∣
∣ ≤ �‖u – v‖, ∀u, v ∈ C

(
[, ],R

)
,

with � >  such that �� < , where � is given by (.);
(A) h() = ;
(A) there exist a nonnegative function p ∈ C([, ],R) and nondecreasing functions ψi :

R
+ →R

+, i = , , such that
∣
∣f (t, x, y)

∣
∣ ≤ p(t)

(
ψ

(|x|) + ψ
(|y|))

for all (t, x, y) ∈ [, ] ×R×R;
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(A) supr∈(,∞)
r

�‖p‖[ψ(r)+ψ(r)]+�
> 

–��
, where � is given by (.) and �i, i = , , are

defined by (.) (note that �� <  by (A)).

Then the boundary value problem (.) has at least one solution on [, ].

Proof By assumption (A), there exists a number r >  such that

r

�‖p‖[ψ(r) + ψ(r)] + �
>


 – ��

. (.)

We shall show that the operators F and F defined by (.) and (.), respectively, satisfy
all the conditions of Lemma ..

Step . The operator F is completely continuous. We first show that F(�̄r ) is bounded.
For any x ∈ �̄r , we have

‖Fx‖ ≤
∫ t



(t – s)α–

�(α)
∣
∣f

(
s, x(s), cDβx(s)

)∣
∣ds

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
∣
∣f

(
s, x(s), cDβx(s)

)∣
∣ds

≤
∫ t



(t – s)α–

�(α)
∣
∣f

(
s, x(s), cDβx(s)

)∣
∣ds

+
(t – )
η( – η)

∫ 



( – s)α

�(α + )
∣
∣f

(
s, x(s), cDβx(s)

)∣
∣ds

≤ Mr

[


�(α + )
+


η�(α + )

]

and

∥
∥cDβ (Fx)

∥
∥ ≤ Mr

∫ t



(t – s)α––β

�(α – β)
ds + Mr

t–β

η�( – β)

∫ η



(η – s)α

�(α + )
ds

≤ Mr

∫ t



(t – s)α––β

�(α – β)
ds + Mr


η�( – β)

∫ 



( – s)α

�(α + )
ds

≤ Mr

{


�(α – β + )
+


η�( – β)


�(α + )

}

.

Consequently, we have

‖Fx‖X = ‖Fx‖ +
∥
∥cDβ (Fx)

∥
∥

≤ Mr

{


�(α + )
+


η�(α + )

+


�(α – β + )
+


η�( – β)


�(α + )

}

,

which shows that the operator F(�̄r ) is uniformly bounded.
Further, for  ≤ t < t ≤ , we have

∣
∣(Fx)(t) – (Fx)(t)

∣
∣ ≤

∣
∣
∣
∣


�(α)

∫ t



[
(t – s)α– – (t – s)α–]f

(
s, x(s), cDβx(s)

)
ds

+


�(α)

∫ t

t

(t – s)α–f
(
s, x(s), cDβx(t)

)
ds

∣
∣
∣
∣
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+
(t – t)
η( – η)

∫ η



(η – s)α

�(α + )
∣
∣f

(
s, x(s), cDβx(s)

)∣
∣ds

≤ Mr

�(α + )
(
tα
 – tα


)

+
Mr(t – t)
η�(α + )

and

∣
∣cDβ (Fx)(t) – cDβ (Fx)(t)

∣
∣ ≤ Mr

�(α – β + )
(
tα–β–
 – tα–β–


)

+
Mr

η�(α + )�( – β)
(
t–β
 – t–β


)
.

Obviously, ‖(Fx)(t) – (Fx)(t)‖X →  as t → t. Hence, the operator F is equicontin-
uous. Thus, it follows by the Arzelá-Ascoli theorem that F(�̄r ) is relatively compact.

Now, let xn ⊂ �̄r with ‖xn – x‖X → . Then the limit ‖xn(t) – x(t)‖ →  uniformly on
[, ]. From the uniform continuity of f (t, x, y) on the compact set [, ]×[–r, r]×[–r, r]
it follows that ‖f (t, xn(t), cDβxn(t)) – f (t, x(t), cDβx(t))‖ →  uniformly on [, ]. Hence,
‖Fxn – Fx‖X →  as n → ∞, which proves the continuity of F. This completes the proof
of Step .

Step . The operator F : �̄r → X is contractive. This is a consequence of (A). Indeed,
for x, y ∈ X, we have

∣
∣(Fx)(t) – (Fy)(t)

∣
∣ =

∣
∣
∣
∣
t – η

 – η

∣
∣
∣
∣

∣
∣h(x) – h(y)

∣
∣

≤ ( + η)
∣
∣h(x) – h(y)

∣
∣

≤ ( + η)�‖x – y‖,

which, by taking the supremum for t ∈ [, ], yields

∥
∥(Fx) – (Fy)

∥
∥ ≤ ( + η)�‖x – y‖.

Also, we have

∥
∥cDβFx – cDβFy

∥
∥ ≤ 

�( – β)
�‖x – y‖.

Consequently, we get

‖Fx – Fy‖X ≤
(

 + η +


�( – β)

)

�‖x – y‖X ,

which, in view of (A), implies that F is a contraction.
Step . The set F(�̄r ) is bounded. Assumptions (A) and (A) imply that

∣
∣(Fx)(t)

∣
∣ ≤ ( – t)

η( – η)
|ξ | +

|t – η|
 – η

∣
∣h(x)

∣
∣

≤ 
η
|ξ | + ( + η)

(∣
∣h(x) – h()

∣
∣ +

∣
∣h()

∣
∣
)
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≤ 
η
|ξ | + ( + η)�‖x‖

≤ 
η
|ξ | + ( + η)�r

and

∣
∣cDβ (Fx)(t)

∣
∣ ≤ 

�( – β)

(
|ξ |
η

+ �r

)

.

Hence,

‖Fx‖X ≤ |ξ |
η

(

 +


�( – β)

)

+ �r

(

 + η +


�( – β)

)

for any x ∈ �̄r . This, together with the boundedness of the set F(�̄r ), implies that the
set F(�̄r ) is bounded.

Step . Finally, we will show that case (C) in Lemma . does not hold. On the contrary,
suppose that (C) holds. Then, we have that there exist λ ∈ (, ) and x ∈ ∂�r such that
x = λFx. So, we have ‖x‖X = r and

x(t) = λ

∫ t



(t – s)α–

�(α)
f
(
s, x(s), cDβx(s)

)
ds + λ

( – t)
η( – η)

ξ + λ
t – η

 – η
h(x)

+ λ
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f
(
s, x(s), cDβx(s)

)
ds.

Further, we have that

∣
∣x(t)

∣
∣ ≤

∫ t



(t – s)α–

�(α)
p(s)

(
ψ

(∣
∣x(s)

∣
∣
)

+ ψ
(∣
∣cDβx(s)

∣
∣
))

ds +

η
|ξ | + ( + η)�‖x‖

+

η

∫ η



(η – s)α

�(α + )
p(s)

(
ψ

(∣
∣x(s)

∣
∣
)

+ ψ
(∣
∣cDβx(s)

∣
∣
))

ds

≤
∫ 



( – s)α–

�(α)
p(s)

(
ψ

(‖x‖X
)

+ ψ
(‖x‖X

))
ds +


η
|ξ | + ( + η)�‖x‖X

+

η

∫ 



( – s)α

�(α + )
p(s)

(
ψ

(‖x‖X
)

+ ψ
(‖x‖X

))
ds

≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α + )

+


η�(α + )

}

+

η
|ξ | + ( + η)�r,

∣
∣cDβx(t)

∣
∣ ≤

∫ t



(t – s)α––β

�(α – β)
p(s)

(
ψ

(|x|) + ψ
(∣
∣cDβx(s)

∣
∣
))

ds

+
t–β

�( – β)


 – η

∣
∣
∣
∣h(x) –

ξ

η

∣
∣
∣
∣

+


η( – η)
t–β

�( – β)

∫ η



(η – s)α

�(α + )
p(s)

(
ψ

(|x|) + ψ
(∣
∣cDβx(s)

∣
∣
))

ds

≤
∫ t



(t – s)α––β

�(α – β)
p(s)

(
ψ

(‖x‖X
)

+ ψ
(‖x‖X

))
ds +


�( – β)

(

�‖x‖X +
|ξ |
η

)

+


η�( – β)

∫ 



( – s)α

�(α + )
p(s)

(
ψ

(‖x‖X
)

+ ψ
(‖x‖X

))
ds
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≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α – β + )

+


η�( – β)


�(α + )

}

+


�( – β)

(

�r +
|ξ |
η

)

.

Thus, we have

r ≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α + )

+


η�(α + )
+


�(α – β + )

+


η�( – β)


�(α + )

}

+
|ξ |
η

(

 +


�( – β)

)

+ �r

(

 + η +


�( – β)

)

= �‖p‖[ψ(r) + ψ(r)
]

+ � + ��r,

which yields a contradiction,

r

�‖p‖[ψ(r) + ψ(r)] + �
≤ 

 – ��
.

Thus, the operators F and F satisfy all the conditions of Lemma .. Hence, the operator
F has at least one fixed point x ∈ �̄r , which is the solution of problem (.). This completes
the proof. �

Our second existence result is based on Sadovskii’s fixed point theorem. Let us first recall
some auxiliary material before proceeding further.

Definition . Let M be a bounded set in metric space (X, d). The Kuratowskii measure of
noncompactness α(M) is defined as inf{ε : M covered by a finitely many sets such that the
diameter of each set ≤ ε}.

Definition . [] Let � : D(�) ⊆ X → X be a bounded and continuous operator on
Banach space X. Then � is called a condensing map if α(�(B)) < α(B) for all bounded sets
B ⊂D(�), where α denotes the Kuratowski measure of noncompactness.

Lemma . ([], Example .) The map K + C is a k-set contraction with  ≤ k < , and
thus also condensing, if

(i) K , C : D ⊆ X → X are operators on the Banach space X ;
(ii) K is k-contractive, that is,

‖Kx – Ky‖ ≤ k‖x – y‖

for all x, y ∈D and fixed k ∈ [, );
(iii) C is compact.

Lemma . [] Let B be a convex, bounded, and closed subset of a Banach space X, and
� : B → B be a condensing map. Then � has a fixed point.

Theorem . Assume that (A), (A), and (A) hold. Then problem (.) has at least one
solution on [, ].
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Proof Let Br = {x ∈ X : ‖x‖≤r} be a closed bounded and convex subset of X, where r will
be fixed later. We define the map F : Br → X by

(Fx)(t) = (Fx)(t) + (Fx)(t), t ∈ [, ],

where F and F are defined by (.) and (.), respectively. Notice that problem (.) is
equivalent to the fixed point problem F(x) = x.

Step . (Fx)Br ⊂ Br .
For that, select r ≥ �‖p‖[ψ(r)+ψ(r)]+�

–��
, where �i, i = , , , are defined by (.) and (.).

As in Theorem ., Step , we can prove that

‖Fx‖X ≤ �‖p‖[ψ(r) + ψ(r)
]
,

and, as in Step , we can get

‖Fx‖ ≤ � + �r�.

Consequently,

‖Fx‖X = ‖Fx‖ +
∥
∥cDβ (Fx)

∥
∥ ≤ �‖p‖[ψ(r) + ψ(r)

]
+ � + �r� < r,

which implies that (Fx)(Br) ⊂ Br .
Step . F is compact.
This was proved in Theorem ., Step .
Step . F is continuous and γ -contractive.
To show the continuity of F for t ∈ [, ], let us consider a sequence xn converging to x.

Then, as in Step  of the proof of Theorem ., we can show that

‖Fxn – Fx‖X ≤
(

 + η +


�( – β)

)

�‖xn – x‖,

which implies that F is continuous. Also, F is γ -contractive by Theorem . (Step ) with
γ = ( + η + 

�(–β) )� < .
Step . F is condensing.
Since T is a continuous γ -contraction and T is compact, by Lemma ., F : Br → Br

with F = F + F is a condensing map on Br .
From the previous four steps we conclude by Lemma . that the map F has a fixed

point, which, in turn, implies that problem (.) has a solution. �

Example . Consider the following boundary value problem:

cD/x(t) =
e–t

√
 + t

(

a sin x(t) + b
cD/x(t)

 + cD/x(t)
+




)

,  < t < , (.)

x() + x′() =



x(/), x′′() = ,

∫ /


x(t) dt =




, (.)

where h(x) = 
 x(/), η = /, ξ = /, and a and b are suitably chosen real numbers.
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Observe that

∣
∣f

(
t, x(t), cD/x(t)

)∣
∣ =

∣
∣
∣
∣

e–t
√

 + t

(

a sin x(t) + b
cD/x(t)

 + cD/x(t)
+




)∣
∣
∣
∣

≤ p(t)
(
ψ

(|x|) + ψ
(|y|))

with p(t) = e–t , ψ(|x|) = a|x|, ψ(|cD/x(t)|) = b + /, and � = / since

∣
∣h(u) – h(v)

∣
∣ ≤ 


‖u – v‖.

With the given values, we find that �  ., �  ., �  .. Fur-
ther, � < ( + η + /�( – β))– holds since ( + η + /�( – β))–  . > 

 = �, and
(A) is satisfied for  < a < / and for any finite real value of b since 

–��
 .,

and supr∈(,∞)
r

�‖p‖[ψ(r)+ψ(r)]+�
 

.a . Thus, all the conditions of Theorem . are
satisfied, and consequently there exists one solution for problem (.)-(.) on [, ].

Remark . Notice that Example . also illustrates Theorem . since assumptions (A),
(A), and (A) clearly hold.

4 Existence results for multivalued problem (1.2)
Let us recall some basic definitions on multivalued maps [, ].

For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ F(X) : Y is closed}, Pb(X) = {Y ∈
F(X) : Y is bounded}, Pcp(X) = {Y ∈ F(X) : Y is compact}, and Pcp,c(X) = {Y ∈ F(X) :
Y is compact and convex}. A multivalued map G : X → F(X) is convex (closed)-valued
if G(x) is convex (closed) for all x ∈ X. A map G is bounded on bounded sets if G(B) =
⋃

x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞). A map G
is called upper semicontinuous (u.s.c.) on X if for each x ∈ X, the set G(x) is a nonempty
closed subset of X and if for each open set N of X containing G(x), there exists an open
neighborhood N of x such that G(N) ⊆ N ; G is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X). If a multivalued map G is completely con-
tinuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
that is, xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). A map G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of a multivalued operator G will be denoted
by Fix G. A multivalued map G : [; ] →Pcl(R) is said to be measurable if for every y ∈R,
the function t �→ d(y, G(t)) = inf{|y – z| : z ∈ G(t)} is measurable.

Definition . A function x ∈ ACn([, ],R) satisfying the conditions x() + x′() = h(x),
∫ η

 x(t) dt = ξ , x′′() = x′′′() = · · · = x(n–)() =  is said to be a solution of problem (.) if
there exists a function f ∈ L([, ],R) such that f (t) ∈ F(t, x(t), cDβx(t)) a.e. on [, ] and

x(t) =
∫ t



(t – s)α–

�(α)
f (s) ds +

( – t)
η( – η)

ξ +
t – η

 – η
h(x)

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds. (.)

Definition . A multivalued map F : [, ]×R×R →P(R) is said to be a Carathéodory
function if



Ahmad et al. Advances in Difference Equations  (2016) 2016:80 Page 11 of 18

(i) t �→ F(t, x, y) is measurable for each x, y ∈R;
(ii) (x, y) �→ F(t, x, y) is upper semicontinuous for almost all t ∈ [, ].

Further, a Carathéodory function F is called L-Carathéodory if
(iii) for each a > , there exists ϕa ∈ L([, ],R+) such that

∥
∥F(t, x, y)

∥
∥ = sup

{|v| : v ∈ F(t, x, y)
} ≤ ϕa(t)

for all ‖x‖,‖y‖ ≤ a and for a.e. t ∈ [, ].

For each y ∈ C([, ],R), define the set of selections of F by

SF ,y :=
{

v ∈ L([, ],R
)

: v(t) ∈ F
(
t, y(t), cDβy(t)

)
for a.e. t ∈ [, ]

}
.

The following lemma will be used in the sequel.

Lemma . [] Let X be a Banach space. Let F : [, ] × X × X → Pcp,c(X) be an
L-Carathéodory multivalued map, and let � be a linear continuous mapping from
L([, ], X) to C([, ], X). Then the operator

� ◦ SF : C
(
[, ], X

) →Pcp,c
(
C

(
[, ], X

))
, x �→ (� ◦ SF )(x) = �(SF ,x),

is a closed graph operator in C([, ], X) × C([, ], X).

To prove our main result in this section, we use the following form of the nonlinear
alternative for contractive maps ([], Corollary .).

Theorem . Let X be a Banach space, and D a bounded neighborhood of  ∈ X. Let
Z : X →Pcp,c(X) and Z : D̄ →Pcp,c(X) be two multivalued operators satisfying

(a) Z is contraction, and
(b) Z is u.s.c. and compact.

Then, if G = Z + Z, then either
(i) G has a fixed point in D̄, or

(ii) there are a point u ∈ ∂D and λ ∈ (, ) with u ∈ λG(u).

Theorem . Assume that (A) and (A) hold. In addition, we suppose that:

(H) F : [, ] ×R×R →Pcp,c(R) is an L-Carathéodory multivalued map;
(H) there exist continuous nondecreasing functions ψi : [,∞) → (,∞), i = , , and a

function p ∈ C([, ],R+) such that

∥
∥F(t, x, y)

∥
∥
P := sup

{|v| : v ∈ F(t, x, y)
} ≤ p(t)

[
ψ

(|x|) + ψ
(|y|)]

for each (t, x, y) ∈ [, ] ×R×R;
(H) there exists a number M >  such that

( – ��)M
�‖p‖[ψ(M) + ψ(M)] + �

> , �� < , (.)

where �i, i = , , , are defined in (.) and (.).

Then the boundary value problem (.) has at least one solution on [, ].
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Proof To transform problem (.) into a fixed point problem, we introduce the operator
N : X →P(X) as follows:

N (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h ∈ X :

h(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t



(t – s)α–

�(α)
f (s) ds +

( – t)
η( – η)

ξ +
t – η

 – η
h(x)

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds, f ∈ SF ,x

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Now, we define the operator A : X → X by

Ax(t) =
( – t)
η( – η)

ξ +
t – η

 – η
h(x) (.)

and the multivalued operator A : X →P(X) by

A(x) =

⎧
⎪⎨

⎪⎩

h ∈ C
(
[, ],R

)
:

h(t) =
{ ∫ t



(t – s)α–

�(α)
f (s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds

⎫
⎪⎬

⎪⎭
. (.)

Observe that N = A +A. We shall show that the operators A and A satisfy all the con-
ditions of Theorem . on [, ]. Also, we establish that the operators A and A are such
that A,A : Br → Pcp,c(X), where Br = {x ∈ X : ‖x‖X ≤ r} is a bounded set in C([, ],R).
First, we prove that A is compact-valued on Br . Note that the operator A is equivalent
to the composition L◦SF , where L is the continuous linear operator from L([, ],R) into
X defined by

L(v)(t) =
∫ t



(t – s)α–

�(α)
v(s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
v(s) ds.

Suppose that x ∈ Br is arbitrary and let {vn} be a sequence in SF ,x. Then, by the definition
of SF ,x, we have vn(t) ∈ F(t, x(t), cDβx(t)) for almost all t ∈ [, ]. Since F(t, x(t), cDβx(t)) is
compact for all t ∈ J , there is a convergent subsequence of {vn(t)} (we denote it by {vn(t)}
again) that converges in measure to some v(t) ∈ SF ,x for almost all t ∈ J . On the other hand,
L is continuous, so L(vn)(t) →L(v)(t) pointwise on [, ].

In order to show that the convergence is uniform, we have to show that {L(vn)} is an
equicontinuous sequence. Let t, t ∈ [, ] with t < t. Then, we have

∣
∣L(vn)(t) – L(vn)(t)

∣
∣ ≤

∣
∣
∣
∣


�(α)

∫ t



[
(t – s)α– – (t – s)α–]vn(s) ds

+


�(α)

∫ t

t

(t – s)α–vn(s) ds
∣
∣
∣
∣

+
(t – t)
η( – η)

∫ η



(η – s)α

�(α + )
∣
∣vn(s)

∣
∣ds

≤ [
ψ(r) + ψ(r)

]
{


�(α + )

(
tα
 – tα


)

+
(t – t)
η�(α + )

}

.
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Continuing this process, we have

∣
∣
(
L′(vn)(t)

)
–

(
L′(vn)(t)

)∣
∣ ≤ ‖p‖[ψ(r) + ψ(r)

]
{


�(α – β + )

(
tα–β–
 – tα–β–


)

+


η�(α + )�( – β)
(
t–β
 – t–β


)
}

.

We observe that the right-hand sides of the above inequalities tend to zero as t → t.
Thus, the sequence {L(vn)} is equicontinuous, and by using the Arzelá-Ascoli theorem
we get that there is a uniformly convergent subsequence. So, there is a subsequence of
{vn} (we denote it again by {vn}) such that L(vn) → L(v). Note that L(v) ∈ L(SF ,x). Hence,
A(x) = L(SF ,x) is compact for all x ∈ Br . So A(x) is compact.

Now, we show that A(x) is convex for all x ∈ X. Let z, z ∈A(x). We select f, f ∈ SF ,x

such that

zi(t) =
∫ t



(t – s)α–

�(α)
fi(s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
fi(s) ds, i = , 

for almost all t ∈ [, ]. Let  ≤ λ ≤ . Then, we have

[
λz + ( – λ)z

]
(t) =

∫ t



(t – s)α–

�(α)
[
λf(s) + ( – λ)f(s)

]
ds

+
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
[
λf(s) + ( – λ)f(s)

]
ds.

Since F has convex values, SF ,u is convex, and λf(s) + ( – λ)f(s) ∈ SF ,x. Thus,

λz + ( – λ)z ∈A(x).

Consequently, A is convex-valued. Obviously, A is compact and convex-valued.
The rest of the proof consists of several steps and claims.
Step . We show that A is a contraction on C([, ],R). The proof is similar to that for

the operator F in Step  of Theorem ..
Step . A is upper semicontinuous and compact. This will be established in several

claims.
Claim I: A maps bounded sets into bounded sets in X. Let Br = {x ∈ X : ‖x‖X ≤ r} be a

bounded set in X. Then, for each h ∈A(x), x ∈ Br , there exists f ∈ SF ,x such that

h(t) =
∫ t



(t – s)α–

�(q)
f (s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds.

Then, for t ∈ [, ], we have

‖h‖ ≤
∫ t



(t – s)α–

�(α)
∣
∣f (s)

∣
∣ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
∣
∣f (s)

∣
∣ds

≤
∫ t



(t – s)α–

�(α)
∣
∣f (s)

∣
∣ds +

(t – )
η( – η)

∫ 



( – s)α

�(α + )
∣
∣f (s)

∣
∣ds

≤ ‖p‖[ψ
(‖x‖) + ψ

(∥
∥cDβx

∥
∥
)]

[


�(α + )
+


η�(α + )

]
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≤ ‖p‖[ψ
(‖x‖X

)
+ ψ

(‖x‖X
)]

[


�(α + )
+


η�(α + )

]

≤ ‖p‖[ψ(r) + ψ(r)
]
[


�(α + )

+


η�(α + )

]

.

Considering

h′(t) =
∫ t



(t – s)α–

�(α – )
f (s) ds +


η( – η)

∫ η



(η – s)α

�(α + )
f (s),

we obtain

cDβh(t) =
∫ t



(t – s)–β

�( – β)

(∫ s



(s – τ )α–

�(α – )
f (τ )dτ +


η

∫ η



(η – s)α

�(α + )
f (s) ds

)

=
∫ t



(t – s)α––β

�(α – β)
f (s) ds +

t–β

η�( – β)

∫ η



(η – s)α

�(α + )
f (s) ds,

and therefore

∥
∥cDβh

∥
∥ ≤ ‖p‖[ψ

(‖x‖X
)

+ ψ
(‖x‖X

)]
∫ t



(t – s)α––β

�(α – β)
ds

+


η�( – β)

∫ 



( – s)α

�(α + )
ds

≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α – β + )

+


η�( – β)


�(α + )

}

.

Consequently,

‖Ax‖X = ‖Ax‖ +
∥
∥cDβ (Ax)

∥
∥

≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α + )

+


η�(α + )
+


�(α – β + )

+


η�( – β)


�(α + )

}

,

and thus the operator A(Br) is uniformly bounded.
Claim II: A maps bounded sets into equicontinuous sets. Now let  ≤ t < t ≤ . Then

we have the following facts:

∣
∣(Ax)(t) – (Ax)(t)

∣
∣ ≤

∣
∣
∣
∣


�(α)

∫ t



[
(t – s)α– – (t – s)α–]f (s) ds

+


�(α)

∫ t

t

(t – s)α–f (s) ds
∣
∣
∣
∣

+

η

(t – t)
∫ 



( – s)α

�(α + )
∣
∣f (s)

∣
∣ds

≤ ‖p‖[ψ(r) + ψ(r)
]
{


�(α + )

(
tα
 – tα


)

+
(t – t)
η�(α + )

}
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and

∣
∣cDβ (Ax)(t) – cDβ (A)(t)

∣
∣ ≤ ‖p‖[ψ(r) + ψ(r)

]
{


�(α – β + )

(
tα–β–
 – tα–β–


)

+


η�(α + )�( – β)
(
t–β
 – t–β


)
}

.

Hence, we have

∥
∥(Ax)(t) – (Ax)(t)

∥
∥

X →  as t → t.

Thus, A is equicontinuous. Therefore, by the Ascoli-Arzelá theorem it follows that
A : X →P(X) is completely continuous.

Claim III: A has a closed graph. Let xn → x∗, hn ∈A(xn), and hn → h∗. Then we need
to show that h∗ ∈A(x∗). Associated with hn ∈A(xn), there exists fn ∈ SF ,xn such that for
each t ∈ [, ],

hn(t) =
∫ t



(t – s)α–

�(q)
fn(s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
fn(s) ds.

Thus, it suffices to show that there exists f∗ ∈ SF ,x∗ such that for each t ∈ [, ],

h∗(t) =
∫ t



(t – s)α–

�(q)
f∗(s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f∗(s) ds.

Let us consider the linear operator � : L([, ],R) → C([, ],R) given by

f �→ �(f )(t) =
∫ t



(t – s)α–

�(q)
f (s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds.

Observe that

∥
∥hn(t) – h∗(t)

∥
∥

=
∥
∥
∥
∥

∫ t



(t – s)q–

�(q)
(
fn(s) – f∗(s)

)
ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
(
fn(s) – f∗(s)

)
ds

∥
∥
∥
∥ → 

as n → ∞.
Thus, it follows by Lemma . that � ◦ SF is a closed graph operator. Further, we have

hn(t) ∈ �(SF ,xn ). Since xn → x∗, we have

h∗(t) =
∫ t



(t – s)α–

�(q)
f∗(s) ds +

(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f∗(s) ds

for some f∗ ∈ SF ,x∗ . Hence, A has a closed graph (and therefore has closed values). In
consequence, the operator A is upper semicontinuous.

Thus, the operators A and A satisfy all the conditions of Theorem ., and hence its
conclusion implies that either condition (i) or condition (ii) holds. We show that conclu-
sion (ii) is not possible. If x ∈ λA(x) + λA(x) for λ ∈ (, ), then there exists f ∈ SF ,x such
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that

x(t) = λ

∫ t



(t – s)α–

�(α)
f (s) ds + λ

( – t)
η( – η)

ξ + λ
t – η

 – η
h(x)

+ λ
(t – )
η( – η)

∫ η



(η – s)α

�(α + )
f (s) ds, t ∈ [, ].

Following the method of the proof of Claim I, we can obtain

‖x‖ ≤ ‖p‖[ψ
(‖x‖X

)
+ ψ

(‖x‖X
)]

[


�(α + )
+


η�(α + )

]

+

η
|ξ | + ( + η)�‖x‖X

and

∥
∥cDβx

∥
∥ ≤ [

ψ
(‖x‖X

)
+ ψ

(‖x‖X
)]

{


�(α – β + )
+


η�( – β)


�(α + )

}

+


�( – β)

( |ξ |
η

+ �‖x‖X

)

.

Consequently,

‖x‖X = ‖x‖ +
∥
∥cDβx

∥
∥

≤ ‖p‖[ψ
(‖x‖X

)
+ ψ

(‖x‖X
)]

{


�(α + )
+


η�(α + )

+


�(α – β + )

+


η�( – β)


�(α + )

}

+

η
|ξ |

(

 +


�( – β)

)

+
(

 + η +


�( – β)

)

�‖x‖X .

Thus,

‖x‖X ≤ �‖p‖[ψ
(‖x‖X

)
+ ψ

(‖x‖X
)]

+ � + ��‖x‖X . (.)

If condition (ii) of Theorem . holds, then there exist λ ∈ (, ) and x ∈ ∂Br with x =
λN (x). Then, x is a solution of (.) with ‖x‖X = M. Now, by inequality (.) we get

( – ��)M
�‖p‖[ψ(M) + ψ(M)] + �

≤ ,

which contradicts (.). Hence, N has a fixed point in [, ] by Theorem ., and conse-
quently problem (.) has a solution. This completes the proof. �

Example . Consider the fractional differential inclusion

cD/x(t) ∈ F
(
t, x(t), cD/x(t)

)
(.)
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supplemented with the boundary conditions (.), where

F
(
t, x(t), cD/x(t)

)
=

[
√

 + t

(

x(t) + tan–(cD/x(t)
)

+
π



)

,




sin x(t) +
cD/x(t)

( + cD/x(t))
+




]

.

Clearly,

∣
∣F

(
t, x, cD/x(t)

)∣
∣ ≤ p(t)

(
ψ

(|x|) + ψ
(∣
∣cD/x(t)

∣
∣
))

,

where p(t) = /
√

 + t, ψ(|x|) = |x|, ψ(|x|) = π . Using the data of Example . and con-
dition (H), we find that M > M  .. Hence, the hypothesis of Theorem . is
satisfied, which implies that the fractional differential inclusion (.) together with (.)
has a solution on [, ].
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