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In this paper, we propose a new Newton-type method for solving the nonlinear

complementarity problem (NCP) based on a class of one-parametric NCP-functions,
where an approximate Newton direction can be obtained by solving a modified
Newton equation in each iteration. The method is shown to be globally convergent
without any additional assumption. To investigate the fast convergence of this class of
methods, we propose a modified version of the proposed method and show the
method is globally and locally superlinearly convergent. The preliminary numerical
results show the effectiveness of the modified method.
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1 Introduction

Consider the nonlinear complementarity problem NCP(F)
x>0,F(x) >0, x'F(x)=0,

where F: R" — R" is a continuously differentiable function. We assume that F is a Py-
function throughout this paper. It is well known that NCP(F) can be reformulated as a
system of nonsmooth equations, where the so-called NCP-function plays an important

role in this class of methods.

Definition 1 A function ¢ : R?> — R is called an NCP-function if it satisfies
¢a,b)=0 <— a=>0, b=>0, ab=0.

Over the past two decades, a variety of NCP-functions have been studied (see, for exam-
ple, [1-7]). Among them, a popular NCP-function is the well-known Fischer-Burmeister
NCP-function [3] defined as

oeg(a,b) =va? + b2 —a—b.
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In this paper, we use a family of NCP-functions based on the FB function, which was
introduced by Kanzow and Kleinmichel [6],

¢s(a,b) =+/(a—b)?*+rab—a-b, (1)

where A is a fixed parameter such that A € (0,4). In the case of A = 2, the NCP-function
¢, obviously reduces to the Fischer-Burmeister function.
By using ¢, defined by (1), the NCP is equivalent to a system of nonsmooth equations

@2 (w1, F1 (%))
(DA(JC) = =0.

(»b)»(xn’Fn(x))

Let 6, (x) = %||<I>A(x)||2. Then solving NCP(F) is equivalent to solving the unconstrained
minimization minycgn 05 (x) with the optimal value 0.

Kanzow and Kleinmichel [6] studied the properties of ®; and 6, and proposed the corre-
sponding semismooth Newton method. Their method first attempted to use the Newton
direction, but if the Newton equation is unsolvable or the Newton direction is not a di-
rection of sufficient decrease for 0, then it switches to the steepest descent direction. In
this paper, we propose a Newton-type method for the Py-NCP(F), where, in each itera-
tion, we need to construct an approximation of 3®; (x) (the Clarke subdifferential of ®;
at x, which is defined in the next section), which is nonsingular, and hence the direction-
finding problem can be solved only by solving a system of perturbed Newton equations.
We show that the proposed method is globally convergent without any additional assump-
tion. The proposed method is similar to the one discussed by Yamashita and Fukushima
[8], where the NCP-function ¢pp was used. Since ¢ is a special case of ¢, the proposed
method can be used more widely. However, it is hard for us to discuss the locally fast con-
vergence of the proposed method. In order to investigate the locally fast convergence of
this class of methods, we revise the proposed method. We show that the modified method
is globally and locally superlinearly convergent. The preliminary numerical results show
the effectiveness of the modified method.

2 Preliminaries

In this section, we recall some basic concepts and known results.

Definition 2 F:R" — R" is called a Py-function if

max (x; — ;) (Fi(x) - Fi(y)) =0, Vx,yeR",x#y.

1<i<nm

Xi#Yi

Definition 3 A matrix M € R"*” is a Py-matrix if each of its principal minors is nonneg-

ative.

It is known that the Jacobian of every continuously differentiable Py-function is a Py-
matrix. The following theorem will play an important role in our analysis. Notice that, for
a vector a, D, denotes the diagonal matrix with the ith diagonal element being ;.
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Theorem 4 (see [8]) Let M be a Py-matrix, D, and Dy, be negative definite diagonal ma-
trices. Then D, + DyM is nonsingular.

Let ® : R" — R" be locally Lipschitz continuous; by Rademacher’s theorem, ® is dif-
ferentiable almost everywhere.

Definition 5 Let Dy denote the set {x € R"|® is differentiable at x}, then the B-subdiffer-
ential of @ at x is defined as

95D (x) = {v eR™ |y = lim @' () }
xkED(p

xk—>x

The Clarke subdifferential of ® at x is defined as
0®(x) = co 95D (x),
where co denotes the convex hull of a set.

By the definition of ®;, we know that ®, is not differentiable at x if x; = 0 = F;(x) for
some i. However, since @, is locally Lipschitz continuous [6, Lemma 2.1], dp®; (x) is
nonempty at every x € R”. But how to specify the set d5®; (x) exactly at x where V&; (x)
does not exist?

To solve this problem, we construct two mappings H and #{ which approximate 9z ®;.
For a set X, we denote the power set of X by P(X).

Define the mapping H : R” — P(R™") as

H(x) = {H € R"™"|H = D; + D;F (x),(a,b) € Q(x)},
where Q : R” — P(R?") is given by

Q) = @ b) € R (@i, bi) € Qu(x),i=1,2,...,n}
with

(@5 b)) € R2|(@; + 1) + (b; + 1) < Gy}, ifx; =0 = Fi(x),

Qi) ={ " pie AT .
{(@i, b)) € R*|a; = ai, b; = b}, otherwise.

(2)

Here, C; denotes the constant 2 — @, and

2(x;i — Fi(x)) + AFi(x)
2/ (x; — Fi(x))? + Ax:Fs(%)
- —2(x; — Fi(x)) + Ax;
bi=
2/(x; — Fi(x))? + Ax:Fi(%)

In the following, we define # similarly to , which is a subset of .
The mapping H : R” — P(R™") is defined by

H(x) = {H € R”"|H = D; + DjF (x),(a,b) € Qx)},

Page3of 13
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where € : R” — P(R>") is defined by
Qx) = {@ b) e R*"|(a,b) = (g(x,2), h(x,2)),z € Z(x)}.

Here Z(x) = {z € R"|z; #0, if i € B}, and B denotes the set {i|x; = 0 = F;(x)}. The compo-

nents of a vector g(x,z) are given by

2(zi—VFl,T (x)z)+)LVF[,T(x)z
2\/(z,-—VFlT (%)2)2+Arz; VFl.T (%)z

2 B OEW
24/ (%i=F;())% +1x;Fi ()

-1, 1fx, =0= F,'(x),

gilx,2) =
otherwise;

and the components of a vector /(x, z) are given by

—2(zi—VFlT(x)z)+)»zi
I (%, 2) = 2\/(ZL'—VFiT(x)Z)2+)Lz,'VF’.T(x)Z
20-Fix)+hx 1,
24/ (= F; (%)% +Ax; Fi (%)

-1, ifx;=0=Fx),

otherwise.

Remark From (2), we find that, for every x € R”, (a, b) e Q(x) satisfies —/Cy —1 < &, b <
0 (see [6, Proposition 2.6]), and a;, b; do not vanish simultaneously. It is the same with

elements in H.

The mappings H and 7{ have the following property which will play an important role

in our analysis.
Theorem 6 For an arbitrary x € R", we have 7:L(x) C 9D, (x) € H(x).

Proof 95®;(x) C H(x) was shown in [6, Proposition 2.5]. Hence, we prove 7:L(x) C 93P, (x)
in the following.

For an arbitrary H € H(x), we shall build a sequence of points {y*} where ®; is differen-
tiable at every y* and such that V&, (y*)7 tends to H; then the theorem will be obtained
by the definition of B-subdifferential.

Let y* = x + Xz, where z € Z(x) and {¢*} is a sequence of positive numbers converging
to 0.If i ¢ B, either x; # 0 or F;(x) #0,and z; #0 for all i € 8.

We can see, by continuity, that if ¥ is small enough, then for each i, either y* # 0 or
F;()¥) #0, so @, is differentiable at y*. If i ¢ B, by continuity, the ith row of V&, (y*)T
tends to the ith row of H. So, we only concern the case of i € 8.

From [6, Proposition 2.5], we know that the ith row of V®, (y*)7 is

(@ () -1)el + (:(*) -1)VE(H), 3)
where
_ 2(e"% - F0OY) + ARG
- 2/(ekz; — Fi(y%))2 + rekz;Fi(y%) ’

 2(fz - FGY) + retz
2/(e% 2z — F(5)? + aekz F,(5F)

ai(y")

bi(y")
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By Taylor-expansion, we have, for each i € 3,
F; (yk) = F;(x) + eXVF, (5;”() T = e"VF; (Sk) Tz, with X — x. (4)

Substituting (4) into (3) and passing to limit, we have, by the continuity of VF, that the
rows of V®; (y*)7 tend to the corresponding rows of H when i € 8. Hence, V®; ()*)” tends
to H. 0

In this paper, we present two algorithms. The first one, which is presented in Section 3,
uses matrices obtained by perturbing H #. We will establish its global convergence.
While in Section 4, we present another algorithm based on H € 71, which is a restricted
version of the first one. The second algorithm can be superlinearly convergent.

3 Algorithm and global convergence
Considering the Newton-type method, the direction-finding problem is solved by Hd =
—®; (x%), where H € H(x*). However, H is not necessarily nonsingular. In this section, we
will perturb H to G, which is nonsingular. Then a search direction can be obtained by
solving Gd = —®; (x). Now, let us construct G as follows.

First, mapping A; (R — P(R?),i=1,2,...,n are defined by

. 7, = 20
(@i, b)) e R?| - bi , if —¢ <a;and b; < —¢,
b;=0
l‘:
Gy = 7o)
Ailxaibi) =4 {(@inb) € R?|bi=(1-7)2%D & ifg, < —cand b; < e,
T €[0,1]
_ a.=0
(ai, b;) € R* 1_91 o (6, (%) } , ifa; <-eand —e < b;,
=

where ¢ € (0,1-+/C,/2), and 0 : R* — R* is a nondecreasing continuous function such
that 6(0) =0 and o (¢) > 0 forall £ > 0.

Because ¢ € (0,1— \/g), it is obvious that for (a, b) € Q(x), the case of —¢ < a; and —¢ < b;
will not happen.

In the following, we construct G as

G = D; + DzF (x),
where p and g are vectors such that
(Bir@i) = @ +anbi+by), i=1,2,...,n, ®)
with (@,0) € Q(x), and (@;,b;) € Ai(x, @5, b;),i=1,2,...,1.
If 6, (x) > 0, the definition of A; and (5) imply that both D3, D; are negative definite
matrices. Furthermore, we define G : R” — P(R"*") as follows:
G= D; + D3F'(x), (p, q) is defined by (5)

G(x) = { G e R™" | with (a,b) € Qx) and (@, b;) € A;(x,a;,b;)
fori=1,2,...,n
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It is obvious that G = Dj + D;F'(x) and H=D;+ D;F'(x) are closely related. G is nonsin-
gular under proper conditions.

Theorem 7 Ifx is not a solution of NCP(F), i.e., 6,(x) > 0, then every Ge g~(x) is nonsin-

gular.

Proof For every G € G(x), if 6,(x) > 0, then it follows from the definition of G that D; and
D; are negative definite matrices.
Since F is a Py-function, the Jacobian of F is a Py-matrix. So, F'(x¥) is a Py-matrix. Hence,

by Theorem 4, G is nonsingular. g
By the mapping G, we define A : R" — P(R™) as
A(x) = |{d e R"|Gd = -, (x), G € G(v)}.

It is easy to see that A(x) is nonempty for every x such that 6, (x) > 0. Now we give the first
algorithm.

Algorithm 1
Step 1. Initialization: choose A € (0,4), x° € R", p € (0,0.5), B € (0,1), and set k := 0.
Step 2. Termination criterion: if 6, (x) = 0, stop. Otherwise, go to Step 3.
Step 3. Search direction calculation: find a vector d* e A(xF).
Step 4. Line search: let m be the smallest nonnegative integer such that

0, (¢ + B7d") - 6,(x*) < B pV6, (=) d.

Step 5. Update: set x**! := x* + t;d*, where t; = B, k := k + 1, and go to Step 2.

It is obvious that if 6, (x¥) = 0, then xX is a solution of NCP(F). Next, we will prove the
global convergence of Algorithm 1. First, we show that every d € A(x) is a descent direction

of 6, atx.

Lemma 8 (see [8, Lemma 3.2]) Ifx is not a solution of NCP(F), i.e., 6;(x) > O, then every
de Alx) satisfies the descent condition for 6y, i.e., V6, (x)Td < 0.

Theorem 9 Every accumulation point of a sequence {x*} generated by Algorithm 1 is a
solution of NCP(F).

Proof Owing to Step 4, {6, (xX)} is decreasing monotonically and nonnegative. It must con-
verge to some 6} > 0. We assume 6} > 0. Let x* be an accumulation point of {x} and
{xF}rexc be a subsequence converging to x*.

Ais uniformly compact near x* and closed at x* (see [8, Lemma 3.4]), we assume, with-

out loss of generality, that lim ;_, o, d¥ = d* € A(x*). From Lemma 8, we will get the contra-
kelkC

diction if we can prove V6; (x*)Td* = 0. This can be obtained by considering the following
two cases:
« Suppose that inf{t;} > £ > 0. Then we have

0, (xk + tkdk) - OA(xk) < tk,oVG,\(xk)Tdk <0.
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It is obvious that V6, (x*)Td* = 0 is satisfied.

« Suppose that inf{t;} = 0. In this case, we assume lims_, » & = 0 without loss of
kel
generality. By line search, we have

9,\(xk + %kdk) — Gk(xk)

t
B

> pVo, (xk) Tdk,

taking the limit yields V6, (x*)7d* > pV#8,(x*)Td*. Since p € (0,0.5), we have
V6, (x*)Td* > 0. Hence, VO, (x*)Td* = 0.
We get the contradiction. The proof is complete. O

4 Modified algorithm and fast convergence

In the above section, we established global convergence of Algorithm 1. It determines a
search direction based on H which contains the generalized Jacobian dp®, (x). However,
it is hard for us to show the superlinear convergence of Algorithm 1. In the following, we
should modify the search direction properly to accelerate the convergence of algorithm.
By the definition of H, we know that /I € 7L is not necessarily nonsingular. Can we perturb
H similar to H? Next, we give a positive answer to this question.

Define G as

G =Dy + D4F (),
where p and g are vectors such that
@i’éi) = (&i+éi7éi+éi)) i=172;~~yny (6)

with (&,b) € Q(x), and (@, b)) € Ai(x, &, b)), i=1,2,...,n.

If 6, (x) > 0, the definition of A; and (6) imply that both Dy, D, are negative definite
matrices.

Mapping G : R" — P(R"") is defined by

G= Dj, + D;F'(x), (p, ) is defined by (6)
G(x) = { G e R™" |with (&,b) € Q(x) and (@, b;) € A;(x,a;,b;)

fori=1,2,...,n

From Theorem 6, A - H. It is obvious that Q C G .And from Theorem 7, every Ge Q (%)
is nonsingular if 6, (x) > 0.
Define A : R” — P(R") as

Ax) = {d e R"|Gd = -®,(x),G € GW)}.
For any x, since G (x) C G(x), we obtain A(x) € A(x). Hence, A(x) is nonempty for every x

such that 6, (x) > 0. Next, we will give the second algorithm. The search direction is chosen

from A(x). The only difference from Algorithm 1 is the search direction.

Page 7 of 13
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Algorithm 2
Step 1. Initialization: choose A € (0,4), x° € R”, p € (0,0.5), 8 € (0,1), and set k := 0.
Step 2. Termination criterion: if 6, (x) = 0, stop. Otherwise, go to Step 3.
Step 3. Search direction calculation: find a vector df € A(xX).

Step 4. Line search: let m be the smallest nonnegative integer such that
m m T
0, (x* + Bd") — 0, (x") < B oV 8, (x")" d~.
Step 5. Update: set x** := x* + t;d*, where t; = B, k := k + 1, and go to Step 2.

Since A(xX) € A(xX) at each x* as mentioned above, global convergence of Algorithm 2
is directly obtained from Theorem 9. We state the following theorem without proof.

Theorem 10 Every accumulation point of a sequence {(x*} generated by Algorithm 2 is a
solution of NCP(F).

In the following, we focus our attention on the superlinear convergence rate of Algo-
rithm 2. To begin with, we assume that the sequence {x*} generated by Algorithm 2 has a
unique limit point x*.

Lemma 11 We have ||x* + d¥ — x*|| = o(]|a* — x*])).
Proof For each k, we have
ka +df—x* ||
= [ - Gl @ () — 2|
= G (@4(x7) = @1 () + A ") + (Ge — Hi) (+* —7)) |

< |G (@ (x*) = @ (") + Hi (" = 27) | + 1Gi - Fle] " - &*

),

where Hy € 7:L(xk) is the matrix corresponding to Gy. Since @, is semismooth [6,
Lemma 2.2] and 7:l(xk) € 93P, (x¥) for each k, by Theorem 6, we have

[ @3 (") = @3 (x°) + Hi(a ~2%) | = 0[] =2}

(see the proof of [9, Theorem 3.1]). Moreover, by the definition of A; and (6), we have
Gy — Hill = O( (6. (x1))).

Consequently, it follows that
o +d —x < |G [ (o([l+* - a*[) + O(or (6 (+))) [ ~ 5°]))-

Since o (65, (xX)) — 0 and {||(A9,:1 I} is bounded (see the proof of [8, Lemma 4.2]), we obtain
the desired result. O

Now, we prove the superlinear convergence of Algorithm 2.

Page 8 of 13
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Theorem 12 Algorithm 2 has a superlinear rate of convergence.

Proof We have x*! = xX + d* for all k sufficiently large (see the proof of [8, Lemma 4.6)).
It then follows from Lemma 11 that

k+1

ot — x|

koo [k —at|

The proof is complete. O

5 Numerical results
In this section, we do some preliminary numerical experiments to test Algorithm 2 and
compare its performance with that of the algorithms proposed in Chen and Pan [2] and
Sun and Zeng [10].

First, we set 8 = 0.5, p =107, & = 0.05 and o (¢) = 0.1 min{1, ¢}.

For z € Z(x), we define

1, ifx=FxM=0,
zi = ¢ = Fil) i=1,2,...,n.
0, otherwise,

The stopping criterion for Algorithm 2 is 6, (x*) < 10~%. The programs are coded in
MATLAB and run on a personal computer with a 2.1 GHZ CPU processor.

The meaning of the columns in the tables are stated as follows:

iter: the total iteration number, resi: the value of 6, (x).

Problem 1 Let F(x) = Ax + g, where

(3 -1 0 - 0]
-1 3 -1 -~ 0

A=[0 0 0 - 1| = g=(1,...,-17.
0 0 0 - 3

The corresponding complementarity problem has the unique solution. Table 1 lists
the test results for Problem 1 with different #, A and initial points a = (-5,...,-5)7,
b=(0,...,00 , c=(@,..., )T, d=(8,...,8).

From Table 1, we see that the test results for A € (0,1) are better than for other cases.
Especially, the good numerical results are obtained when A closes to 0. Then we compare
the test results with Chen and Pan [2], where we setp = 2, ¢ = 1.0e-08,0 =1.0e-10, 8 = 0.2
for convenience. Table 2 lists the test results for [2].

Tables 1 and 2 indicate that Algorithm 2 performed much better than Chen and Pan [2]
did on Problem 1.

Problem 2 Free boundary problems can also be solved by the method we presented. The
following problem arises from the discretization of a free boundary problem (see [10]). Let
€2 =(0,1) x (0,1) and a function g satisfy g(x,0) = x(1 — x), g(x,y) =0 onx=0,1lory=1.
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Table 1 Test results for Problem 1

Initials a b [4 d
n A iter resi iter resi iter resi iter resi
4 0.0001 3 1.61e-021 2 4.71e-012 3 142e-018 3 2.36e-016
0.001 3 4.84e-020 2 6.26e-012 3 1.37e-017 3 1.22e-015
0.03 3 3.81e-012 2 3.74e-010 3 2.11e-014 3 761e-013
0.05 3 3.15e-010 2 1.54e-009 3 1.76e-013 3 2.52e-012
0.1 4 1.21e-012 3 3.90e-012 3 1.20e-012 4 6.59e-010
0.5 4 8.78e-011 3 2.70e-010 3 8.18e-010 5 7.32e-013
1 4 3.31e-010 4 1.86e-017 4 1.66e-016 5 1.05e-012
13 4 5.23e-009 4 3.78e-013 4 1.92e-014 5 3.20e-011
1.5 5 1.36e-017 4 1.57e-012 4 2.07e-014 6 7.86e-016
2 5 2.22e-013 4 9.67e-011 4 3.05e-012 7 1.64e-016
32 6 1.77e-015 5 2.28e-011 4 1.36e-010 13 1.72e-011
35 6 4.69e-012 5 5.76e-009 4 5.97e-009 16 1.06e-010
38 7 1.62e-013 6 5.16e-011 4 6.87e-010 8 5.69e-013
10 0.0001 3 2.56e-017 2 4.37e-010 3 149e-018 3 5.27e-015
0.001 3 1.04e-016 2 4.84e-010 3 3.18e-017 3 5.15e-015
0.03 3 7.55e-011 2 5.42e-009 3 2.90e-014 3 7.16e-009
0.05 3 3.80e-009 3 3.01e-021 3 2.05e-013 3 5.87e-012
0.1 3 6.69e-009 3 1.03e-010 3 3.16e-012 4 7.08e-010
0.5 4 2.86e-010 3 391e-010 3 2.30e-009 5 3.87e-014
1 4 2.98e-009 4 147e-016 3 1.24e-009 5 7.37e-018
13 5 9.65e-018 4 1.25e-014 4 2.27e-013 5 1.49e-011
15 5 6.52e-017 4 2.08e-009 4 1.45e-013 6 8.19e-016
2 5 5.67e-014 5 391e-017 4 2.22e-014 6 7.76e-009
32 6 5.53e-014 5 5.85e-010 4 7.08e-009 13 2.23e-009
35 6 3.03e-011 6 7.13e-015 4 6.83e-010 20 1.12e-010
38 7 2.93e-013 6 2.81e-010 4 3.62e-010 8 8.00e-014
100 0.0001 3 9.91e-012 3 6.59e-022 3 243e-018 3 2.25e-011
0.001 3 141e-011 3 1.97e-021 3 331e-017 3 1.68e-011
0.03 4 7.16e-021 3 8.29e-018 3 3.25e-014 4 3.76e-019
0.05 4 6.93e-020 3 1.27e-016 3 1.13e-013 4 9.21e-017
0.1 4 8.22e-012 4 3.17e-021 3 3.05e-012 4 4.96e-010
0.5 5 8.60e-020 4 6.17e-019 3 3.00e-009 5 4.00e-011
1 5 257e-017 4 1.03e-014 3 2.55e-009 5 721e-018
13 5 1.11e-015 4 4.37e-011 4 1.00e-014 5 2.87e-009
15 5 1.63e-014 5 7.45e-016 4 1.42e-012 6 4.25e-017
2 5 8.25e-012 5 4.76e-014 4 4.63e-011 7 1.16e-013
32 6 7.28e-010 6 5.92e-011 4 2.88e-011 17 1.14e-014
35 7 2.78e-015 6 3.85e-009 4 3.11e-009 27 1.02e-009
38 7 7.03e-009 7 4.89e-013 4 3.62e-010 7 8.13e-012
Table 2 Test results for Chen and Pan [2] on Problem 1
Initials a b [4 d
n iter resi iter resi iter resi iter resi
4 34 4.92e-009 18 7.17e-009 14 5.90e-009 35 5.90e-009
10 48 6.79e-009 20 3.76e-009 19 5.57e-009 48 4.35e-009
100 97 9.58e-009 23 6.47e-009 18 9.34e-009 48 8.69e-009

Consider the following problem: find u such that

u>0

—Au+f(u,x,y9)-8(y-0.5)>0
u(-Au +f(u,x,y)-8(y—-0.5))=0 inQ,

u=g

in ,
in ,

on 092,
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where f(u,x,y) is a continuously differentiable Py-function. We discretize the problem by
the five-point difference scheme with mesh-step /. Then we get the following comple-

mentarity problem: find x € R” such that
x>0, Ax+W¥(x)>0 and xT(Ax + \I/(x)) =0.

Set initial point as x¢ = (0,..., 0)7. Table 3 lists the test results with different functions f
A, and Ah.

From Table 3, we have the following observations.

« Our test results become better when A decreases. It is obvious that when A = 2 the

result is not good enough. That is to say, Algorithm 2 with the NCP-function ¢;,

Table 3 Test results for Problem 2

h 1/23 1/24 1/2%

f(u,x,y) A iter resi iter resi iter resi

0 0.0001 3 2.68e-009 7 4.15e-014 13 1.87e-015
0.001 3 5.30e-009 7 244e-012 13 1.79e-013
0.01 4 5.05e-018 7 2.30e-010 13 1.78e-011
0.05 4 5.24e-014 7 5.58e-009 13 4.33e-010
0.5 5 1.02e-009 8 7.08e-011 14 549e-012
08 6 1.60e-014 8 8.17e-010 14 6.35e-011
1 6 2.54e-013 8 245e-009 14 1.91e-010
1.5 6 3.17e-011 9 2.21e-012 14 1.22e-009
2 6 8.05e-010 9 5.63e-011 15 3.94e-009
2.2 6 2.23e-009 10 1.56e-010 15 5.59e-009
28 7 6.28e-012 10 1.78e-009 16 2.73e-010
32 7 1.78e-010 10 5.84e-009 16 8.90e-010
38 9 5.88e-011 12 1.36e-009 19 1.63e-009

u? 0.0001 3 2.19e-009 7 4.12e-014 13 1.86e-015
0.001 3 4.68e-009 7 243e-012 13 1.79e-013
0.01 4 4.52e-018 7 2.30e-010 13 1.77e-011
0.05 4 5.13e-014 7 5.57e-009 13 4.31e-010
0.5 5 1.04e-009 8 7.07e-011 14 547e-012
08 6 1.62e-014 8 8.16e-010 14 6.33e-011
1 6 2.52e-013 8 2.45e-009 14 1.90e-010
1.5 6 3.17e-011 9 221e-012 14 1.22e-009
2 6 8.04e-010 9 5.62e-011 15 3.92e-009
2.2 6 2.23e-009 10 7.82e-011 15 5.57e-009
2.8 7 6.28e-012 10 1.78e-009 16 2.72e-010
32 7 1.78e-010 10 5.83e-009 16 8.86e-010
38 9 5.88e-011 12 1.36e-009 19 1.62e-009

ﬁ 0.0001 2 446e-010 5 9.42e-014 11 1.33e-014
0.001 2 7.90e-010 5 1.14e-011 M 1.34e-012
0.01 3 9.27e-019 5 1.18e-009 11 1.33e-010
0.05 3 1.27e-014 6 6.77e-016 11 3.21e-009
0.5 3 5.89e-009 6 3.67e-010 12 3.06e-009
0.8 4 6.77e-014 6 5.99e-009 12 6.87e-009
1 4 9.83e-013 7 7.14e-010 12 9.11e-009
1.5 4 1.13e-010 7 4.59e-009 12 1.00e-009
2 5 1.23e-010 8 8.62e-011 13 3.70e-010
2.2 5 6.28e-010 8 2.39e-010 13 5.53e-010
28 5 9.40e-009 8 7.25e-009 13 2.01e-009
32 6 4.72e-011 8 2.30e-009 13 2.84e-009
38 7 4.67e-009 13 8.89e-009 16 2.12e-010
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Table 4 Test results for Sun and Zeng [10] on Problem 2

h 1/23 1/24 1/2°

f(u,x,y) iter resi iter resi iter resi

0 5 6.45e-016 8 3.11e-015 14 5.03e-011
v 5 8.12e-009 9 1.20e-012 15 3.86e-008
- 5 1.89e-009 8 7.92e-010 14 1.13e-007

Table 5 Test results for MCPLIB problems

A 1.5 2 3

Problem iter time iter time iter time
mathinum(1) 4 0.048 4 0.050 5 0.050
mathinum(2) 4 0.031 5 0.028 6 0.036
mathinum(3) 7 0.030 7 0.030 8 0.032
mathinum(4) 6 0.076 7 0.074 7 0.080
nash(1) 7 2.536 8 2.538 11 2529
nash(2) 8 2.284 9 2.301 13 2334
tobin(1) 7 16.878 9 16.729 10 17.321
tobin(2) 12 17.389 14 17.342 16 17.358

(0 < A < 2) is better than the one discussed in [8] where the Fischer-Burmeister
function was used.
« Whether the function f(u,x, y) is linear or nonlinear, the test results are good. The
results are especially better when A closes to 0.
We compare the test results with Sun and Zeng [10] where we set 8 = 0.5, ¢ = 0.5%. Table 4
lists the test results for [10] with different functions f and 4.
Tables 3 and 4 indicate that Algorithm 2 performed as well as Sun and Zeng [10] did on
Problem 2.

Problem 3 We implemented Algorithm 2 for some test problems with all available start-
ing points in MCPLIB [11]. The results are reported in Table 5 with seconds for unit of

time.

The above examples indicate that the results are better when A closes to 0. A reason-
able interpretation for this is that the values of g;(x,z) and /4;(x,z) become smaller when
A increases and hence causes some difficulty for Algorithm 2. This also implies that the
performance of Algorithm 2 will become worse when p increases. When A — 0, the NCP
obviously reduces to min{x, F(x)} = 0. But it is a nonsmooth equation so we cannot use
this method.

6 Concluding remarks
In this paper, we have studied a class of one-parametric NCP-functions ¢, (-, -) which in-
clude the well-known Fischer-Burmeister function as a special case and proposed modi-
fied Newton-type algorithms for solving Py complementarity problems.

Numerical results for the test problems have shown that this method is promising when
A € (0,4). Moreover, our numerical results indicated that the performance of the modified
Newton-type method becomes better when A decreases, which is a new and important nu-
merical result. We believe that Algorithm 2 can effectively solve more practical problems
if they can be reformulated as an NCP(F). We leave this as a future research topic.
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