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Abstract
In this paper, we consider the existence of positive solutions for second-order
differential equations with deviating arguments and nonlocal boundary conditions.
By the fixed point theorem due to Avery and Peterson, we provide sufficient
conditions under which such boundary value problems have at least three positive
solutions. We discuss our problem both for delayed and advanced arguments α and
also in the case when α(t) = t, t ∈ [0, 1]. In all cases, the argument β can change the
character on [0, 1], see problem (1). It means that β can be delayed in some set
J̄ ⊂ [0, 1] and advanced in [0, 1] \ J̄. An example is added to illustrate the results.
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1 Introduction
Put J = [, ], R+ = [,∞). Let us consider the following boundary value problem:

⎧⎨
⎩
x′′(t) + h(t)f (t,x(α(t)),x′(β(t))) = , t ∈ (, ),

x() = γ x(η) + λ[x], x() = ξx(η) + λ[x], η ∈ (, ),
()

where λ, λ denote linear functionals on C(J) given by

λ[x] =
∫ 


x(t)dA(t), λ[x] =

∫ 


x(t)dB(t)

involving Stieltjes integrals with suitable functions A and B of bounded variation on J . It
is not assumed that λ, λ are positive to all positive x. As we see later, the measures dA,
dB can be signed measures.
We introduce the following assumptions:

H: f ∈ C(J ×R+ ×R,R+), α,β ∈ C(J , J), A and B are functions of bounded variation;
H: h ∈ C(J ,R+) and h does not vanish identically on any subinterval;
H:  – γ – λ[p] >  or  – ξ – λ[p] >  for p(t) = , t ∈ J , γ , ξ ≥ .
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Recently, the existence of multiple positive solutions for differential equations has been
studied extensively; for details, see, for example, [–]. However, many works about pos-
itive solutions have been done under the assumption that the first-order derivative is not
involved explicitly in nonlinear terms; see, for example, [, , –, , , –, ].
From this list, only papers [–, , , ] concern positive solutions to problems with
deviating arguments. On the other hand, there are some papers considering themultiplic-
ity of positive solutions with dependence on the first-order derivative; see, for example,
[, , , , , , , , –, , , ]. Note that boundary conditions (BCs) in differ-
ential problems have important influence on the existence of the results obtained. In this
paper, we consider problem () which is a problem with dependence on the first-order
derivative with BCs involving Stieltjes integrals with signedmeasures of dA, dB appearing
in functionals λ, λ; moreover, problem () depends on deviating arguments.
For example, in papers [, , , , , ], the existence of positive solutions to second-

order differential equations with dependence on the first-order derivative (but without
deviating arguments) has been studied with various BCs including the following:

x() =
n∑
i=

aix(ξi), x() =
n∑
i=

bix(ξi),  < ξ < · · · < ξn < ,

x() = , x() = αx(η), α ≥ ,η ∈ (, ),

by fixed point theorems in a cone (such as Avery-Peterson, an extension of Krasnoselskii’s
fixed point theorem or monotone iterative method) with corresponding assumptions:

ai,bi ∈ (, ), i = , , . . . ,n,
n∑
i=

ai,
n∑
i=

bi ∈ (, ),

or  – αη > , respectively.
For example, in papers [–, , , ], the existence of positive solutions to second-

order differential equations including impulsive problems, but without dependence on the
first-order derivative, has been studied with various BCs including the following:

x() =
n∑
i=

aix(ξi), x() =
n∑
i=

bix(ξi),  < ξ < · · · < ξn < ,

x() = γ x(η), x() = βx(η), η ∈ (, ),

x() = γ x(ξ ), x() = βx(η), ξ ,η ∈ (, ),

x() = , x() =
∫ b

a
x(s)dg(s),  < a < b < , with increasing function g,

under corresponding assumptions by fixed point theorems in a cone (such as Avery-
Peterson, Leggett-Williams, Krasnoselskii or fixed point index theorem). See also paper
[], where positive solutions have been discussed for second-order impulsive problems
with boundary conditions

x() = , x() =
∫ 


x(s)dA(s);

http://www.boundaryvalueproblems.com/content/2013/1/8
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here λ has the same form as in problem () with signed measure dA appearing in func-
tional λ.
Positive solutions to second-order differential equations with boundary conditions that

involve Stieltjes integrals have been studied in the case of signed measures in papers [,
] with BCs including, for example, the following:

x() = , x() = λ[x],

x′() = , x() = λ[x],

x() = λ[x], x() = λ[x],

x′() = λ[x], x() = λ[x].

The main results of papers [, ] have been obtained by the fixed point index theory
for problems without deviating arguments. The study of positive solutions to boundary
value problems with Stieltjes integrals in the case of signed measures has also been done
in papers [, , , , ] for second-order differential equations (also impulsive) or third-
order differential equations by using the fixed point index theory, theAvery-Peterson fixed
point theorem or fixed point index theory involving eigenvalues.
Note that BCs in problem () with functionals λ, λ cover some nonlocal BCs, for ex-

ample,

λ[x] = μx(ξ̄ ), λ[x] = μx(η̄), μ,μ ≥ , ξ̄ , η̄ ∈ (, ),

λ[x] =
m∑
i=

aix(ξi), λ[x] =
m∑
i=

bix(ηi),  < ξ < · · · < ξm < ,  < η < · · · < ηm < ,

λ[x] =
∫ 


g(t)x(t)dt, λ[x] =

∫ 


g(t)x(t)dt

for some constants ai, bi and some functions g, g. In our paper, the assumption that the
measures dA, dB in the definitions of λ, λ are positive is not needed. More precisely, one
needs to choose the above functions g, g in such a way that the assumption H holds. It
means that g, g can change sign on J .
A standard approach (see, for example, [–]) to studying positive solutions of bound-

ary value problems such as () is to translate problem () to a Hammerstein integral equa-
tion

x(t) = �(t)λ[x] + �(t)λ[x] + �(t)
∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(t, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds≡Wx(t) ()

to find a solution as a fixed point of the operator W by using a fixed point theorem in a
cone. �, �, � are corresponding continuous functions while λ and λ have the same
form as in problem ().G denotes a Green function connected with our problem, so in our
case it is given by

G(t, s) =

⎧⎨
⎩
s( – t),  ≤ s ≤ t,

t( – s), t ≤ s ≤ .

http://www.boundaryvalueproblems.com/content/2013/1/8
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In our paper, we eliminate λ and λ fromproblem () to obtain the equation x =Wxwith a
corresponding operatorW , and then we seek solutions as fixed points of this operatorW .
Note that if we put γ = ξ =  in the BCs of problem (), then this new problem is more

general than the previous one because in this case someone, for example, can take λ[x] =
γ x(η), λ[x] = ξx(η). In this paper, we try to explain why for some cases we have to discuss
problem () with constants γ >  or ξ > .
To apply such a fixed point theorem in a cone to problem (), we have to construct a

suitable coneK . Usually, we need to find a nonnegative function κ and a constant ρ̄ ∈ (, ]
such thatG(t, s) ≤ κ(s) for t, s ∈ J andG(t, s) ≥ ρ̄κ(t) for t ∈ [η, η̄] ⊂ [, ] and s ∈ J (see, for
example, [–]) to work with the inequality

min
[η,η̄]

∣∣x(t)∣∣ ≥ ρ̄max
t∈J

∣∣x(t)∣∣.

Indeed, for problems without deviating arguments, someone can use any interval [η, η̄] ⊂
[, ]. It means that when α(t) = t on J , then we can take γ = ξ =  in the boundary condi-
tions of problem () to work with the inequality

min
[ζ ,�]

∣∣x(t)∣∣ ≥ κ max
t∈J

∣∣x(t)∣∣

for ζ , � such that ζ + � < ,  < ζ < � <  with κ =min(ζ ,  – �); see Section .
Note that for problems with delayed or advanced arguments, we have to use interval

[,η] ⊂ [, ) or [η, ] ⊂ (, ], respectively. We see that if γ = ξ = , then ρ̄ =  for prob-
lem () with deviated arguments. It shows that the approach from papers [–] needs a
little modification to problems with delayed or advanced arguments. Consider the situa-
tion α(t)≤ t on J . In this case, we can put ξ =  in the boundary conditions of problem ()
to find a constant ρ ∈ (, ) to work with the inequality

min
[,η]

∣∣x(t)∣∣ ≥ ρmax
t∈J

∣∣x(t)∣∣;

see Section . For the case α(t)≥ t on J , we can put γ =  to work similarly as in Section ;
see Section . Note that in the above three cases for the argument β , we need only the
assumption β ∈ C(J , J), which means that β can change the character in J .
Note that in cited papers, positive solutions to differential equations with dependence

on the first-order derivative have been investigated only for problems without deviating
arguments, see [, , , , , , , , –, , , ]. Moreover, BCs in problem ()
cover some nonlocal BCs discussed earlier.
Motivated by [–], in this paper, we apply the fixed point theorem due to Avery-

Peterson to obtain sufficient conditions for the existence of multiple positive solutions to
problems of type (). In problem (), an unknown x depends on deviating arguments which
can be both of advanced or delayed type. To the author’s knowledge, it is the first paper
when positive solutions have been investigated for such general boundary value problems
with functionals λ, λ andwith deviating arguments α,β in differential equations inwhich
f depends also on the first-order derivative. It is important to indicate that problems of
type () have been discussedwith signedmeasures of dA, dB appearing in Stieltjes integrals
of functionals λ, λ.

http://www.boundaryvalueproblems.com/content/2013/1/8
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The organization of this paper is as follows. In Section , we present some necessary
lemmas connected with our main results. In Section , we first present some definitions
and a theorem of Avery and Peterson which is useful in our research. Also in Section , we
discuss the existence of multiple positive solutions to problems with delayed argument α,
by using the above mentioned Avery-Peterson theorem. At the end of this section, an
example is added to verify theoretical results. In Section , we formulate sufficient con-
ditions under which problems with advanced argument α have positive solutions. In the
last section, we discuss problems of type () when α(t) = t on J .

2 Some lemmas
Let us introduce the following notations:

‖x‖ =max
(‖x‖,∥∥x′∥∥



)
with ‖z‖ =max

t∈J
∣∣z(t)∣∣.

Lemma  Let x ∈ C(J ,R), p(t) = , t ∈ J . Assume that A and B are functions of bounded
variation and,moreover,

x() = γ x(η) + λ[x], x() = ξx(η) + λ[x], γ , ξ ≥ ,η ∈ (, )

with
(i)  – γ – λ[p] 
=  or
(ii)  – ξ – λ[p] 
= .
Then

‖x‖ ≤ M
∥∥x′∥∥

, M =  +

⎧⎨
⎩

VarA+γ

|–γ–λ[p]| , in case (i),
VarB+ξ

|–ξ–λ[p]| , in case (ii).

Here, VarA denotes the variation of a function A on J .

Proof Note that in case (i), we have

x() = γ x(η) + λ[x]

= γ
[
x(η) – x()

]
+ γ x() +

∫ 



(
x(t) – x()

)
dA(t) + λ[p]x()

= γ

∫ η


x′(s)ds +

∫ 



(∫ t


x′(s)ds

)
dA(t) + γ x() + λ[p]x(),

so

x() =


 – γ – λ[p]

[
γ

∫ η


x′(s)ds +

∫ 



(∫ t


x′(s)ds

)
dA(t)

]
.

Hence,

∣∣x()∣∣ ≤ 
| – γ – λ[p]| (γ +VarA)

∥∥x′∥∥
.

http://www.boundaryvalueproblems.com/content/2013/1/8
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Combining this with the relation

x(t) = x() +
∫ t


x′(s)ds,

we obtain

‖x‖ ≤ ∣∣x()∣∣ + ∥∥x′∥∥
 ≤ M

∥∥x′∥∥
.

This proves case (i).
In case (ii), similarly,

x() = ξx(η) + λ[x] = ξ
[
x(η) – x()

]
+ ξx() –

∫ 



(
x() – x(t)

)
dB(t) + λ[p]x()

= –ξ

∫ 

η

x′(s)ds –
∫ 



(∫ 

t
x′(s)ds

)
dB(t) + ξx() + λ[p]x(),

so

x() = –


 – ξ – λ[p]

[
ξ

∫ 

η

x′(s)ds +
∫ 



(∫ 


x′(s)ds

)
dB(t)

]
.

Hence,

∣∣x()∣∣ ≤ 
| – ξ – λ[p]| (ξ +VarB)

∥∥x′∥∥
.

Adding to this the relation

x(t) = x() –
∫ 

t
x′(s)ds,

we get the result in case (ii). This ends the proof. �

Remark  If we assume thatA and B are increasing functions, then there exists σ ∈ J such
that

x() =


 – γ – λ[p]

[
γ

∫ η


x′(s)ds +

∫ 



(∫ t


x′(s)ds

)
dA(t)

]

=


 – γ – λ[p]

[
γ

∫ η


x′(s)ds +

∫ σ


x′(s)ds

∫ 


dA(t)

]
.

Hence,

∣∣x()∣∣ ≤ 
| – γ – λ[p]|

(
γ +

∣∣∣∣
∫ 


dA(t)

∣∣∣∣
)∥∥x′∥∥

.

Similarly, we can show that

∣∣x()∣∣ ≤ 
| – ξ – λ[p]|

(
ξ +

∣∣∣∣
∫ 


dB(t)

∣∣∣∣
)∥∥x′∥∥

.

http://www.boundaryvalueproblems.com/content/2013/1/8
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Now, the constantM from Lemma  has the form

M =  +

⎧⎨
⎩


|–γ–λ[p]| (γ + | ∫ 

 dA(t)|), in case (i),


|–ξ–λ[p]| (ξ + | ∫ 
 dB(t)|), in case (ii).

Consider the following problem:
⎧⎨
⎩
u′′(t) + y(t) = , t ∈ (, ),

u() = γu(η) + λ[u], u() = ξu(η) + λ[u], η ∈ (, ),γ , ξ ≥ .
()

Let us introduce the assumption.

H: A and B are functions of bounded variation and

δ ≡  – γ + η(γ – ξ ) 
= ,

� ≡ A(B –  + ξη) +A( – ξ – B) + δ – ηγB – ( – γ )B 
= 

for

A =
∫ 


dA(t), A =

∫ 


t dA(t), G(s) =

∫ 


G(t, s)dA(t),

B =
∫ 


dB(t), B =

∫ 


t dB(t), G(s) =

∫ 


G(t, s)dB(t).

We require the following result.

Lemma  Let the assumptionH hold and let y ∈ L(J ,R). Then problem () has a unique
solution given by

u(t) =

�

[
 – ξη – B – ( – ξ – B)t

]
λ[F̄y]

+

�

[
ηγ +A + ( – γ –A)t

]
λ[F̄y] + F̄y(t)

with

F̄y(t) =
γ + t(ξ – γ )

δ

∫ 


G(η, s)y(s)ds +

∫ 


G(t, s)y(s)ds,

G(t, s) =

⎧⎨
⎩
s( – t),  ≤ s ≤ t,

t( – s), t ≤ s ≤ .

Proof Integrating the differential equation in () two times, we have

u(t) = u() + tu′() –
∫ t


(t – s)y(s)ds. ()

Put t =  and use the boundary conditions from problem () to obtain

ξu(η) + λ[u] = γu(η) + λ[u] + u′() –
∫ 


( – s)y(s)ds.

http://www.boundaryvalueproblems.com/content/2013/1/8
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Now, finding from this u′() and then substituting it to formula (), we have

u(t) =
[
γ + t(ξ – γ )

]
u(η) + ( – t)λ[u] + tλ[u] +

∫ 


G(t, s)y(s)ds. ()

Next, putting t = η, we can find u(η), and then substitute it to formula () to obtain

u(t) =

δ

([
 – ξη – ( – ξ )t

]
λ[u] +

[
ηγ + ( – γ )t

]
λ[u]

)
+ F̄y(t). ()

Now, we have to eliminate λ[u] and λ[u] from (). If u is a solution of (), then
⎧⎨
⎩

λ[u] = 
δ
[( – ξη)A – ( – ξ )A]λ[u] + 

δ
[ηγA + ( – γ )A]λ[u] + λ[F̄y],

λ[u] = 
δ
[( – ξη)B – ( – ξ )B]λ[u] + 

δ
[ηγB + ( – γ )B]λ[u] + λ[F̄y].

Solving this system with respect to λ[u], λ[u] and then substituting to (), we have the
assertion of this lemma. This ends the proof. �

Define the operator T by

Tu(t) =

�

[
 – ξη – B – ( – ξ – B)t

]
λ[Fu]

+

�

[
ηγ +A + ( – γ –A)t

]
λ[Fu] + Fu(t)

with

Fu(t) =
γ + t(ξ – γ )

δ

∫ 


G(η, s)h(s)f

(
s,u

(
α(s)

)
,u′(β(s)))ds

+
∫ 


G(t, s)h(s)f

(
s,u

(
α(s)

)
,u′(β(s)))ds.

We consider the Banach space E = (C(J ,R),‖ · ‖) with the maximum norm ‖x‖ =
max(‖x‖,‖x′‖). Define the cone K ⊂ E by

K =
{
x ∈ E : x(t) ≥ , t ∈ J ,λ[x]≥ ,λ[x]≥ ,min

[,η]
x(t)≥ ρ‖x‖

}

with

ρ =min

(
γ ( – η),  – η,

ηγ

 + γ (η – )

)
, γ > .

Let us introduce the following assumption.

H: A and B are functions of bounded variation and
(i) δ > , � > , Aj ≥ , Bj ≥ , Gj(s)≥  for j = ,  where Aj, Bj, Gj, δ, � are

defined as in the assumption H,
(ii) γ (A –A) + ξA ≥ , γ (B – B) + ξB ≥ , ηγB + ( – γ )B ≥ ,

( – ξη)A – ( – ξ )A ≥ , B – B ≥ , δ – ηγB – ( – γ )B ≥ ,
ηγA + ( – γ )A ≥ ,  – ξη – B ≥ , δ – ( – ξη)A + ( – ξ )A ≥ ,
( – ξη)B – ( – ξ )B ≥ .

http://www.boundaryvalueproblems.com/content/2013/1/8
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Lemma  Let the assumptions H-H hold. Then T : K → K .

Proof Clearly, u ∈ K is a positive solution of problem () if and only if u ∈ K solves the
operator equation u = Tu. Then

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ[Fu] = 
δ
[γ (A –A) + ξA]

∫ 
 G(η, s)h(s)f (s,u(α(s)),u

′(β(s)))ds

+
∫ 
 G(s)h(s)f (s,u(α(s)),u′(β(s)))ds,

λ[Fu] = 
δ
[γ (B – B) + ξB]

∫ 
 G(η, s)h(s)f (s,u(α(s)),u

′(β(s)))ds

+
∫ 
 G(s)h(s)f (s,u(α(s)),u′(β(s)))ds.

()

Note that λ[Fu] ≥ , λ[Fu]≥  in view of the assumptions H, H, H and the positivity
of Green’s function G.
Note that (Tu)′′ ≤ . Moreover,

Tu() =

�

(
( – ξη – B)λ[Fu] + (ηγ +A)λ[Fu]

)

+
γ

δ

∫ 


G(η, s)h(s)f

(
s,u

(
α(s)

)
,u′(β(s)))ds≥ ,

Tu() =

�

((
ξ ( – η) + B – B

)
λ[Fu] + (ηγ +  – γ +A –A)λ[Fu]

)

+
ξ

δ

∫ 


G(η, s)h(s)f

(
s,u

(
α(s)

)
,u′(β(s)))ds≥ .

Hence, Tu is concave and Tu(t) ≥  on J .
We next show that λ[Tu] ≥ , λ[Tu] ≥ . Indeed,

λ[Tu] =

�

[
( – ξη – B)A – ( – ξ – B)A

]
λ[Fu]

+

�

[
(ηγ +A)A + ( – γ –A)A

]
λ[Fu] + λ[Fu]

=

�

[
δ – ηγB – ( – γ )B

]
λ[Fu] +


�

[
ηγA + ( – γ )A

]
λ[Fu]≥ ,

λ[Tu] =

�

[
( – ξη – B)B – ( – ξ – B)B

]
λ[Fu]

+

�

[
(γ η +A)B + ( – γ –A)B

]
λ[Fu] + λ[Fu]

=

δ

[
( – ξη)B – ( – ξ )B

]
λ[Fu]

+

�

[
δ – ( – ξη)A +A( – ξ )

]
λ[Fu]≥ .

Finally, we show that

min
[,η]

Tu(t) ≥ ρ‖Tu‖.

To do it, we consider two steps. Let ‖Tu‖ = Tu(t*).
Step . Let Tu() < Tu(η). Then t* ∈ (,η) or t* ∈ (η, ) and min[,η]Tu(t) = Tu().

http://www.boundaryvalueproblems.com/content/2013/1/8
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Let t* ∈ (,η). Then

‖Tu‖ – Tu()
Tu(η) – Tu()

≤  – t*

 – η
,

so

‖Tu‖ ≤ Tu() +


 – η

[
Tu(η) – Tu()

]
<


 – η

Tu(η) =


γ ( – η)
(
Tu() – λ[u]

)

≤ 
γ ( – η)

Tu().

It yields

min
[,η]

Tu(t) ≥ γ ( – η)‖Tu‖.

Let t* ∈ (η, ). Then

‖Tu‖ – Tu()
Tu(η) – Tu()

≤ t* – 
η – 

,

so

‖Tu‖ ≤ 
η

[
Tu(η) + (η – )Tu()

]
=

η

[

γ

(
Tu() – λ[u]

)
+ (η – )Tu()

]
.

It yields

min
[,η]

Tu(t) ≥ γ η

 + γ (η – )
‖Tu‖.

Step . Let Tu() ≥ Tu(η). Then t* ∈ (,η) and min[,η]Tu(t) = Tu(η). Then

‖Tu‖ – Tu()
Tu(η) – Tu()

≤  – t*

 – η
,

so

‖Tu‖ ≤ Tu() +


 – η

[
Tu(η) – Tu()

]
<


 – η

Tu(η).

Hence,

min
[,η]

Tu(t) ≥ ( – η)‖Tu‖.

It shows T : K → K . This ends the proof. �

Remark  Take dB(t) = (bt – )dt, b > . Note that the measure changes the sign and is
increasing. It is easy to show that

B =


(b – ), B =



(b – ), G(s) =

s( – s)


(bs + b – ).

If we assume that b ≥ , then B > , B > , G(s)≥ , s ∈ J .
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Remark  Take dA(t) = (at – )dt, a > . Note that the measure changes the sign and is
increasing. It is easy to show that

A =


(a – ), A =



(a – ), G(s) =

s( – s)


(
as + as + a – 

)
.

If we assume that a ≥ , then A > , A > , G(s)≥ , s ∈ J .

Remark  Let dA(t) = (t – )dt, dB(t) = (  t – )dt, t ∈ J . Then the assumptions H, H

hold if one of the following conditions is satisfied:
(i) ξ = ,  < γ < 

 ,
(ii) γ = ,  < ξ < 

 ,
(iii) γ = ξ = .
We consider only case (i). First of all, we see that dA, dB change the sign and are increas-

ing. Indeed, for p = , t ∈ J , we have

A = A = λ[p] =


, B = λ[p] =



, B =



.

It means that the assumption H holds. Moreover,

δ =  – γ + ηγ > , γ (A –A) = ,

ηγA + ( – γ )A > , B – B =



,

δ –A +A = δ > ,  – γ –A > , γ (B – B) =



γ > ,

ηγB + ( – γ )B > , δ – ηγB – ( – γ )B =


( – γ ) +




ηγ > ,

� = –



+


( – γ ) +




ηγ >


> , G(s)≥ , G(s)≥ , s ∈ [, ].

It proves that the assumption H holds.
By a similar way, we prove the assertion in case (ii) or (iii).

3 Positive solutions to problem (1) with delayed arguments
Now, we present the necessary definitions from the theory of cones in Banach spaces.

Definition  Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said to
be a cone provided that

(i) ku ∈ P for all u ∈ P and all k ≥ , and
(ii) u, –u ∈ P implies u = .
Note that every cone P ⊂ E induces an ordering in E given by x≤ y if y – x ∈ P.

Definition  A map � is said to be a nonnegative continuous concave functional on a
cone P of a real Banach space E if � : P → R+ is continuous and

�
(
tx + ( – t)y

) ≥ t�(x) + ( – t)�(y)

for all x, y ∈ P and t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2013/1/8
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Similarly, we say the map ϕ is a nonnegative continuous convex functional on a cone P
of a real Banach space E if ϕ : P →R+ is continuous and

ϕ
(
tx + ( – t)y

) ≤ tϕ(x) + ( – t)ϕ(y)

for all x, y ∈ P and t ∈ [, ].

Definition  An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Let ϕ and� be nonnegative continuous convex functionals on P, let� be a nonnegative
continuous concave functional on P, and let � be a nonnegative continuous functional
on P. Then, for positive numbers a, b, c, d, we define the following sets:

P(ϕ,d) =
{
x ∈ P : ϕ(x) < d

}
,

P(ϕ,�,b,d) =
{
x ∈ P : b ≤ �(x),ϕ(x)≤ d

}
,

P(ϕ,�,�,b, c,d) =
{
x ∈ P : b ≤ �(x),�(x)≤ c,ϕ(x)≤ d

}
,

R(ϕ,� ,a,d) =
{
x ∈ P : a≤ �(x),ϕ(x)≤ d

}
.

Wewill use the following fixed point theoremofAvery andPeterson to establishmultiple
positive solutions to problem ().

Theorem  (see []) Let P be a cone in a real Banach space E. Let ϕ and � be nonnegative
continuous convex functionals on P, let � be a nonnegative continuous concave functional
on P, and let � be a nonnegative continuous functional on P satisfying �(kx) ≤ k�(x) for
 ≤ k ≤  such that for some positive numbers M̄ and d,

�(x)≤ �(x) and ‖x‖ ≤ M̄ϕ(x)

for all x ∈ P(ϕ,d). Suppose

T : P(ϕ,d) → P(ϕ,d)

is completely continuous and there exist positive numbers a, b, c with a < b such that

(S): {x ∈ P(ϕ,�,�,b, c,d) :�(x) > b} 
=  and �(Tx) > b for x ∈ P(ϕ,�,�,b, c,d),
(S): �(Tx) > b for x ∈ P(ϕ,�,b,d) with �(Tx) > c,
(S):  /∈ R(ϕ,� ,a,d) and �(Tx) < a for x ∈ R(ϕ,� ,a,d) with �(x) = a.

Then T has at least three fixed points x,x,x ∈ P(ϕ,d) such that

ϕ(xi) ≤ d, for i = , , ,

b <�(x), a < �(x), with �(x) < b

and

�(x) < a.
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We apply Theorem  with the cone K instead of P and let P̄r = {x ∈ K : ‖x‖ ≤ r}. Now,
we define the nonnegative continuous concave functional � on K by

�(x) =min
[,η]

∣∣x(t)∣∣.

Note that �(x)≤ ‖x‖. Put �(x) = �(x) = ‖x‖,ϕ(x) = ‖x′‖.
Now, we can formulate the main result of this section.

Theorem  Let the assumptionsH-H hold with ξ = , γ > . Let α(t)≤ t, t ∈ J . In addi-
tion, we assume that there exist positive constants a, b, c, d,M, a < b and such that

μ >

�
( – B)D +


�
(γ η +A +  – γ –A)D +max(D,D),

 < L < γ

(

�

([
 – B – ( – B)η

]
D +

[
ηγ +A + ( – γ –A)η

]
D

)
+

δ
D

)
,

with

D =
γ

δ
(A –A)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds,

D =
γ

δ
(B – B)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds,

D =
γ

δ
D +

∫ 


h(s)ds, D =

∫ 


G(η, s)h(s)ds, D =

 + ηγ

δ

∫ 


G(s, s)h(s)ds,

and

(A): f (t,u, v)≤ d
μ
for (t,u, v) ∈ J × [,Md]× [–d,d],

(A): f (t,u, v) ≥ b
L for (t,u, v) ∈ [,η]× [b, b

ρ
]× [–d,d],

(A): f (t,u, v)≤ a
μ
for (t,u, v) ∈ J × [,a]× [–d,d].

Then problem () has at least three nonnegative solutions x, x, x satisfying ‖x′
i‖ ≤ d,

i = , , ,

b ≤ �(x), a < ‖x‖ with �(x) < b

and ‖x‖ < a.

Proof Basing on the definitions of T , we see that TP̄ is equicontinuous on J , so T is com-
pletely continuous.
Let x ∈ P(ϕ,d), so ϕ(x) = ‖x′‖ ≤ d. By Lemma , ‖x‖ ≤ Md, so  ≤ x(t) ≤ Md, t ∈ J .

Assumption (A) implies f (t,x(α(t)),x′(β(t)))≤ d
μ
.

Moreover, in view of (),

λ[Fx] =
γ

δ
(A –A)

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

http://www.boundaryvalueproblems.com/content/2013/1/8
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≤ d
μ

[
γ

δ
(A –A)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds

]

=
D

μ
d,

λ[Fx] =
γ

δ
(B – B)

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

≤ d
μ

[
γ

δ
(B – B)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds

]

=
D

μ
d,

max
[,]

∣∣(Fx)′(t)∣∣ =max
[,]

∣∣∣∣–
∫ t


sh(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 

t
( – s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

–
γ

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

∣∣∣∣
≤ d

μ

(∫ 


sh(s)ds +

∫ 


( – s)h(s)ds +

γ

δ

∫ 


G(η, s)h(s)ds

)

≤ D

μ
d.

Combining it, we have

ϕ(Tx) = max
[,]

∣∣(Tx)′(t)∣∣

≤ 
�
( – B)λ[Fx] +


�
( – γ –A)λ[Fx] +max

[,]

∣∣(Fx)′(t)∣∣

≤ d
μ

(

�
( – B)D +


�
( – γ –A)D +D

)
< d.

This proves that T : P(ϕ,d) → P(ϕ,d).
Now, we need to show that condition (S) is satisfied. Take

x(t) =



(
b +

b
ρ

)
, t ∈ J .

Then x(t) > , t ∈ J , and

λ[x] =



(
b +

b
ρ

)
λ[p] ≥ ,

λ[x] =



(
b +

b
ρ

)
λ[p] ≥ 
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for p(t) = , t ∈ J . Moreover,

�(x) = ‖x‖ = b(ρ + )
ρ

<
b
ρ
= c,

�(x) =min
[,η]

x(t) =
b(ρ + )

ρ
> b =

b
ρ

ρ > ρ‖x‖,

ϕ(x) =  < d.

This proves that

{
x ∈ P

(
ϕ,�,�,b,

b
ρ
,d

)
: b < �(x)

}

= ∅.

Let b ≤ x(t) ≤ b
ρ
for t ∈ [,η]. Then  ≤ α(t) ≤ t ≤ η for t ∈ [,η], so b ≤ x(α(t)) ≤ b

ρ
,

t ∈ [,η]. Assumption (A) implies f (t,x(α(t)),x′(β(t)))≥ b
L . Hence,

λ[Fx] =
γ

δ
(A –A)

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

≥ b
L

[
γ

δ
(A –A)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds

]

=
D

L
b,

λ[Fx] =
γ

δ
(B – B)

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(s)h(s)f

(
s,x(s),x′(β(s)))ds

≥ b
L

[
γ

δ
(B – B)

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds

]

=
D

L
b,

(Fx)(η) =

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

≥ b
δL

∫ 


G(η, s)h(s)ds.

Moreover,

(Tx)(η) =

�
[ – B – η + Bη]λ[Fx] +


�

[
ηγ +A + ( – γ –A)η

]
λ[Fx]

+

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds,

(Tx)() =

�
[ – B]λ[Fx] +


�
[ηγ +A]λ[Fx]

+
γ

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds
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= γ (Tx)(η) +

�

[
( – γ )( – B) + γ η( – B)

]
λ[Fx]

+

�

[
A( – γ ) + γ ηA

]
λ[Fx]

≥ γ (Tx)(η).

It yields

�(Tx) = min
[,η]

(Tx)(t) =min
(
(Tx)(), (Tx)(η)

) ≥ γ (Tx)(η)

=
γ

�

[
 – B – ( – B)η

]
λ[Fx] +

γ

�

[
ηγ +A + ( – γ –A)η

]
λ[Fx]

+
γ

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

≥ bγ
L

(

�

([
 – B – ( – B)η

]
D +

[
ηγ +A + ( – γ –A)η

]
D

)
+
D

δ

)

> b.

This proves that condition (S) holds.
Now, we need to prove that condition (S) is satisfied. Take x ∈ P(ϕ,�,b,d) and ‖Tx‖ >

b
ρ
= c. Then

�(Tx) =min
[,η]

(Tx)(t)≥ ρ‖Tx‖ > ρ
b
ρ
= b,

so condition (S) holds.
Indeed, ϕ() =  < a, so  /∈ R(ϕ,� ,a,d). Suppose that x ∈ R(ϕ,� ,a,d) with �(x) =

‖x‖ = a. Note that G(t, s) ≤ G(s, s), t ∈ J . Then

‖Fx‖ ≤ γ

δ

∫ 


G(η, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

+
∫ 


G(s, s)h(s)f

(
s,x

(
α(s)

)
,x′(β(s)))ds

≤ a
μ

[
γ

δ

∫ 


G(η, s)h(s)ds +

∫ 


G(s, s)h(s)ds

]

≤ a
μ
D

and finally,

�(Tx) = max
t∈J

(Tx)(t)

≤ 
�
[ – B]λ[Fx] +


�
[ηγ +A +  – γ –A]λ[Fx] + ‖Fx‖

≤ a
μ

(

�

(
[ – B]D + [ηγ +A +  – γ –A]D

)
+D

)

< a.

This shows that condition (S) is satisfied.
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Since all the conditions of Theorem  are satisfied, problem () has at least three non-
negative solutions x, x, x such that ‖x′

i‖ ≤ d for i = , , , and

b ≤ min
[,η]

x(t), a < ‖x‖ with min
[,η]

x(t) < b, ‖x‖ < a.

This ends the proof. �

Example Consider the following problem:

⎧⎨
⎩
x′′(t) + hf (t,x(α(t)),x′(β(t))) = , t ∈ (, ),

x() = 
x(


 ), x() = 


∫ 
 x(t)(t – )dt,

()

where

f (t,u, v) =

⎧⎪⎪⎨
⎪⎪⎩


 cos t + ( v

, )
, (t,u, v) ∈ [, ]× [, ]× [–d,d],


 cos t + (u – ) + ( v

, )
, (t,u, v) ∈ [, ]× [, ]× [–d,d],


 cos t +  + ( v

, )
, (t, v) ∈ [, ]× [–d,d],u≥ 

with d = ,. For example, we can take α(t) = ρ̄t, β(t) =
√
t on J with fixed ρ̄ ∈ (, ).

Indeed, f ∈ C([, ]×R+ × [–d,d],R+), γ = 
 , η = 

 , h(t) = h > , ξ =  and

λ[x] = , λ[x] =



∫ 


x(t)(t – )dt, ρ =



.

Note that dB(t) = 
 (t – )dt, so the measure changes the sign on J . Moreover,

A = A = , B =


, B =



, � =




, δ =


,

G(s) = , G(s) =
s( – s)


(s + ),

so the assumption H holds; see Remark . Next,

D = ,
∫ 


G(η, s)h(s)ds =

h

,

D =



h, D =



h, D =
h

, D =




h,

μ >



h,  < L <



h.

Put a = , b = , h = , then c = , μ > ., L < .. Let μ = , L = . Then

f (t,u, v)≤ 


+
(

,
,

)

= . < . =
a
μ
, (t,u, v) ∈ [, ]× [, ]× [–d,d],

f (t,u, v)≥  =
b
L
, (t,u, v) ∈ [, .]× [, ]× [–d,d],
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and

f (t,u, v)≤ 


+  +
(

,
,

)

= . <  =
d
μ

for (t,u, v) ∈ [, ]× [, d]× [–d,d].
All the assumptions of Theorem  hold, so problem () has at least three positive solu-

tions.

Remark  We can also construct an example in which, for example, λ[x] =
∫ 
 x(t)(t –

)dt to use the results of Remark . Note that also this measure changes the sign.

4 Positive solutions to problem (1) with advanced arguments
In this section, we consider the case when α(t) ≥ t on J , so the interval [,η] is now re-
placed by [η, ]. It means that we can put γ =  with ξ >  in the boundary conditions of
problem () because someone can take λ[x] = γ̄ x(η) as an example. Let us introduce the
cone K by

K =
{
x ∈ E : x(t)≥ , t ∈ J ,λ[x]≥ ,λ[x]≥ ,min

[η,]
x(t)≥ �‖x‖

}

with

� =min

(
ξ ( – η)
 – ξη

, ξη,η
)
, ξ > .

Now �(x) =min[η,] |x(t)|. Functionals � , �, ϕ are defined as in Section .We formulate
only the main result using the cone K instead of K (see Theorem ); the proof is similar
to the previous one.

Theorem  Let the assumptionsH-H hold with γ = , ξ > . Let α(t)≥ t, t ∈ J . In addi-
tion, we assume that there exist positive constants a, b, c, d,M, a < b and such that

μ >
D

�
max( – ξ – B,  – ξη – B) +

D

�
(A +  –A) +max(D,D),

 < L < ξ

(

�

([
 – B – ( – B)η

]
D +

[
A + ( –A)η

]
D

)
+

δ
D

)
,

with

D =
ξ

δ
A

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds,

D =
ξ

δ
B

∫ 


G(η, s)h(s)ds +

∫ 


G(s)h(s)ds,

D =
ξ

δ
D +

∫ 


h(s)ds, D =

∫ 


G(η, s)h(s)ds,

D =
 + ξ ( – η)

δ

∫ 


G(s, s)h(s)ds,

and
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(B): f (t,u, v) ≤ d
μ
for (t,u, v) ∈ J × [,Md]× [–d,d],

(B): f (t,u, v) ≥ b
L for (t,u, v) ∈ [η, ]× [b, b

�
]× [–d,d],

(B): f (t,u, v)≤ a
μ
for (t,u, v) ∈ J × [,a]× [–d,d].

Then problem () has at least three nonnegative solutions x, x, x satisfying ‖x′
i‖ ≤ d,

i = , , ,

b ≤ �(x), a < ‖x‖ with �(x) < b

and ‖x‖ < a.

5 Positive solutions to problem (1) for the case when α(t) = t on J
In this section, we consider problem () when α(t) = t on J and γ = ξ = . Itmeans that now
�(x) =min[ζ ,�] |x(t)| for some fixed constants ζ , � such that  < ζ < � < . For  < ζ + � < 
we can show thatG(t, s) ≥ κG(s, s), t ∈ [ζ ,�], s ∈ J . Now, for κ =min(ζ ,  –�), we introduce
the cone K by

K =
{
x ∈ E : x(t)≥ , t ∈ J ,λ[x]≥ ,λ[x]≥ ,min

[ζ ,�]
x(t)≥ κ‖x‖

}
.

Functionals � , �, ϕ are defined as in Section ; the cone K is now replaced by K.

Theorem  Let the assumptions H-H hold with γ = ξ = . Let  < ζ + � < , α(t) = t,
t ∈ J . In addition, we assume that there exist positive constants a, b, c, d,M, a < b and such
that

μ >
D

�
( – B) +

D

�
(A +  –A) +max(D,D),

 < L <

�

(∣∣ – B – ( – B)�
∣∣D +

[
A + ( –A)ζ

]
D

)
+D,

with

D =
∫ 


G(s)h(s)ds, D =

∫ 


G(s)h(s)ds,

D =
∫ 


h(s)ds, D =min

(∫ 


G(ζ , s)h(s)ds,

∫ 


G(�, s)h(s)ds

)
,

D = κ

∫ 


G(s, s)h(s)ds,

and

(C): f (t,u, v)≤ d
μ
for (t,u, v) ∈ J × [,Md]× [–d,d],

(C): f (t,u, v)≥ b
L for (t,u, v) ∈ [ζ ,�]× [b, b

κ
]× [–d,d],

(C): f (t,u, v)≤ a
μ
for (t,u, v) ∈ J × [,a]× [–d,d].

Then problem () has at least three nonnegative solutions x, x, x satisfying ‖x′
i‖ ≤ d,

i = , , ,

b ≤ �(x), a < ‖x‖ with �(x) < b

and ‖x‖ < a.
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6 Conclusions
In this paper, we have discussed boundary value problems for second-order differential
equations with deviating arguments and with dependence on the first-order derivative. In
our research, the deviating arguments can be both delayed and advanced. By using the
fixed point theorem of Avery and Peterson, new sufficient conditions for the existence of
positive solutions to such boundary problems have been derived. An example is provided
for illustration.
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