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Abstract

This paper focuses on recovering the 3D structure and motion of human faces from a sequence of 2D images. Based
on a probabilistic model, we extensively studied the rotation constraints of the problem. Instead of imposing
numerical optimizations, the inherent geometric properties of the rotation matrices are taken into account. The
conventional Newton’s method for optimization problems was generalized on the rotation manifold, which
ultimately resolves the constraints into unconstrained optimization on the manifold. Furthermore, we also extended
the algorithm to model within-individual and between-individual shape variances separately. Evaluation results give
evidence to the improvement over the state-of-the-art algorithms on the Mocap-Face dataset with additive noise, as
well as on the Binghamton University A 3D Facial Expression (BU-3DFE) dataset. Robustness in handling noisy data
and modeling multiple subjects shows the capability of our system to deal with real-world image tracks.
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1 Introduction
Recovering scene geometry and camera motion from
sequences of 2D monocular images has seen significant
success for the 3D geometry of static objects. The widely
used rigid factorization method was first introduced by
Tomasi and Kanade [1]. Orthonormality constraints are
adopted on the rotationmatrices in order to recover struc-
ture and motion in a single step. Unfortunately, most
biological objects and natural scenes are deformable. 3D
rigid motions, i.e., camera rotation and translation, along
with non-rigid deformations, e.g., stretching and bending,
aremixed altogether in their imagemeasurements. Hence,
extending the existing rigid algorithms to the non-rigid
scenario turns out to be a far more challenging task than
it appears to be.
It is known that the problem of non-rigid structure from

motion (NRSFM) is generally underconstrained and thus
intractable, if each point of the object moves arbitrar-
ily. In practice, however, many objects, e.g., faces, deform
under certain rules. A possible approach is to learn an
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application-specific 3Dmodel of non-rigid structure from
the training data to constrain deformation [2]. Another
possibility is to hard-code and learn a model incremen-
tally [3]. Some approaches [4–7] were proposed from
another perspective to remove the need of such a prior
model, which is not available in most real-world situa-
tions. The shape model, i.e., shape bases, is treated as
unknowns to be solved, with only the orthonormality con-
straints on camera rotations being utilized. Xiao et al.
[8] proved that only enforcing the orthonormality con-
straints is not enough for the factorization-based method;
therefore, they introduced the basis constraints to reduce
ambiguity.
In this work, two major contributions have been made.

We first investigated the geometric properties of the
orthonormality constraints and generalized the Newton’s
optimization method to the underlying manifold of the
camera rotation matrices. That means, non-linear opti-
mization can be carried out on the manifold without
any imprecise approximations. We used a probabilis-
tic principal component analysis (PPCA)-based frame-
work [9] to model NRSFM as it is more robust to noise
than the closed-form factorization techniques. Our sec-
ond contribution is about dealing with multiple subjects.
The current NRSFM algorithms mostly focus on the
reconstruction of a single subject. While dealing with
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data containing multiple subjects, no difference is taken
into account, when modeling between-individual varia-
tion (e.g., face model of different identities) and within-
individual variation (e.g., facial expression of the same
identity). For that reason, we extended the PPCA-based
framework to the probabilistic linear discriminant analy-
sis (PLDA) [10] model to improve reconstruction perfor-
mance on data with multiple subjects.
The remainder of this paper is organized as follows.

Previous research on NRSFM is reviewed in Section 2.
Section 3 presents the probabilistic NRSFM model [9]
and our novel manifold optimization technique on the
orthonormality constraints. Section 4 discusses the exper-
imental results of our algorithm. Finally, we conclude our
work in Section 5.

2 Related work
Modern structure from motion (SFM) algorithms employ
the factorization method for orthographic camera pro-
jection proposed by Tomasi and Kanade [1]. The rank
theorem ensures that the input matrix can be factorized
into two matrices, one corresponds to the camera motion,
and the other represents the shape. Although the result-
ing matrices from singular value decomposition (SVD) are
not unique, they only differ by a linear transformation. By
imposing metric constraints, a decent solution of the SFM
problem for rigid objects can be achieved.
In the seminal work of Bregler et al. [11] and Torresani

et al. [6] for solving NRSFM, they assumed that the 3D
shape of an object can be explained as a linear combina-
tion of deformation shapes applied to a dominant rigid
component. In this way, the non-rigid motion recovery is
formulated as a factorization problem and the low rank
of the image measurements is analyzed. In general, this
model assumes that the number of basis shapes should be
known, an inaccurate choice that can lead to performance
drop. Theoretically, if the number is underestimated, it is
not sufficient to represent all variations of the object; oth-
erwise, the extra degree of freedom is unconstrained and
is unlikely to generalize well, which starts fitting to noise.
Using the linear representation, Xiao et al. [8] pro-

posed a closed-form scheme for solving the NRSFM prob-
lem. They proved in the previous work that by imposing
orthonormality constraints alone on camera rotations,
the increased degree of freedom will cause ambiguity.
The additional basis constraints will determine the shape
bases uniquely. In [12], Xiao and Kanade pointed out
that even enforcing both sets of linear metric constraints
above could still lead to ambiguity, if there exist degener-
ate bases, which are not of full rank three. However, by
exploiting the rank three constraints inherently, Akhter
et al. [13] analytically proved that orthonormality con-
straints alone are sufficient to recover the exact structure.
Ambiguity solely lies in the transformation of linear basis

vectors, which does not affect the 3D structure recon-
struction. Dai et al. [14] proved this claim by solving the
NRSFM problem without any prior using matrix trace
norm minimization.
Torresani et al. [9] proposed a probabilistic deforma-

tion model based on PPCA and suggested that it reveals
better reconstruction result than the conventional linear
model. In their work, 3D shapes are drawn from non-
uniform probability distribution functions (PDFs) with a
Gaussian prior on each shape in the subspace instead
of the common linear subspace model, which is a spe-
cific usage of PPCA. The parameters of the PDF are
unknown in advance, which will be optimized using the
expectation-maximization (EM) algorithm together with
the 3D shapes and rigid motions. An advantage of PPCA
over the simple deterministic subspace model is that
degeneracy of closed-form solutions does not occur so
that the ambiguity problem figured out by Xiao et al. in
[12] does not happen here. However, the rotation matrices
are approximated by using a single Gauss–Newton step
with a fixed updating step length, which can lead to a con-
siderable performance drop in the rotation reconstruction
if no proper metric on the manifold is defined.
Over the last years, more research on NRSFM has also

been done using various forms of non-linear optimiza-
tion techniques to minimize the 3D reprojection error. In
order to overcome the degeneracy problem, some addi-
tional heuristic constraints were introduced. Shaji and
Chandran [15] introduced a canonical Riemannian met-
ric on the product span subspace of the rotation matrices
and articulated shape weights. The Newton’s algorithm
is generalized to the product manifold to recover those
parameters, while the Wiberg algorithm is employed to
solve the shape update. It differs from our approach in that
our framework uses a probabilistic model with a poste-
rior objective function over the latent variables, which is
more robust to noise introduced by tracking error or man-
ual labeling. Section 4 shows the robustness of our model
with extreme conditions of noise.
Other than recovering the whole 3D shapes and motion

parameters like in almost all the existing applications,
Rabaud and Belongie [16] presented a manifold learning
approach that only focuses on an embedding of frames
within the input image sequence. The intuition is as fol-
lows: given enough image frames, a non-rigid deformed
3D shape can be observed several times in different view
angles. If some of the frames share a low 3D reconstruc-
tion error, they are highly likely to represent a similar 3D
shape, otherwise it means a poorly matched set of frames.
Following this principle, triplets of frames are compared
to exploit all repetitions in possible shape deformations.
Then the generalized non-metric multi-dimensional scal-
ing framework is used to estimate the weight of each
deformation shape. Bundle adjustment is employed as a
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further optimization step, which minimizes the repro-
jection error. This closed-form approach can reconstruct
accurate 3D shape on a clean synthetic dataset; how-
ever, with the amount of noise added, their performance
drops very fast and approaches that of PPCA. Tao and
Matuszewski [17] also employed manifold learning-based
diffusion maps to handle highly deformable objects.
By exploiting the temporal smoothness of the shape tra-

jectories across the images, Akhter et al. [18] addressed
the NRSFM problem in trajectory space, which is the
dual problem to the conventional spatial shape bases. By
describing the 3D point trajectory linearly using object
independent discrete cosine transform (DCT) vectors,
unknowns in estimation are reduced, and stable recon-
struction is achieved as a result. Gotardo and Martinez
extended the temporal dependence to iteratively obtain
higher-frequency DCT in [19] and explicitly modeled the
complementary spaces of rank three in [20]. Valmadre
and Lucey [21] formulated the regularization of the trajec-
tory basis with a temporal filter. Recently, Park et al. [22]
simplified the global motion estimation of the trajectory
basis with the aid of a few stationary points in the scene.
Despite the robust performance on various motion cap-
ture datasets, limitation of its application is also obvious,
i.e., the object deformation should be temporally con-
tinuous and smooth. Otherwise, higher-frequency DCT
vectors are needed, which significantly increases the rank
of the trajectory matrix factorization and will eventually
lead to degeneration and unstable performance. In con-
trast, the primary problem in shape space does not suffer
from this.
In this paper, we demonstrate a probabilistic, iterative

alternating approach to solve the NRSFM problem. In
contrast to Torresani et al. [9], the conventional New-
ton’s method is generalized on the rotation manifold to
solve the optimal rotation matrix for each optimization
iteration. The orthonormality constraints are naturally
guaranteed by the metric update step without the need of
being projected back after constrained optimizations on
the Euclidean space. Additionally, a generic PLDA model
that takes into account the commonness across all sub-
jects, as well as the specific characteristics between the
subjects, can be learned. On datasets with more than one
subject, better individual reconstruction is achieved even
if insufficient number of frames are available for each
subject.

3 NRSFMmodel
Most of the state-of-the-art NRSFM algorithms make use
of a linear subspace model to represent the shape model.
A linear combination of deformation shapes is thereby
applied to a dominant rigid component. Let the 3P × 1
matrix s̄ be the mean shape and the 3P × K matrix V and
theK-dimensional vector zt be the remaining basis shapes

and their weights, respectively, where P is the number of
landmarks in each image frame andK the number of artic-
ulation shapes apart from the mean shape. The 3D shape
of the tth frame is represented as

st = s̄ + Vzt . (1)

Note that shapes are stacked in matrix V so that each
column represents a basis shape. Camera rotation in
frame t is denoted by the 2 × 3 matrix Rt . Due to the
inevitable presence of internal and external noise in image
tracks or labeling, a zero-mean Gaussian noise nt with
variance σ 2 is also added. If we align the images to the cen-
ter and drop the translations, the 2D observation matrix
under the orthographic camera model can be factorized
into

pt = Rt(s̄ + Vzt) + nt . (2)

This probabilistic formulation of the conventional prin-
cipal component analysis (PCA) was addressed by Tipping
and Bishop in [23]. It has a simple linear probabilistic
assumption that all marginal and conditional distributions
are Gaussian. PPCA is closely related to factor analysis
[24], in which a statistical model is used to describe the
relation between the observed vector pt and the corre-
sponding latent variables zt .
In Eq. (2), the weight coefficients zt are formulated as an

independent and identically distributed (i.i.d.) Gaussian
prior

zt ∼ N (0; I). (3)

These unobserved or latent variables are marginalized
out instead of being explicitly calculated. Since there only
exists linear transformations in Eq. (2), the measurement
matrix pi is also Gaussian distributed [9] with the form

pt ∼ N (Rt s̄;RtVV�R�
t + σ 2I). (4)

3.1 Shape update
The PPCA model can be estimated iteratively by the
EM algorithm [9]. In the expectation step (E-step), the
posterior distribution over zt is defined as

q(zt) = p(zt|pt ,Rt , s̄,V, σ 2)

= N (zt|μt ;�t).
(5)

Over this distribution, the first two moments of zt are
given

μt = E[ zt] , (6)
φt = E[ ztz�

t ]= �t + μtμ
�
t . (7)
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In the following maximization step (M-step), the expected
negative log-likelihood function

L = −E

[∑
t

log p(pt|Rt , s̄,V, σ 2)

]

= 1
2σ 2

∑
t

E
[||pt − Rt(s̄ + Vzt)||2

]
+ JT log(2πσ 2)

(8)

is minimized. The shape bases {s̄,V} and the noise param-
eter σ 2 can be updated individually in closed form by
setting their partial derivative to zero [9] with the help of
the expectations in Eqs. (6) and (7).
However, the camera rotation parameter Rt is sub-

ject to orthonormality constraints; hence, closed-form
update like the other parameters is not possible. Torre-
sani et al. [9] approximated the solution with a single
Gauss–Newton step on the Euclidean space, which is
inaccurate and has a theoretically low convergence rate.
In the upcoming section, we propose our optimization
technique on the manifold.

3.2 Motion update onmanifold
In [9], a twist vector ξ is employed to hold the result of
the single Gauss–Newton step. The exponential map of
the skew-symmetric matrix ξ̂ is then set as the updat-
ing vector �. Note that without defining an appropriate
metric on the manifold, a manually selected and fixed
updating step length is implemented, which declines the
performance obviously, when faced complex setups.

3.2.1 Newton’s method on SO(3)
As we consider the orthographic camera model, the cam-
era motion matrix Rt in Eq. (2) is obtained by projecting a
3D rotation matrix to 2D with an orthographic projection
matrix

� =
[
1 0 0
0 1 0

]
, (9)

so that the mapping

R = �Q (10)

from 3D to 2D is satisfied. The rotation matrix Q is an
orthogonal matrix with a determinant one, which lies
exactly on the manifold of the special orthogonal group

SO(3) =
{
Q ∈ R

3×3 : Q�Q = I, det(Q) = 1
}
. (11)

Hence, instead of putting an approximate algebraic or
numeric constraint on the Euclidean space R

N and pro-
jecting them back onto the SO(3) manifold, an uncon-
strained optimization on the manifold is a natural gener-
alization and is expected to perform better.

To start with, we consider to be on the normal Euclidean
space. The Newton’s method iteratively finds the station-
ary points of differentiable functions. Provided that f (x)
is a twice-differentiable function, the update sequence xn
can be approximated by the Taylor series expansion up to
the second order and rewritten as

xk+1 = xk − [
f ′′(xk)

]−1 f ′(xk). (12)

Given a quadratic function f (x), the optimal point can
be found even in a single step. So on the Euclidean
space, the first and second order derivatives of the objec-
tive function are needed. Edelman et al. [25] proved that
for Stiefel manifolds (set of all orthonormal k-frames in
R
n, Vk(R

n) = {
A ∈ R

n×k : A�A = I
}
), e.g., SO(3), their

canonical Riemannian structure makes possible to gener-
alize a RiemannianNewton’s method on them. Besides the
gradient and Hessian, the definition of the update along
the geodesic of themanifoldmust be known to ensure that
the update is valid, because unlike on the Euclidean space,
the update path is no longer a straight line but rather a
geodesic curve, which stays on the surface of the man-
ifold all the time and defines the shortest path between
two points on the surface. The update step is illustrated in
Fig. 1.
We define the objective function F with respect to the

rotationmatrixQ for themanifold optimization as follows

F(Q) = E
[‖p − �Q(s̄ + Vz)‖2F

]
. (13)

Since Q ∈ SO(3), following [26], its tangent vector � ∈
T(SO(3)) is given by

� = Qû, (14)

Fig. 1 Generalization of the Newton’s method on manifold. Current
approximation xk is updated in the direction of the optimal update
vector �k by a unit distance. Applying the update on the geodesic
reveals the new point xk+1
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where û is the skew-symmetric matrix of vector u in the
form of

û =
⎡
⎣ 0 −u3 u2

u3 0 −u1
−u2 u1 0

⎤
⎦ . (15)

For the Riemannian manifold, the metric can simply be
induced from the Euclidean metric as

g(�1,�2) = 1
2
tr(��

1 �2). (16)

The explicit formula for geodesics on SO(3) at Q in
direction � is then

Q(t) = exp(Q,�t) = Q exp(ω̂t)

= Q
(
I + ω̂ sin(t) + ω̂

2
(1 − cos(t))

)
,

(17)

where t ∈ R, ω = Q�� ∈ so(3) (so(3) is the Lie algebra of
SO(3)). The last equation is called the Rodrigues’ rotation
formula [27].

3.2.2 Gradient and Hessian
To obtain the gradient andHessian, we first derive the first
and second order derivative for the geodesic Q(t) with
respect to t:

dQ(t)
dt

∣∣∣∣
t=0

= Qω̂ cos(t) + Qω̂
2 sin(t)

∣∣∣
t=0

= Qω̂

= Q(Q��)

= �

(18)

d2Q(t)
dt2

∣∣∣∣∣
t=0

= −Qω̂ sin(t) + Qω̂
2 cos(t)

∣∣∣
t=0

= Qω̂
2

= Q(Q��)(Q��)

= �(Q��)

= −���Q

(19)

Note that the last step in Eq. (19) is derived from the
property of tangent space on the Stiefel manifold that
Q�� is a skew-symmetric matrix with

Q�� + ��Q = 0. (20)

Given the geodesic definition, we derive the gradient
and Hessian in direction � ∈ T(SO(3)):

d F(�) = d F(Q(t))
dt

∣∣∣∣
t=0

= �QVφV�Q̇��� − pμ�V�Q̇���|t=0

= �QVφV����� − pμ�V�����

(21)

Hess F(�,�) = d2F(Q(t))
d t2

∣∣∣∣∣
t=0

= �Q̇VφV�Q̇���

+ �QVφV�Q̈���

− pμ�V�Q̈���|t=0

= ��VφV�����

− �QVφV�Q������

+ pμ�V�Q������

(22)

For any arbitrary pair of vectors X,Y ∈ T(SO(3)), polar-
ization [26] helps compute Hess F(X,Y) with

Hess F(X,Y) = 1
4

(Hess F(X + Y,X + Y)

−Hess F(X − Y,X − Y)) .
(23)

3.2.3 Algorithm summary
With the requirements for generalizing Newton’s method
being ready, the optimal updating vector on the manifold
can be found bymodifying the original Newton Eq. (12) to

� = −Hess −1G, (24)

assuming that the Hessian is non-degenerate. It is the
same as finding a vector� that satisfies for all vector fields
Y

Hess F(Y,�) = g(−G,Y) = −d F(Y), (25)

where G = ∇F stands for the gradient. The Hessian can
be uniquely determined by using an orthonormal basis
{Ek}, k = 1, 2, 3 into Eq. (25) as

Hess F(Ek ,�) = −d F(Ek). (26)

For simplicity, the standard basis ek for R3 is chosen so
that Ek = Qêk ∈ T(SO(3)). Thus, the 3 × 3 Hessian
matrixH and the three-dimensional gradient vector g can
be obtained:

Hkl = Hess F(Ek ,El), (27)

gk = d F(Ek), k, l = 1, 2, 3 (28)

Then,we solve for the vector u =[u1,u2,u3]� ∈ R
3 using

u = −H−1g. (29)

Finally, the desired updating vector� = Qû is obtained.
The last step is to update the current rotation along the
geodesic in the direction of this vector. The algorithm is
summarized in Algorithm 1.
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Algorithm 1Minimize F(Q) = E
[‖p − Q(s̄ + Vz)‖2F

]
1. At the pointQ, compute the optimal update vector

� = −Hess −1G
1: Choose basis tangent vectors

Ek = Qêk ∈ T(SO(3)) with ek for 1 ≤ k ≤ 3 being
the standard basis for R3

2: ComputeHkl = Hess F(Ek ,El), 1 ≤ k, l ≤ 3
3: Compute gk = d F(Ek), 1 ≤ k ≤ 3
4: Compute u = (u1,u2,u3)� such that u = −H−1g
5: The optimal updating vector

� = −Hess −1G = Qû
2. Update the rotationQ

1: MoveQ in the direction � along the geodesic to

exp(Q,�t) = Q
(
I + ω̂ sin(t) + ω̂

2
(1 − cos(t))

)
,

where t =
√

1
2 tr(�

��) and ω = Q��/t

3.3 NRSFMwith PLDA
PLDA was presented by Prince and Elder in [10] as a
probabilistic estimation for deterministic linear discrim-
inant analysis (LDA) [28]. This model separately models
the between-individual and within-individual variations
among different subjects. Unlike PCA, which only takes
into account the whole data distribution, LDA seeks the
maximum separability of classes along the direction that
has the highest ratio of the variance between the classes
to the variance within the classes [29]. Thus, for our
PLDA model, the single shape subspace V in Eq. (1) is
replaced by the between-individual subspace F and the
within-individual subspace K as follows

sij = s̄ + Fhi + Kwij, (30)

where i denotes the ith individual of the total I subjects
and j denotes the jth image of J images belonging to this
person. Compared to the original definition in Eq. (1), the
latent variables zt now consist of two parts. The first part,
hi, indicates the parameter for the between-individual
subspace F, which remains constant for all J images of
individual i, while the second part wij describes how each
image varies in the within-individual subspace K. Given
this advanced shape model, the latent identity variables hi
guarantee that a great part of the commonness in the same
subject is preserved and taken into account at runtime.
In order to estimate the PLDA parameters, an EM algo-

rithm that is similar to PPCA is presented by Prince and
Elder [10] with modifications in the E-step. The main
point is to ensure that all J images share the same latent
identity variable hi despite the image-specific latent vari-
ables wij. Therefore, the calculation of these J images is

done in the single step and the corresponding equations
in Eq. (1) are stacked up into a composite matrix system

⎡
⎢⎢⎢⎣
si1
si2
...
siJ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
s̄
s̄
...
s̄

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
F K 0 . . . 0
F 0 K . . . 0
...

...
...

. . .
...

F 0 0 . . . K

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

hi
wi1
wi2
...
wiJ

⎤
⎥⎥⎥⎥⎥⎦ , (31)

or equivalently

si = s̄′ + Ayi. (32)

Accordingly, the expectations of the new latent variables
yi for the E-step changes from Eqs. (6) and (7) to

μ′
i = E[ yi] , (33)

φ′
i = E

[
yiy�

i

]
= �i + μ′

iμ
′�
i . (34)

As for the M-step, most of the existing PPCA updates
remain unchanged, if we replace the original shape matrix
V with [F K] and each of the latent variables zij with[
hi
wij

]
. Accordingly, the objective log-likelihood function

to be minimized in Eq. (8) can be modified to

L = −E

[∑
t

log p(pt|Rt , s̄, [F K] , σ 2)

]

= 1
2σ 2

∑
t

E

[
||pt − Rt(s̄ + [F K]

[
hi
wij

]
)||2

]

+ JT log(2πσ 2).
(35)

We apply the Gauss-Newton step [9] as well as our
manifold extension of Newton’s method to optimize the
objective function.

4 Experiments
In this section, extensive experiments are conducted
to validate the proposed approaches. Rotation recov-
ery using the Newton’s method on the manifold is first
assessed on different datasets. Subsequently, performance
of PLDA on generated data with multiple subjects is
presented.

4.1 Setup
For our experiments, the evaluation criteria is the same
as in [9], i.e., the sum of squared differences between esti-
mated 3D shapes to ground truth depth: ‖ŝ1:T − s1:T‖2F ,
with the camera rotation R also being applied to the
3D shape. As the ground truth for camera rotation is
not given, we are not able to measure the absolute per-
formance gain from our algorithm explicitly. However,
the decreased reconstruction error implicitly assesses the
effectiveness of rotation estimation in our algorithm.
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Moreover, additive zero-mean Gaussian noise is
imposed to analyze the robustness of reconstruction. The
noise level is plotted as the ratio of the noise variance to
the norm of the 2D measurements: JTσ 2/‖p1:T‖F . The
noise levels range from 0 to 30 % with 2 % step, and the
trials for each noise level are averaged over 10 runs. Our
test is carried out on two face datasets, i.e., the Vicon
motion capture data Mocap-Face [9] and the Binghamton
University 3D Facial Expression (BU-3DFE) dataset [30].
The Mocap-Face dataset [9] contains a single video,

which captures a single male subject with 40 markers
attached to his face. The video contains 316 frames in
total. Sample frames from this dataset can be seen in
Fig. 2. Throughout the video sequence, the subject made
limited changes of facial expression and head pose. Note
that the tracking is very accurate using the markers.
The BU-3DFE dataset [30] is originally created for 3D

facial expression analysis. The complete dataset consists
of 100 subjects, covering different ethnic groups. Seven
facial expressions are performed at four intensity levels by
each subject. We randomly select 300 frames from 100
subjects for our test, in contrast to theMocap-Face dataset
[9], where there exists only one subject. This is a more
practical setup, since in many computer vision datasets,
e.g., for face alignment [31, 32], only static images of mul-
tiple subjects are provided, where only a few samples
of the same subject is available. Separate application of
NRSFM for each single subject is then impossible. Ran-
dom poses are generated by projecting the 3D landmarks
to 2D. Note that temporal smoothness of the shapes is not
valid in this dataset. The dataset provides manual annota-
tion of 83marker points as shown in Fig. 3. Due to labeling
noise and inconsistency, this dataset contains noise in the
original measurements.

4.2 Evaluation of manifold PPCA
We first give quantitative results for the recovery of the 3D
camera rotation between our algorithm (manifold PPCA)
and the baseline PPCA [9], as well as the other state-of-
the-art approaches, point trajectory approach (PTA) [18]
and column space fitting (CSF2) [20].

4.2.1 Reconstruction results onMocap-Face
In the first experiment without noise on Mocap-Face
[9], our approach achieves slightly better performance

than PPCA, while both having an effective reconstruction
result under 3 % error, as is plotted in Fig. 4a. Qualita-
tive results are also shown in Fig. 5a, which yields similar
outcome. In comparison, performance of methods in tra-
jectory space is more sensitive to the number of DCT
bases. Starting from K = 8, both PTA and CSF2 degrade
abruptly.
In real life, there are nomarkers and the automatic point

detectors are usually not stable. To assess the performance
of the system in a real-world case, it is necessary to test
it on the noisy data. We evaluate our system with addi-
tive Gaussian noise at different noise levels. As can be
observed from Fig. 4c, at the beginning, all algorithms
have almost the same error rate up to 6 % noise. With
more noise added, PPCA starts to undergo a significantly
steeper curve than our approach. Starting from 20 % noise
level, our result gets 50 % lower error rate than PPCA.
That is most likely because with more noise, it is more
difficult for the rotation approximation in PPCA to find
the right updating direction. Despite achieving the lowest
error in the above noise-free experiment, the state-of-the-
art CSF2 surprisingly fails to hold up well against noise,
which approaches PPCA as the second worst. The same
trajectory-based PTA is more stable, thanks to smoother
DCT bases. Shaji and Chandran [15] also evaluated on the
Mocap-Face dataset [9] with additive noise. From their
plot, the performance degrades very quickly with noise
level over 20 %. However, our probabilistic approach does
not suffer from this problem. Additionally, the variance of
the results of each noise level is also shown in the figure,
in which we observe that the manifold PPCA also reduces
error variances. That means our approach performs much
more stably under noisy circumstances.

4.2.2 Reconstruction results on BU-3DFE
Since the BU–3DFE dataset [30] is a more difficult setup,
the performance is lower compared to the test on the
Mocap-Face dataset [9]. The purpose of this test is to see
how well a generic face model can be generated using dif-
ferent NRSFM approaches. As can be seen in Fig. 4b, the
recovered models cannot fit all instances as well as on
the Mocap-Face dataset [9]. But again, the error level of
our attempt is in overall ca. 8 % lower than that of PPCA
regardless of the choice of K, which demonstrates a rela-
tive performance gain of 30 to 40 %. As can be observed

Fig. 2 The Mocap-Face dataset, captured by 40 markers attached to the face of the subject in the left image, 316 frames in total [9]
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Fig. 3 The BU-3DFE dataset, with 83 points and 300 frames of multiple subjects, plus zero-mean Gaussian random pose changes [30]

qualitatively in Fig. 5b, PPCA’s rotation approximation
limits its result to getting better rotation estimate in frame
50. It also has difficulties to recover the contour of the
faces correctly in frame 250, whereas our system clearly
does better. It is also interesting to test the approaches
in trajectory bases, where the smooth shape deformation
assumption is no longer valid on the BU-3DFE dataset.
As expected, CSF2 performs worse than the manifold
PPCA, which does not take into account the temporal
prior. Selection ofK also has no influence to the error rate,
unlike in Fig. 4a. If we add Gaussian noise to the data (see
Fig. 4d), manifold PPCA and PTA degrades slightly slower
than PPCA and CSF2, similar to that on the Mocap-Face
dataset [9]. These results reveal that, whenmodelingmore
complicated shapes, an optimal rotation estimation using
manifold optimization techniques is superior. Another
advantage of our manifold-based approach is that it is
more robust in noisy environments in general.

4.3 Evaluation of PLDA
In the second part of our experiments, we generate
datasets with multiple subjects from the original BU-
3DFE dataset [30] to evaluate the PLDA variant of
the NRSFM algorithm in comparison with PPCA. We
consider two setups with different number of subjects
involved. For the first setup, we select six subjects and
each subject has 50 images. For the second setup, there
are 12 subjects with 25 images, respectively. Thus, the
total number of frames is still 300. Similar to the PPCA
experiments with additive noise, we randomly generate
five input datasets for each setup to obtain statistically
significant results.
For all tests in this section, we directly compare the

results of PPCA and PLDA as well as the influence of
imposing Newton’s method on the manifold for recov-
ery of the rotation matrix to both probabilistic frame-
works. Since in Section 4.2.2, trajectory-based methods

Fig. 4 The first row shows the reconstruction error as a function of bases (K) without adding noise manually on aMocap-Face and b BU-3DFE. The
second row shows the reconstruction error with additive Gaussian noise up to 30 % on cMocap-Face and d BU-3DFE
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Fig. 5 aMocap-Face and b BU-3DFE 2D tracks in the upper row. Reconstruction results of PPCA and manifold PPCA are red and blue dots in the
second and third rows, respectively. Circles denote the ground truth. Images are captured at frames 50, 150, and 250

are proven not to generalize well when temporal smooth-
ness does not hold, the results of PTA and CSF2 are not
included. The curves of both PPCA approaches are plot-
ted in dashed lines while the PLDA results are plotted in
solid lines.
In the test case without additive noise, we fix the num-

ber of between-subject shape bases F = 3 and vary
the within-subject bases G in PLDA from 1 to 7, com-
pared to the only shape bases K in PPCA that equals the
sum of F and G. We first notice that with the help of
PLDA, the performance for both rotation recovery tech-
niques has got further improvement, independently from
the input data with 6 subjects (Fig. 6a) or 12 subjects
(Fig. 6b). Especially for the baseline PPCA algorithm with
Gauss-Newton rotation approximation, there is nearly
10 % less error in the reconstruction in both setups. More-
over, the error variance also drops hugely to an acceptable
level. For our Newton’s rotation recovery method on the
manifold, only little improvement in reconstruction error
is observed; however, the performance without PLDA
already delivers a satisfactory result. As a result, all of
our proposed methods, i.e., manifold PPCA, PLDA and
manifold PLDA, manage to make significant performance
enhancement. The similar outcome of the manifold PPCA
and PLDA, which employ different extensions for the opti-
mization problem, indicates that the achieved result may
have approximated to the performance limit of the dataset
using the probabilistic framework.
When zero-mean Gaussian noise is added (Fig. 6c, d),

although the gaps between the manifold PLDA and PLDA
remain close, the lower average error rate and the stability
with notably less error deviation at some noise levels again
demonstrate the effectiveness and necessity of our better
rotation recovery. We also observe that both PLDA-based
methods degrade faster than those PPCA-based methods

with the amount of imposed Gaussian noise starting from
ca. 15 to 20 %. We conclude that its reason is prob-
ably because PLDA-based approaches need to estimate
more parameters in the E-step than PPCA in each itera-
tion, which makes the additional noise and uncertainty a
decisive deficit factor for the approach. But overall, intro-
ducing PLDA does help to further decrease the error
reconstruction rate with or without additive noise.
Qualitative experiments are also conducted in order to

review the effect of applying PLDA on datasets with more
than one subject, as can be seen in Fig. 7. We know that
from Eq. (30), the between-individual linear shape model
of PLDA consists of the global mean shape s̄ plus the
subject-specific shape term Fhi. The frame-specific shape
term Kwij serves solely as within-individual variance and
is therefore omitted in this experiment. Thus, in Fig. 7,
the reconstruction of every single subject for each dataset
given by the first two terms in Eq. (30) is shown. The
3D ground truth is obtained by averaging all 50 shape
vectors for the corresponding subject. As expected, the
reconstruction result is fairly satisfactory, thanks to the
characteristics of PLDA. Even for some unique faces as in
Fig. 7e, g, their contours and facial features are still well
modeled, which again proves the capability and tolerance
of our approach.
In Fig. 8, we illustrate the reconstructed bases F and

K. The effect of varying the between-individual (F)
and within-individual (K) shape bases learned by PLDA
between ±3 standard deviations from the mean value is
analyzed. With the first three bases of F, different eye,
face contour, and mouth types are modeled, respectively,
in Fig. 8b, c, and d. It is interesting to see that the vari-
ations in the figures are more related to identification of
the subjects than to the expressions. With the bases of K
instead, different facial expressions present in BU-3DFE
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Fig. 6 The first row shows the reconstruction error without adding noise manually using PPCA and PLDA. The second row shows the reconstruction
error with additive Gaussian noise up to 30 %. a and c in the left column are evaluated on datasets with 6 subjects, and b and d in the right column
are evaluated on datasets with 12 subjects

[30] are well recognizable. For example, Fig. 8e shows
opening and closing mouths. Evolution from angry to fear
is illustrated in Fig. 8f and from surprise to happiness in
Fig. 8g, respectively. Those results fully meet our expecta-
tions and conform to the characteristics of PLDA, which
provide optimally and more meaningfully reconstructed
shape bases than those given by PPCA.

5 Conclusions
In this work, we have presented a novel solution to
unleash the orthonormality constraints of the cam-
era rotation matrix in the NRSFM problem. Without
requiring conducting complex approximations, perform-
ing rotation update on the SO(3) manifold implicitly
ensures the validity of the constraints. In the experiments

Fig. 7 a–l Qualitative reconstruction results of different subjects using PLDA. Each row corresponds to a generated dataset consisting of six subjects
based on BU-3DFE
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Fig. 8 Qualitative reconstruction results of a the mean shape and b–d between-individual and e–g within-individual shape variations imposed on
the mean shape

on the Mocap-Face dataset [9] with additional noise,
which contains only one subject, our approach performs
significantly better by reducing up to 50 % reconstruc-
tion error. Furthermore, the proposed PLDA approach
successfully extends the existing probabilistic framework
to separately model between-subject and within-subject
shape variations during the alternating optimization for
datasets with multiple identities. On the BU-3DFE dataset
[30] with multiple subjects and manually annotated land-
marks, we clearly outperform the baseline approaches in
all tests. To conclude, we have shown that the proposed
approaches are robust against noise, which indicates that
they are more capable of dealing with real-world data.
In addition to its robustness, our approaches generalize
better on datasets with multiple subjects.
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