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1 Introduction
This paper is concerned with oscillation of the second-order nonlinear functional differ-
ential equation

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ +
∫ b

a
q(t, ξ )

∣∣x[g(t, ξ )]∣∣α–x[g(t, ξ )]dσ (ξ ) = , (.)

where t ≥ t > , α ≥  is a constant, and z := x+ p · x ◦ τ . Throughout, we assume that the
following hypotheses hold:

(H) I := [t,∞), r,p ∈ C(I,R), r(t) > , and p(t)≥ ;
(H) q ∈ C(I× [a,b], [,∞)) and q(t, ξ ) is not eventually zero on any [tμ,∞)× [a,b], tμ ∈ I;
(H) g ∈ C(I× [a,b], [,∞)), lim inft→∞ g(t, ξ ) = ∞, and g(t,a)≤ g(t, ξ ) for ξ ∈ [a,b];
(H) τ ∈ C(I,R), τ ′(t) > , limt→∞ τ (t) =∞, and g(τ (t), ξ ) = τ [g(t, ξ )];
(H) σ ∈ C([a,b],R) is nondecreasing and the integral of (.) is taken in the sense of
Riemann-Stieltijes.

By a solution of (.), wemean a function x ∈ C([tx,∞),R) for some tx ≥ t, which has the
properties that z ∈ C([tx,∞),R), r|z′|α–z′ ∈ C([tx,∞),R), and satisfies (.) on [tx,∞).
We restrict our attention to those solutions x of (.) which exist on [tx,∞) and satisfy
sup{|x(t)| : t ≥ T} >  for any T ≥ tx. A solution x of (.) is termed oscillatory if it is
neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory.
Equation (.) is said to be oscillatory if all its solutions oscillate.
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As is well known, neutral differential equations have a great number of applications in
electric networks. For instance, they are frequently used in the study of distributed net-
works containing lossless transmission lines, which rise in high speed computers, where
the lossless transmission lines are used to interconnect switching circuits; see []. Hence,
there has been much research activity concerning oscillatory and nonoscillatory behav-
ior of solutions to different classes of neutral differential equations, we refer the reader to
[–] and the references cited therein.
In the following, we present some background details that motivate our research. Re-

cently, Baculíková and Lacková [], Džurina and Hudáková [], Li et al. [, ], and Sun
et al. [] established some oscillation criteria for the second-order half-linear neutral
differential equation

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ + q(t)
∣∣x(δ(t))∣∣α–x(δ(t)) = ,

where z := x + p · x ◦ τ ,

 ≤ p(t) <  or p(t) > .

Baculíková and Džurina [, ] and Li et al. [] investigated oscillatory behavior of a
second-order neutral differential equation

(
r(t)

(
x(t) + p(t)x

[
τ (t)

])′)′ + q(t)x
[
σ (t)

]
= ,

where

 ≤ p(t) ≤ p < ∞ and τ ′(t)≥ τ > . (.)

Ye and Xu [] and Yu and Fu [] considered oscillation of the second-order differential
equation

(
x(t) + p(t)x(t – τ )

)′′ +
∫ b

a
q(t, ξ )x

(
g(t, ξ )

)
dσ (ξ ) = .

Assuming  ≤ p(t) < , Thandapani and Piramanantham [], Wang [], Xu and Weng
[], and Zhao and Meng [] studied oscillation of an equation

(
r(t)

(
x(t) + p(t)x(t – τ )

)′)′ +
∫ b

a
q(t, ξ )f

(
x
(
g(t, ξ )

))
dσ (ξ ) = .

As yet, there are few results regarding the study of oscillatory properties of (.) under
the conditions p(t) ≥  or limt→∞ p(t) = ∞. Thereinto, Li and Thandapani [] obtained
several oscillation results for (.) in the case where (.) holds, σ (ξ ) = ξ , and

∫ ∞

t

dt
r/α(t)

=∞. (.)

In the subsequent sections, we shall utilize the Riccati substitution technique and some
inequalities to establish several new oscillation criteria for (.) assuming that (.) holds

http://www.boundaryvalueproblems.com/content/2014/1/68
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or

∫ ∞

t

dt
r/α(t)

< ∞. (.)

All functional inequalities are assumed to hold eventually, that is, they are satisfied for all
t large enough.

2 Main results
In what follows, we use the following notation for the convenience of the reader:

Q(t, ξ ) :=min
{
q(t, ξ ),q

(
τ (t), ξ

)}
, d+(t) :=max

{
,d(t)

}
,

φ(t) :=
αp′[h(t)]h′(t)

p[h(t)]
–

τ ′′(t)
τ ′(t)

, ζ (t) :=
ρ ′
+(t)

ρ(t)
+ φ(t),

ϕ(t) :=
(

ρ ′
+(t)

ρ(t)

)α+

+
pα[h(t)](ζ+(t))α+

τ ′(t)
, and δ(t) :=

∫ ∞

η(t)

ds
r/α(s)

,

where h, ρ , and η will be specified later.

Theorem . Assume (H)-(H), (.), and let g(t,a) ∈ C(I,R), g ′(t,a) > , g(t,a)≤ t, and
g(t,a) ≤ τ (t) for t ∈ I. Suppose further that there exists a real-valued function h ∈ C(I,R)
such that p[g(t, ξ )] ≤ p[h(t)] for t ∈ I and ξ ∈ [a,b]. If there exists a real-valued function
ρ ∈ C(I, (,∞)) such that

lim sup
t→∞

∫ t

t
ρ(s)

[∫ b
a Q(s, ξ ) dσ (ξ )

α– –
r[g(s,a)]ϕ(s)

(α + )α+(g ′(s,a))α

]
ds =∞, (.)

then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we assume
that there exists a t ∈ I such that x(t) > , x[τ (t)] > , and x[g(t, ξ )] >  for all t ≥ t and
ξ ∈ [a,b]. Then z(t) > . Applying (.), one has, for all sufficiently large t,

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ +
∫ b

a
q(t, ξ )xα

[
g(t, ξ )

]
dσ (ξ )

+
∫ b

a
q
(
τ (t), ξ

)
pα

[
h(t)

]
xα

[
g
(
τ (t), ξ

)]
dσ (ξ )

+
pα[h(t)]

τ ′(t)
(
r
[
τ (t)

]∣∣z′[τ (t)]∣∣α–z′[τ (t)])′ = .

Using the inequality (see [, Lemma ])

(A + B)α ≤ α–(Aα + Bα
)
, for A ≥ ,B≥ , and α ≥ ,

http://www.boundaryvalueproblems.com/content/2014/1/68
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the definition of z, g(τ (t), ξ ) = τ [g(t, ξ )], and p[g(t, ξ )]≤ p[h(t)], we conclude that

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ +


α–

∫ b

a
Q(t, ξ )zα

[
g(t, ξ )

]
dσ (ξ )

+
pα[h(t)]

τ ′(t)
(
r
[
τ (t)

]∣∣z′[τ (t)]∣∣α–z′[τ (t)])′ ≤ . (.)

By virtue of (.), we get

(
r(t)

∣∣z′(t)
∣∣α–z′(t)

)′ ≤ , t ≥ t. (.)

Thus, r|z′|α–z′ is nonincreasing. Nowwe have two possible cases for the sign of z′: (i) z′ < 
eventually, or (ii) z′ >  eventually.
(i) Assume that z′(t) <  for t ≥ t ≥ t. Then we have by (.)

r(t)
∣∣z′(t)

∣∣α–z′(t) ≤ r(t)
∣∣z′(t)

∣∣α–z′(t) < , t ≥ t,

which yields

z(t) ≤ z(t) – r/α(t)
∣∣z′(t)

∣∣ ∫ t

t
r–/α(s) ds.

Then we obtain limt→∞ z(t) = –∞ due to (.), which is a contradiction.
(ii) Assume that z′(t) >  for t ≥ t ≥ t. It follows from (.) and g(t, ξ )≥ g(t,a) that

(
r(t)

(
z′(t)

)α)′ +
pα[h(t)]

τ ′(t)
(
r
[
τ (t)

](
z′[τ (t)])α)′

+


α– z
α
[
g(t,a)

] ∫ b

a
Q(t, ξ ) dσ (ξ )≤ . (.)

We define a Riccati substitution

ω(t) := ρ(t)
r(t)(z′(t))α

(z[g(t,a)])α
, t ≥ t. (.)

Then ω(t) > . From (.) and g(t,a)≤ t, we have

z′[g(t,a)] ≥ (
r(t)/r

[
g(t,a)

])/αz′(t). (.)

Differentiating (.), we get

ω′(t) = ρ ′(t)
r(t)(z′(t))α

(z[g(t,a)])α
+ ρ(t)

(r(t)(z′(t))α)′

(z[g(t,a)])α

– αρ(t)
r(t)(z′(t))αzα–[g(t,a)]z′[g(t,a)]g ′(t,a)

(z[g(t,a)])α
. (.)

Therefore, by (.), (.), and (.), we see that

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′(t))α)′

(z[g(t,a)])α
–

αg ′(t,a)
ρ/α(t)r/α[g(t,a)]

ω(α+)/α(t). (.)

http://www.boundaryvalueproblems.com/content/2014/1/68
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Similarly, we introduce another Riccati transformation:

υ(t) := ρ(t)
r[τ (t)](z′[τ (t)])α

(z[g(t,a)])α
, t ≥ t. (.)

Then υ(t) > . From (.) and g(t,a) ≤ τ (t), we obtain

z′[g(t,a)] ≥ (
r
[
τ (t)

]
/r

[
g(t,a)

])/αz′[τ (t)]. (.)

Differentiating (.), we have

υ ′(t) = ρ ′(t)
r[τ (t)](z′[τ (t)])α

(z[g(t,a)])α
+ ρ(t)

(r[τ (t)](z′[τ (t)])α)′

(z[g(t,a)])α

– αρ(t)
r[τ (t)](z′[τ (t)])αzα–[g(t,a)]z′[g(t,a)]g ′(t,a)

(z[g(t,a)])α
. (.)

Therefore, by (.), (.), and (.), we find

υ ′(t)≤ ρ ′(t)
ρ(t)

υ(t) + ρ(t)
(r[τ (t)](z′[τ (t)])α)′

(z[g(t,a)])α
–

αg ′(t,a)
ρ/α(t)r/α[g(t,a)]

υ(α+)/α(t). (.)

Combining (.) and (.), we get

ω′(t) +
pα[h(t)]

τ ′(t)
υ ′(t)

≤ ρ(t)
(r(t)(z′(t))α)′ + pα [h(t)]

τ ′(t) (r[τ (t)](z′[τ (t)])α)′

(z[g(t,a)])α
+

ρ ′(t)
ρ(t)

ω(t)

–
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]
ω(α+)/α(t) +

pα[h(t)]
τ ′(t)

ρ ′(t)
ρ(t)

υ(t)

–
pα[h(t)]

τ ′(t)
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]
υ(α+)/α(t).

It follows from (.) that

ω′(t) +
pα[h(t)]

τ ′(t)
υ ′(t) ≤ –

ρ(t)
α–

∫ b

a
Q(t, ξ ) dσ (ξ ) +

ρ ′
+(t)

ρ(t)
ω(t)

–
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]
ω(α+)/α(t) +

pα[h(t)]
τ ′(t)

ρ ′
+(t)

ρ(t)
υ(t)

–
pα[h(t)]

τ ′(t)
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]
υ(α+)/α(t).

Integrating the latter inequality from t to t, we obtain

ω(t) –ω(t) +
pα[h(t)]

τ ′(t)
υ(t) –

pα[h(t)]
τ ′(t)

υ(t)

≤ –
∫ t

t

ρ(s)
α–

∫ b

a
Q(s, ξ ) dσ (ξ ) ds

http://www.boundaryvalueproblems.com/content/2014/1/68
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+
∫ t

t

[
ρ ′
+(s)

ρ(s)
ω(s) –

αg ′(s,a)
ρ/α(s)r/α[g(s,a)]

ω(α+)/α(s)
]
ds

+
∫ t

t

pα[h(s)]
τ ′(s)

{[
ρ ′
+(s)

ρ(s)
+ φ(s)

]
+
υ(s) –

αg ′(s,a)
ρ/α(s)r/α[g(s,a)]

υ(α+)/α(s)
}
ds. (.)

Define

A :=
[

αg ′(t,a)
ρ/α(t)r/α[g(t,a)]

]α/(α+)

ω(t) and

B :=
[

α

α + 
ρ ′
+(t)

ρ(t)

[
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]

]–α/(α+)]α

.

Using the inequality

α + 
α

AB/α –A(α+)/α ≤ 
α
B(α+)/α , for A≥  and B ≥ , (.)

we get

ρ ′
+(t)

ρ(t)
ω(t) –

αg ′(t,a)
ρ/α(t)r/α[g(t,a)]

ω(α+)/α(t) ≤ 
(α + )α+

r[g(t,a)](ρ ′
+(t))α+

(ρ(t)g ′(t,a))α
.

On the other hand, define

A :=
[

αg ′(t,a)
ρ/α(t)r/α[g(t,a)]

]α/(α+)

υ(t) and

B :=
[

α

α + 
ζ+(t)

[
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]

]–α/(α+)]α

.

Then we have by (.)

ζ+(t)υ(t) –
αg ′(t,a)

ρ/α(t)r/α[g(t,a)]
υ(α+)/α(t)≤ 

(α + )α+
r[g(t,a)](ζ+(t))α+ρ(t)

(g ′(t,a))α
.

Thus, from (.), we get

ω(t) –ω(t) +
pα[h(t)]

τ ′(t)
υ(t) –

pα[h(t)]
τ ′(t)

υ(t)

≤ –
∫ t

t
ρ(s)

{∫ b
a Q(s, ξ ) dσ (ξ )

α– –
r[g(s,a)]

(α + )α+(g ′(s,a))α

×
[(

ρ ′
+(s)

ρ(s)

)α+

+
pα[h(s)](ζ+(s))α+

τ ′(s)

]}
ds,

which contradicts (.). This completes the proof. �

Assuming (.), where p and τ are constants, we obtain the following result.

Theorem . Suppose (H)-(H), (.), (.), and let g(t,a) ∈ C(I,R), g ′(t,a) > , g(t,a) ≤
t, and g(t,a) ≤ τ (t) for t ∈ I. If there exists a real-valued function ρ ∈ C(I, (,∞)) such

http://www.boundaryvalueproblems.com/content/2014/1/68
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that

lim sup
t→∞

∫ t

t

[
ρ(s)

∫ b
a Q(s, ξ ) dσ (ξ )
α– –

 + pα

τ

(α + )α+
r[g(s,a)](ρ ′

+(s))α+

(ρ(s)g ′(s,a))α

]
ds =∞, (.)

then (.) is oscillatory.

Proof As above, let x be an eventually positive solution of (.). Proceeding as in the proof
of Theorem ., we have z′(t) > , (.), and (.) for all sufficiently large t. Using (.),
(.), and (.), we obtain

(
r(t)

(
z′(t)

)α)′ +
pα

τ

(
r
[
τ (t)

](
z′[τ (t)])α)′

+


α– z
α
[
g(t,a)

] ∫ b

a
Q(s, ξ ) dσ (ξ )≤ . (.)

The remainder of the proof is similar to that of Theorem ., and hence it is omitted. �

Theorem . Suppose we have (H)-(H), (.), and let τ (t)≤ t and g(t,a)≥ τ (t) for t ∈ I.
Assume also that there exists a real-valued function h ∈ C(I,R) such that p[g(t, ξ )] ≤
p[h(t)] for t ∈ I and ξ ∈ [a,b]. If there exists a real-valued function ρ ∈ C(I, (,∞)) such
that

lim sup
t→∞

∫ t

t
ρ(s)

[∫ b
a Q(s, ξ ) dσ (ξ )

α– –
r[τ (s)]ϕ(s)

(α + )α+(τ ′(s))α

]
ds =∞, (.)

then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.).Without loss of generality, we assume that
there exists a t ∈ I such that x(t) > , x[τ (t)] > , and x[g(t, ξ )] >  for all t ≥ t and ξ ∈
[a,b]. As in the proof of Theorem ., we obtain (.) and (.). In view of (.), r|z′|α–z′

is nonincreasing. Now we have two possible cases for the sign of z′: (i) z′ <  eventually, or
(ii) z′ >  eventually.
(i) Suppose that z′(t) <  for t ≥ t ≥ t. Then, with a proof similar to the proof of case (i)

in Theorem ., we obtain a contradiction.
(ii) Suppose that z′(t) >  for t ≥ t ≥ t. We define a Riccati substitution

ω(t) := ρ(t)
r(t)(z′(t))α

(z[τ (t)])α
, t ≥ t. (.)

Then ω(t) > . From (.) and τ (t)≤ t, we have

z′[τ (t)] ≥ (
r(t)/r

[
τ (t)

])/αz′(t). (.)

Differentiating (.), we obtain

ω′(t) = ρ ′(t)
r(t)(z′(t))α

(z[τ (t)])α
+ ρ(t)

(r(t)(z′(t))α)′

(z[τ (t)])α

– αρ(t)
r(t)(z′(t))αzα–[τ (t)]z′[τ (t)]τ ′(t)

(z[τ (t)])α
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/68
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Therefore, by (.), (.), and (.), we see that

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′(t))α)′

(z[τ (t)])α
–

ατ ′(t)
ρ/α(t)r/α[τ (t)]

ω(α+)/α(t). (.)

Similarly, we introduce another Riccati substitution:

υ(t) := ρ(t)
r[τ (t)](z′[τ (t)])α

(z[τ (t)])α
, t ≥ t. (.)

Then υ(t) > . Differentiating (.), we have

υ ′(t) = ρ ′(t)
r[τ (t)](z′[τ (t)])α

(z[τ (t)])α
+ ρ(t)

(r[τ (t)](z′[τ (t)])α)′

(z[τ (t)])α

– αρ(t)
r[τ (t)](z′[τ (t)])αzα–[τ (t)]z′[τ (t)]τ ′(t)

(z[τ (t)])α
. (.)

Therefore, by (.) and (.), we get

υ ′(t) =
ρ ′(t)
ρ(t)

υ(t) + ρ(t)
(r[τ (t)](z′[τ (t)])α)′

(z[τ (t)])α
–

ατ ′(t)
ρ/α(t)r/α[τ (t)]

υ (α+)/α(t). (.)

Combining (.) and (.), we have

ω′(t) +
pα[h(t)]

τ ′(t)
υ ′(t) ≤ ρ(t)

(r(t)(z′(t))α)′ + pα [h(t)]
τ ′(t) (r[τ (t)](z′[τ (t)])α)′

(z[τ (t)])α
+

ρ ′(t)
ρ(t)

ω(t)

–
ατ ′(t)

ρ/α(t)r/α[τ (t)]
ω(α+)/α(t) +

pα[h(t)]
τ ′(t)

ρ ′(t)
ρ(t)

υ(t)

–
pα[h(t)]

τ ′(t)
ατ ′(t)

ρ/α(t)r/α[τ (t)]
υ (α+)/α(t).

It follows from (.) and g(t,a)≥ τ (t) that

ω′(t) +
pα[h(t)]

τ ′(t)
υ ′(t) ≤ –

ρ(t)
α–

∫ b

a
Q(t, ξ ) dσ (ξ ) +

ρ ′
+(t)

ρ(t)
ω(t)

–
ατ ′(t)

ρ/α(t)r/α[τ (t)]
ω(α+)/α(t) +

pα[h(t)]
τ ′(t)

ρ ′
+(t)

ρ(t)
υ(t)

–
pα[h(t)]

τ ′(t)
ατ ′(t)

ρ/α(t)r/α[τ (t)]
υ (α+)/α(t).

Integrating the latter inequality from t to t, we obtain

ω(t) –ω(t) +
pα[h(t)]

τ ′(t)
υ(t) –

pα[h(t)]
τ ′(t)

υ(t)

≤ –
∫ t

t

ρ(s)
α–

∫ b

a
Q(s, ξ ) dσ (ξ ) ds +

∫ t

t

[
ρ ′
+(s)

ρ(s)
ω(s) –

ατ ′(s)
ρ/α(s)r/α[τ (s)]

ω(α+)/α(s)
]
ds

+
∫ t

t

pα[h(s)]
τ ′(s)

{[
ρ ′
+(s)

ρ(s)
+ φ(s)

]
+
υ(s) –

ατ ′(s)
ρ/α(s)r/α[τ (s)]

υ(α+)/α(s)
}
ds. (.)

http://www.boundaryvalueproblems.com/content/2014/1/68
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Define

A :=
[

ατ ′(t)
ρ/α(t)r/α[τ (t)]

]α/(α+)

ω(t) and

B :=
[

α

α + 
ρ ′
+(t)

ρ(t)

[
ατ ′(t)

ρ/α(t)r/α[τ (t)]

]–α/(α+)]α

.

Using inequality (.), we have

ρ ′
+(t)

ρ(t)
ω(t) –

ατ ′(t)
ρ/α(t)r/α[τ (t)]

ω(α+)/α(t) ≤ 
(α + )α+

r[τ (t)](ρ ′
+(t))α+

(ρ(t)τ ′(t))α
.

On the other hand, define

A :=
[

ατ ′(t)
ρ/α(t)r/α[τ (t)]

]α/(α+)

υ(t) and

B :=
[

α

α + 
ζ+(t)

[
ατ ′(t)

ρ/α(t)r/α[τ (t)]

]–α/(α+)]α

.

Then, by (.), we obtain

ζ+(t)υ(t) –
ατ ′(t)

ρ/α(t)r/α[τ (t)]
υ (α+)/α(t)≤ 

(α + )α+
r[τ (t)](ζ+(t))α+ρ(t)

(τ ′(t))α
.

Thus, from (.), we get

ω(t) –ω(t) +
pα[h(t)]

τ ′(t)
υ(t) –

pα[h(t)]
τ ′(t)

υ(t)

≤ –
∫ t

t
ρ(s)

{∫ b
a Q(s, ξ ) dσ (ξ )

α– –
r[τ (s)]

(α + )α+(τ ′(s))α

×
[(

ρ ′
+(s)

ρ(s)

)α+

+
pα[h(s)](ζ+(s))α+

τ ′(s)

]}
ds,

which contradicts (.). This completes the proof. �

Assuming we have (.), where p and τ are constants, we get the following result.

Theorem . Suppose we have (H)-(H), (.), (.), and let τ (t)≤ t and g(t,a)≥ τ (t) for
t ∈ I. If there exists a real-valued function ρ ∈ C(I, (,∞)) such that

lim sup
t→∞

∫ t

t

[
ρ(s)

∫ b
a Q(s, ξ ) dσ (ξ )
α– –


(α + )α+

(
 +

pα

τ

)
r[τ (s)](ρ ′

+(s))α+

(τρ(s))α

]
ds =∞,

(.)

then (.) is oscillatory.

Proof Assume again that x is an eventually positive solution of (.). As in the proof of
Theorem ., we have z′(t) > , (.), and (.) for all sufficiently large t. By virtue of (.),

http://www.boundaryvalueproblems.com/content/2014/1/68
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(.), and (.), we have (.) for all sufficiently large t. The rest of the proof is similar to
that of Theorem ., and so it is omitted. �

In the following, we present some oscillation criteria for (.) in the case where (.)
holds.

Theorem . Suppose we have (H)-(H), (.), (.), and let g(t,a) ∈ C(I,R), g ′(t,a) > ,
g(t,a)≤ τ (t) ≤ t for t ∈ I, and g(t, ξ ) ≤ g(t,b) for ξ ∈ [a,b].Assume further that there exists
a real-valued function ρ ∈ C(I, (,∞)) such that (.) is satisfied. If there exists a real-
valued function η ∈ C(I,R) such that η(t)≥ t, η(t)≥ g(t,b), η′(t) >  for t ∈ I, and

lim sup
t→∞

∫ t

t

[∫ b
a Q(s, ξ ) dσ (ξ )

α– δα(s) –
(
 +

pα

τ

)(
α

α + 

)α+
η′(s)

δ(s)r/α[η(s)]

]
ds =∞,

(.)

then (.) is oscillatory.

Proof Let x be a nonoscillatory solution of (.). Without loss of generality, we assume
that there exists a t ∈ I such that x(t) > , x[τ (t)] > , and x[g(t, ξ )] >  for all t ≥ t and
ξ ∈ [a,b]. Then z(t) > . As in the proof of Theorem ., we get (.). By virtue of (.), we
have (.). Thus, r|z′|α–z′ is nonincreasing. Now we have two possible cases for the sign
of z′: (i) z′ <  eventually, or (ii) z′ >  eventually.
(i) Suppose that z′(t) >  for t ≥ t ≥ t. Then, by the proof of Theorem ., we obtain a

contradiction to (.).
(ii) Suppose that z′(t) <  for t ≥ t ≥ t. It follows from (.), (.), and g(t, ξ ) ≤ g(t,b)

that

(
–r(t)

(
–z′(t)

)α)′ +
pα

τ

(
–r

[
τ (t)

](
–z′[τ (t)])α)′

+


α– z
α
[
g(t,b)

] ∫ b

a
Q(t, ξ ) dσ (ξ )≤ . (.)

We define the function u by

u(t) := –
r(t)(–z′(t))α

zα[η(t)]
, t ≥ t. (.)

Then u(t) < . Noting that r(–z′)α is nondecreasing, we get

z′(s)≤ r/α(t)
r/α(s)

z′(t), s ≥ t ≥ t.

Integrating this inequality from η(t) to l, we obtain

z(l)≤ z
[
η(t)

]
+ r/α(t)z′(t)

∫ l

η(t)

ds
r/α(s)

.

Letting l → ∞, we have

 ≤ z
[
η(t)

]
+ r/α(t)z′(t)δ(t).

http://www.boundaryvalueproblems.com/content/2014/1/68
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That is,

–δ(t)
r/α(t)z′(t)
z[η(t)]

≤ .

Thus, we get by (.)

–δα(t)u(t)≤ . (.)

Similarly, we define another function v by

v(t) := –
r[τ (t)](–z′[τ (t)])α

zα[η(t)]
, t ≥ t. (.)

Then v(t) < . Noting that r(–z′)α is nondecreasing and τ (t) ≤ t, we get

r(t)
(
–z′(t)

)α ≥ r
[
τ (t)

](
–z′[τ (t)])α .

Thus,  < –v(t)≤ –u(t). Hence, by (.), we see that

–δα(t)v(t)≤ . (.)

Differentiating (.), we obtain

u′(t) =
(–r(t)(–z′(t))α)′zα[η(t)] + αr(t)(–z′(t))αzα–[η(t)]z′[η(t)]η′(t)

zα[η(t)]
.

By (.) and η(t)≥ t, we have z′[η(t)]≤ (r(t)/r[η(t)])/αz′(t), and so

u′(t)≤ (–r(t)(–z′(t))α)′

zα[η(t)]
– α

η′(t)
r/α[η(t)]

(
–u(t)

)(α+)/α . (.)

Similarly, we see that

v′(t)≤ (–r[τ (t)](–z′[τ (t)])α)′

zα[η(t)]
– α

η′(t)
r/α[η(t)]

(
–v(t)

)(α+)/α . (.)

Combining (.) and (.), we get

u′(t) +
pα

τ
v′(t) ≤ (–r(t)(–z′(t))α)′

zα[η(t)]
+
pα

τ

(–r[τ (t)](–z′[τ (t)])α)′

zα[η(t)]

– α
η′(t)

r/α[η(t)]
(
–u(t)

)(α+)/α – αpα

τ

η′(t)
r/α[η(t)]

(
–v(t)

)(α+)/α . (.)

Using (.), (.), and g(t,b) ≤ η(t), we obtain

u′(t) +
pα

τ
v′(t) ≤ –

∫ b
a Q(t, ξ ) dσ (ξ )

α– – α
η′(t)

r/α[η(t)]
(
–u(t)

)(α+)/α

–
αpα

τ

η′(t)
r/α[η(t)]

(
–v(t)

)(α+)/α . (.)

http://www.boundaryvalueproblems.com/content/2014/1/68
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Multiplying (.) by δα(t) and integrating the resulting inequality from t to t, we have

u(t)δα(t) – u(t)δα(t) + α

∫ t

t

δα–(s)η′(s)u(s)
r/α[η(s)]

ds + α

∫ t

t

η′(s)δα(s)
r/α[η(s)]

(
–u(s)

)(α+)/α ds

+
pα

τ
v(t)δα(t) –

pα

τ
v(t)δα(t) +

αpα

τ

∫ t

t

δα–(s)η′(s)v(s)
r/α[η(s)]

ds

+
αpα

τ

∫ t

t

η′(s)δα(s)
r/α[η(s)]

(
–v(s)

)(α+)/α ds +
∫ t

t

∫ b
a Q(s, ξ ) dσ (ξ )

α– δα(s) ds ≤ .

Set

A := –
[

η′(t)δα(t)
r/α[η(t)]

](α+)/α

u(t) and

B :=
[

α

α + 
δα–(t)η′(t)
r/α[η(t)]

[
η′(t)δα(t)
r/α[η(t)]

]–α/(α+)]α

.

Using inequality (.), we get

δα–(t)η′(t)u(t)
r/α[η(t)]

+
η′(t)δα(t)
r/α[η(t)]

(
–u(t)

)(α+)/α ≥ –

α

(
α

α + 

)α+
η′(t)

δ(t)r/α[η(t)]
.

Similarly, we set

A := –
[

η′(t)δα(t)
r/α[η(t)]

](α+)/α

v(t) and

B :=
[

α

α + 
δα–(t)η′(t)
r/α[η(t)]

[
η′(t)δα(t)
r/α[η(t)]

]–α/(α+)]α

.

Then we have by (.)

δα–(t)η′(t)v(t)
r/α[η(t)]

+
η′(t)δα(t)
r/α[η(t)]

(
–v(t)

)(α+)/α ≥ –

α

(
α

α + 

)α+
η′(t)

δ(t)r/α[η(t)]
.

Thus, from (.) and (.), we find

∫ t

t

[∫ b
a Q(s, ξ ) dσ (ξ )

α– δα(s) –
(
 +

pα

τ

)(
α

α + 

)α+
η′(s)

δ(s)r/α[η(s)]

]
ds

≤ u(t)δα(t) +
pα

τ
v(t)δα(t) +  +

pα

τ
,

which contradicts (.). This completes the proof. �

With a proof similar to the proof of Theorems . and ., we obtain the following result.

Theorem . Suppose we have (H)-(H), (.), (.), and let τ (t) ≤ t, g(t,a) ≥ τ (t) for
t ∈ I, and g(t, ξ ) ≤ g(t,b) for ξ ∈ [a,b]. Assume also that there exists a real-valued func-
tion ρ ∈ C(I, (,∞)) such that (.) is satisfied. If there exists a real-valued function
η ∈ C(I,R) such that η(t) ≥ t, η(t) ≥ g(t,b), η′(t) >  for t ∈ I, and (.) holds, then (.)
is oscillatory.

http://www.boundaryvalueproblems.com/content/2014/1/68
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3 Applications and discussion
In this section, we provide three examples to illustrate the main results.

Example . Consider the second-order neutral functional differential equation

[
x(t) + x(t – π )

]′′ +
∫ π



– π


x[t + ξ ] dξ = , t ≥ . (.)

Let α = , a = –π/, b = π/, r(t) = , p(t) = , τ (t) = t–π , q(t, ξ ) = , g(t, ξ ) = t+ξ , σ (ξ ) =
ξ , and ρ(t) = . ThenQ(t, ξ ) =min{q(t, ξ ),q(τ (t), ξ )} = , g ′(t,a) = , g(t,a) = t–π/ ≤ t+ξ

for ξ ∈ [–π/,π/], and g(t,a)≤ τ (t) ≤ t. Moreover, letting τ = , then

lim sup
t→∞

∫ t

t

[
ρ(s)

∫ b
a Q(s, ξ ) dσ (ξ )
α– –


(α + )α+

(
 +

pα

τ

)
r[g(s,a)](ρ ′

+(s))α+

(ρ(s)g ′(s,a))α

]
ds

= π lim sup
t→∞

∫ t


ds =∞.

Hence, by Theorem ., (.) is oscillatory. As a matter of fact, one such solution is x(t) =
sin t.

Example . Consider the second-order neutral functional differential equation

[
x(t) + tx(t – β)

]′′ +
∫ 



ξ + 
t

x[t + ξ ] dξ = , t ≥ , (.)

where β ≥  is a constant. Let α = , a = , b = , r(t) = , p(t) = t, τ (t) = t – β , q(t, ξ ) = (ξ +
)/t, g(t, ξ ) = t + ξ , σ (ξ ) = ξ , and ρ(t) = . Then Q(t, ξ ) =min{q(t, ξ ),q(τ (t), ξ )} = (ξ + )/t,
g(t,a) = g(t, ) = t ≤ t + ξ for ξ ∈ [, ], τ (t) = t – β ≤ t, and g(t,a)≥ τ (t) for t ≥ . Further,
setting h(t) = t + ,

φ(t) =
αp′[h(t)]h′(t)

p[h(t)]
–

τ ′′(t)
τ ′(t)

=


t + 
,

ζ (t) =
ρ ′
+(t)

ρ(t)
+ φ(t) =


t + 

,

and

ϕ(t) =
(

ρ ′
+(t)

ρ(t)

)α+

+
pα[h(t)](ζ+(t))α+

τ ′(t)
=


t + 

.

Therefore, we have

lim sup
t→∞

∫ t

t
ρ(s)

[∫ b
a Q(s, ξ ) dσ (ξ )

α– –
r[τ (s)]ϕ(s)

(α + )α+(τ ′(s))α

]
ds

= lim sup
t→∞

∫ t



[∫ 



ξ + 
s

dξ –


(s + )

]
ds = lim sup

t→∞

∫ t



[

s

–


(s + )

]
ds =∞.

Hence, (.) is oscillatory due to Theorem ..

http://www.boundaryvalueproblems.com/content/2014/1/68
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Example . Consider the second-order neutral functional differential equation

[
t

(
x(t) + p(t)x(t – β)

)′]′ +
∫ 


(ξ + )x[t + ξ ] dξ = , t ≥ , (.)

where  ≤ p(t) ≤ p, p and β are positive constants. Let α = , a = , b = , r(t) = t,
τ (t) = t – β , q(t, ξ ) = ξ + , g(t, ξ ) = t + ξ , σ (ξ ) = ξ , ρ(t) = , and η(t) = t + . Then Q(t, ξ ) =
min{q(t, ξ ),q(τ (t), ξ )} = ξ +, τ = , g(t,a) = g(t, ) = t ≤ t + ξ for ξ ∈ [, ], τ (t) = t –β ≤ t,
g(t,a)≥ τ (t) for t ≥ , and δ(t) = /t. Further,

lim sup
t→∞

∫ t

t

[
ρ(s)

∫ b
a Q(s, ξ ) dσ (ξ )
α– –


(α + )α+

(
 +

pα

τ

)
r[τ (s)](ρ ′

+(s))α+

(τρ(s))α

]
ds

=


lim sup
t→∞

∫ t


ds =∞

and

lim sup
t→∞

∫ t

t

[∫ b
a Q(s, ξ ) dσ (ξ )

α– δα(s) –
(
 +

pα

τ

)(
α

α + 

)α+
η′(s)

δ(s)r/α[η(s)]

]
ds

=
(


–
 + p


)
lim sup
t→∞

∫ t



ds
s + 

=∞, if p < .

Hence, by Theorem ., (.) is oscillatory when  ≤ p(t) ≤ p < .

Remark . In this paper, we establish some new oscillation theorems for (.) in the
case where p is finite or infinite on I. The criteria obtained extend the results in []
and improve those reported in []. Similar results can be presented under the as-
sumption that  < α ≤ . In this case, using [, Lemma ], one has to replace Q(t, ξ ) :=
min{q(t, ξ ),q(τ (t), ξ )} with Q(t, ξ ) := α–min{q(t, ξ ),q(τ (t), ξ )} and proceed as above.
It would be interesting to find another method to investigate (.) in the case where
g(τ (t), ξ ) 	≡ τ [g(t, ξ )].
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