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Abstract
The concept of R-duals was introduced by Casazza, Kutyniok, and Lammers in 2004. In
this paper, we give a condition when a Parseval frame can be dilated to an
orthonormal basis of a given separable Hilbert space H. This is advantageous for
deriving a condition for a sequence {ωj}j∈J to be an R-dual of a given frame {fj}j∈J .

1 Introduction
The concept of R-duals was first introduced by Casazza et al. in []. Although it is defined
in general frame theory, there is a natural connection with Gabor frame theory. And it
is still an open problem whether the duality principle in Gabor analysis actually can be
derived from the theory of the R-dual. Lots of scholars have done much research in this
area. Reference [] introduces various alternative R-duals and shows their relations with
Gabor frames. References [] and [] consider R-dual in Banach space. In [], the authors
give an equivalent condition for a sequence {ωj}j∈J to be an R-dual of a given frame {fj}j∈J .
However, we think there is a mistake in their proof. The correction of it will be discussed
in Section .

The dilation viewpoint on frames is introduced by Larson and Han in [], which has a
natural relation with the R-dual. They point out that any Parseval frame can be dilated to
an orthonormal basis. But given a Hilbert space H and a Parseval frame of a subspace of H ,
can the Parseval frame be dilated to an orthonormal basis for H? This will be discussed in
Section .

In the entire paper, we let H denote a separable Hilbert space, with the inner product
〈·, ·〉, and J be a countable index set.

Definition  A sequence {fj}j∈J of elements in H is a frame for H if there exist constants
A, B >  such that

A‖f ‖ ≤
∑

j∈J

∣∣〈f , fj〉
∣∣ ≤ B‖f ‖, f ∈ H .

The constants A, B are called a lower and upper frame bounds for the frame. A frame is
A-tight, if A = B. If A = B = , it is called a Parseval frame (a normalized tight frame in []).
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Definition  A sequence {ωj}j∈J in H is a Riesz sequence if there exist constants C, D > 
such that

C
∑

j∈J

|cj| ≤
∥∥∥∥
∑

j∈J

cjωj

∥∥∥∥


≤ D
∑

j∈J

|cj|

for all finite sequence {cj}j∈J . The numbers C, D are called Riesz bounds. A Riesz sequence
is a Riesz basis for H if it is complete in H .

For more information as regards frames and Riesz bases we refer to the monograph [].
We now state the definition of the R-dual sequence.

Definition  [] Let {ei}i∈J and {hi}i∈J denote two orthonormal bases for H , and let {fi}i∈J

be any sequence in H for which

∑

i∈J

∣∣〈fi, ej〉
∣∣ < ∞, ∀j ∈ J .

The R-dual of {fi}i∈J with respect to the orthonormal bases {ei}i∈j and {hi}i∈J is the sequence
{ωj}j∈J given by

ωj =
∑

i∈J

〈fi, ej〉hi, j ∈ J . (.)

It is well known from [] that {fi}i∈J is a frame for H with bounds A, B if and only if
{ωj}j∈J is a Riesz sequence in H with bounds A, B. But given two sequence {fi}i∈J and {ωj}j∈J ,
under what conditions can we find orthonormal bases {ei}i∈J and {hi}i∈J for H such that
(.) holds? This is the main question we want to answer in this paper. It will be discussed
in Section  explicitly. Assume that {fi}i∈J is a frame for H . Define a sequence {ni}i∈J by

ni =
∑

k∈J

〈ek , fi〉ω̃k , i ∈ J , (.)

where {ω̃j}j∈J is the canonical dual Riesz sequence of {ωj}j∈J . The construction of {ni}i∈J

comes from []. It plays an important role in this paper.

Proposition  [] Let {ωj}j∈J be a Riesz basis for the subspace W of H , with dual Riesz
basis {ω̃k}k∈J . Let {ei}i∈J be an orthonormal basis for H . Given any sequence {fi}i∈J in H , the
following hold:

(i) There exists a sequence {hi}i∈J in H such that

fi =
∑

j∈J

〈ωj, hi〉ej, ∀i ∈ J . (.)

(ii) The sequence {hi}i∈J satisfying (.) is characterized as

hi = mi + ni, (.)

where ni is given by (.) and mi ∈ W ⊥.



Chuang and Zhao Journal of Inequalities and Applications  (2015) 2015:10 Page 3 of 8

(iii) If {ωj}j∈J is a Riesz basis for H , then (.) has the unique solution

hi = ni, i ∈ J .

In [], Christensen et al. give a solution to the main question.

Theorem  [] Let {ωj}j∈J be a Riesz sequence spanning a proper subspace W of H and
{ei}i∈J an orthonormal basis for H . Given any frame {fi}i∈J for H , the following are equiva-
lent:

(i) {ωj}j∈J is an R-dual of {fi}i∈J w.r.t. {ei}i∈J and some orthonormal basis {hi}i∈J .
(ii) There exists an orthonormal basis {hi}i∈J for H satisfying (.).

(iii) The sequence {ni}i∈J in (.) is a Parseval frame.

We point out that, in fact, (iii) is not equivalent to the other items in Theorem . In order
to clarify this, we need the following proposition from [].

Proposition  [] Let J be a countable (or finite) index set. Suppose that {xn : n ∈ J} is a
Parseval frame for W . Then there exist a Hilbert space K ⊇ W and an orthonormal basis
{en : n ∈ J} for K such that Pen = xn, where P is the orthogonal projection from K onto W .

2 A dilation theorem
In this section, a dilation theorem is given, which will be used in Section . Firstly, we give
an example to show that Theorem  is not strictly right.

Example  In this example, we choose the index set J = N, the natural number set. Sup-
pose {zi}i∈J is an orthonormal basis for H . Define fi = zi and ωi = zi for all i ∈ J . Then
the sequence {fi}i∈J is a Parseval frame with frame bounds  and {ωj}j∈J is a Riesz sequence
with bounds  as well. The canonical dual {ω̃j}j∈J of {ωj}j∈J equals { 

 zj}j∈J . Let

ni =
∑

k∈J

〈zk , fi〉ω̃k =
∑

k∈J

〈zk , zi〉 


zk = zi.

Obviously, {ni}i∈J is a Parseval frame, but {ωj}j∈J cannot be an R-dual of {fi}i∈J . If not, by
(ii) of Proposition , an orthonormal basis {hi}i∈J for H can be characterized by

hi = mi + ni,

where mi ∈ W ⊥ for all i ∈ J . Since ni ∈ W , we have

 = ‖hi‖ = ‖mi + ni‖ = ‖mi‖ + ‖ni‖ = ‖mi‖ + ‖zi‖.

Since ‖zi‖ = , one has mi =  for all i ∈ J . Therefore hi = ni = zi. This contradicts {hi}i∈J

being an orthonormal basis for H . Thus (iii) of Proposition  is not right.

In fact, given any orthonormal sequence (of course a Parseval frame), it cannot be dilated
to any orthonormal basis but itself. Generally, we have the following theorem.
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Theorem  Given two separable Hilbert spaces H ⊇ M, suppose that {xn}n∈J is a Parseval
frame for W . Then there exists an orthonormal basis {en}n∈J for H s.t. Pen = xn if and only if

dim(ker T) = dim
(
W ⊥)

, (.)

where P is an orthogonal projection from H onto W , T is the synthesis operator of {xi}i∈J .

Proof First we treat sufficiency. Since

∑

i∈J

cixi =
∑

i∈J

ciPei = P
∑

i∈J

ciei,

for any {ci}i∈J ∈ �(J), a sequence {ci}i∈J ∈ ker T if and only if
∑

i∈J ciei ∈ W ⊥. So (.) holds.
Now we treat necessity. Suppose (.) holds, from the proof of the Proposition , there

exist a Hilbert space K = �(J), an orthogonal projection P, and an orthonormal basis {ei}i∈J

for K , such that

Pei = θ (xi), (.)

where θ is the analysis operator of {xi}. Since θ is injective, it has inverse restricted to
θ (W ). For simplicity, we just denote it by θ–.

For any {ci}i∈J ∈ �(J), since

∑

i∈J

ci〈x, xi〉 =
〈
x,

∑

i∈J

cixi

〉
,

we have

dim ker T = dim
(
θ (W )

)⊥. (.)

Together with (.), we have

dim W ⊥ = dim(ker T) = dim
(
θ (W )

)⊥.

Therefore, there is an unitary operator η from W ⊥ onto (θ (W ))⊥. Combining with θ , we
can define a unitary operator U from H onto K :

Ut = U(t + t) = θ t + ηt, t ∈ W , t ∈ W ⊥.

One can easily get

U–y = U–(y + y) = θ–y + η–y, y ∈ θ (W ), y ∈ θ (W )⊥.

Therefore, U∗ = U–. In fact, for t ∈ H and y ∈ K ,

〈Ut, y〉 =
〈
U(t + t), y + y

〉

= 〈θ t, y〉 + 〈ηt, y〉
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=
〈
t, θ–y

〉
+

〈
t,η–y

〉

=
〈
t, θ–y + η–y

〉

=
〈
t, U–y

〉

=
〈
t, U∗y

〉
,

where the third equation is due to the Parseval frame property of {xn}n∈J and unitarity of η.
Because of the unitarity of U , also εi = U–ei is an orthonormal basis for H .

Now, taking U– on the two sides of (.), we have

U–Pei = U–PUU–ei = U–PUεi = xi.

We claim that U–PU is also an orthogonal projection. In fact, by the properties of U
and P, we have

(
U–PU

) = U–PU = U–PU

and

(
U–PU

)∗ =
(
U∗PU

)∗ = U∗PU = U–PU .

Thus we get as desired the complete proof. �

3 Conditions of R-dual
In this section, we discuss under what conditions {ωi}i∈J can be an R-dual of {fi}i∈J . At first,
we give two lemmata which will be used later.

Lemma  Let {ni}i∈J be defined as (.), W the close span of {ωj}j∈J , then span{ni}i∈J = W .

Proof Since ni =
∑

k∈J〈ek , fi〉ω̃k , we have

span{ni}i∈J ⊆ span{ω̃i}i∈J = W .

In the opposite direction, since {fi}i∈J is a frame for H , there exists a sequence {c�}�∈J ∈ �(J)
such that em =

∑
�∈J c�f� for m ∈ J . Then one has

∑

�∈J

c�n� =
∑

�∈J

c�

∑

k∈J

〈ek , f�〉ω̃k =
∑

k∈J

〈
ek ,

∑

�∈J

c�f�
〉
ω̃k =

∑

k∈J

〈ek , em〉ω̃k = ω̃m.

Thus W ⊆ span{ni}i∈J . We have the desired result. �

Define Sωf =
∑

k∈J〈f ,ωk〉ωk and Sω̃f =
∑

k∈J〈f , ω̃k〉ω̃k , for f ∈ W . Then S– 


ω̃
ω̃k is an or-

thonormal basis for W . Since 〈ωk , S–
ω ω�〉 = δk,� by [], one has ω̃k = S–

ω ωk . Furthermore,
we have

Sω̃f =
∑

k∈J

〈
f , S–

ω ωk
〉
S–

ω ωk = S–
ω SωS–

ω f = S–
ω f , ∀f ∈ W .

This means the operator equation Sω̃ = S–
ω holds.
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Let εk = S– 


ω̃
ω̃, then ω̃k = S



ω̃
εk . Let {ek}k∈J be an orthonormal basis for H , define an

antiunitary operator � : H −→ W by

�f = �

(∑

k∈J

ckek

)
=

∑

k∈J

ckεk , for f =
∑

k∈J

ckek ∈ H .

Obviously, the inverse of � is also an antiunitary operator and

�–g = �–
(∑

k∈J

ckεk

)
=

∑

k∈J

ckek , ∀g ∈ W .

Furthermore, the antiunitary operator � has the following property.

Lemma  Let � be defined as above, then 〈�f , g〉 = 〈�–g, f 〉 for any f ∈ H and g ∈ W .

Proof By the definition of �, one has

〈�f , g〉 =
〈∑

k∈J

〈ek , f 〉εk , g
〉

=
∑

k∈J

〈ek , f 〉〈εk , g〉 =
〈∑

k∈J

〈εk , g〉ek , f
〉

=
〈
�–g, f

〉
. �

Theorem  There exists an orthonormal basis {ei}i∈J such that {ni}i∈J is a Parseval frame
if and only if there exists an antiunitary operator � such that Sω = �S�–, where S is the
frame operator of {fi}i∈J .

Proof By the definition of {ni}i∈J and Lemma , we have

∑

i∈J

∣∣〈f , ni〉
∣∣ =

∑

i∈J

∣∣∣∣

〈
f ,

∑

k∈J

〈ek , fi〉ω̃k

〉∣∣∣∣


=
∑

i∈J

∣∣∣∣
∑

k∈J

〈fi, ek〉〈f , ω̃k〉
∣∣∣∣


=
∑

k∈J

∑

�∈J

(∑

i∈J

〈fi, ek〉〈e�, fi〉
)

〈f , ω̃k〉〈ω̃�, f 〉

=
∑

k∈J

∑

�∈J

〈e�, Sek〉
〈
f , S



ω̃
�ek

〉〈
S



ω̃
�e�, f

〉

=
∑

k∈J

∑

�∈J

〈e�, Sek〉
〈
ek ,�–S



ω̃

f
〉〈
�–S



ω̃

f , e�

〉

=
∑

k∈J

〈
ek ,�–S



ω̃

f
〉〈
�–S



ω̃

f , Sek
〉

=
〈∑

k∈J

〈
�–S



ω̃

f , Sek
〉
ek ,�–S



ω̃

f
〉

=
〈
S�–S



ω̃

f ,�–S


ω̃

f
〉

=
〈
f , S



ω̃
�S�–S



ω̃

f
〉
. (.)
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Suppose {ni}i∈J is a Parseval frame; then we have

∑

i∈J

∣∣〈f , ni〉
∣∣ = ‖f ‖, ∀f ∈ W . (.)

By (.), it becomes

∑

i∈J

∣∣〈f , ni〉
∣∣ =

〈
f , S



ω̃
�S�–S



ω̃

f
〉

= 〈f , f 〉. (.)

For arbitrary complex numbers a and b, we have

�S�–(af + bg) = �S
(
a�–f + b�–g

)
= a�S�–f + b�S�–g.

Thus �S�– is a linear operator, so is the operator S


ω̃
�S�–S



ω̃

. This means S


ω̃
�S�–S



ω̃

=
I by (.), i.e.

Sω = �S�–.

On the other hand, assume there exists an antiunitary operator � such that Sω = �S�–.
Define ej = �–εj = �–S– 


ω ω̃k , then (.) means

ni =
∑

k∈J

〈ek , fi〉ω̃k

is a Parseval frame. �

Theorem  Suppose {fi}i∈J is a frame for a separable Hilbert space H and {ωj}j∈J is a Riesz
sequence in H . {fi}i∈J is an R-dual of {ωj}j∈J if and only if the following two conditions hold:

(i) there exists an antiunitary operator � s.t. Sw = �S�–;
(ii) dim(ker T) = dim(W ⊥).

Proof By Proposition , {fi}i∈J is an R-dual of {ωj}j∈J if and only if {ni}i∈J can be dilated to
an orthonormal basis for H . By Theorem , this is equivalent to {ni}i∈J being a Parseval
frame and (ii) holding. Using Theorem , we see that {fi}i∈J is an R-dual of {ωj}j∈J if and
only (i) and (ii) hold. �

We appreciate one reviewer having pointed out that Theorem  is of exactly the same
type as the characterizations of type II/III in []. In the special case, if {fi}i∈N is an A-tight
frame for a separable Hilbert space H with infinite dimension and {ωj}j∈N is an A-tight
Riesz sequence where N denotes the natural number set, then there must be an antiunitary
operator � form H onto W . So we have S = AIH , SW = AIW , and

SW = AIW = �AIH�– = �S�–.

Thus the condition (i) of Theorem  holds automatically. And we get the following corol-
lary, first given in [].
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Corollary  [] Let {fi}i∈J be a tight frame for H and let {ωj}j∈J be a tight Riesz sequence
in H with the same bound. Denote the synthesis operator for {fi}i∈J by T . Then {ωj}j∈J is an
R-dual of {fi}i∈J if and only if dim(ker T) = dim(W ⊥) holds.

Remark  Since SW f =
∑

j∈J〈f ,ωj〉ωj and

�S�–f =
∑

j∈J

〈
fj,�–f

〉
�fj =

∑

j∈J

〈f ,�fj〉�fj,

(i) of Theorem  is equivalent to there existing an antiunitary operator such that

∑

j∈J

〈f ,ωj〉ωj =
∑

j∈J

〈f ,�fj〉�fj.

Remark  For parameters a, b ∈ R, define the operators Ta and Eb on L(R)by Taf (x) =
f (x – a) and Ebf (x) = eπ ibxf (x), respectively. From [], we know that if ab <  and
{EmbTnag}m,n∈Z is a frame, then {EmbTnag}m,n∈Z has an infinite excess. If ab > , then
{EmbTna}m,n∈Z has an infinite deficit. This demonstrates that, if we want to solve the open
problem, we only need (i) of Theorem  to hold. By Remark , this is equivalent to finding
an antiunitary operator � such that

∑

m,n
〈f ,�EmbTnag〉�EmbTnag =

∑

m,n

〈
f ,

√
ab

Em/aTn/bg
〉

√
ab

Em/aTn/bg.
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