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Abstract
In this paper, we report an error in the paper of the first author in Advances in
Difference Equations, 2009, article 104310, present the revised versions of the theorem
with several examples, and outline the cases when the previous result is valid.

1 Introduction
The purpose of this short note is to indicate an error in the previous paper [] published in
‘Advances in Difference Equations’ and an inaccuracy in the recent paper []; to present a
corrected result for [] and clarification for []; and to outline the cases when the analogue
of the result of [] is still correct.
Consider the equation

x(n + ) =
m∑
�=

a�(n)x
(
h�(n)

)
for n≥ n, ()

where {a�(n)} are sequences of real numbers, and {h�(n)} are sequences of integers such
that there exists a nonnegative integer τ satisfying n – τ ≤ h�(n) ≤ n for all n ≥ n and
� = , , . . . ,m.

Theorem A Suppose that n – h�(n) < d for some d ∈ N, � = , , . . . ,m, and there exists
r ∈N such that

lim sup
n→∞

r∏
j=

m∑
�=

∣∣a�(n – j)
∣∣ < . ()

Then () is exponentially stable.

Example  (Counterexample to Theorem A) Consider the delay difference equation

x(n + ) = a(n)x
(
h(n)

)
for n ≥ , ()
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where

a(n) =

⎧⎨
⎩p, n = l,

q, n = l + 
and h(n) =

⎧⎨
⎩n, n = l,

n – , n = l + 
()

for some p,q ∈ R. Simple computation gives us that the solution of () is

x(n) =

⎧⎨
⎩qlx(), n = l,

pqlx(), n = l + ,
()

which is stable if and only if |q| < . More precisely, we have limn→∞ |x(n)| = ∞ for any
|q| >  provided that x() �= . If we compute () with r =  for (), we get

lim sup
n→∞

∣∣a(n)a(n – )
∣∣ = |pq| ()

showing that the assumption of Theorem A is fulfilled if |pq| < . However, we can find
p,q ∈ R such that |q| ≥  and |pq| < , for instance, p = / and q = /. In this case, the
right-hand side in () is / < , but by () x(l) = .lx(), x(l + ) = . · .l , which is a
divergent sequence, the solution is unstable.

Hence, in general, Theorem A is incorrect.
Let us note that in [] and further in this paper, we apply the idea of reduction of higher

(but bounded) order equations to first-order matrix equations. This method was widely
used in [–] and in the earlier paper [].
Also, in the discussion section of [], the inequality

ρ(Ak(n)Ak(n)– · · ·An) ≤ λ ()

is considered as a sufficient asymptotic stability condition for the trivial solution of the
first-order matrix equation

Xn+ = AnXn. ()

Here An are d × d matrices, ρ(A) is the spectral radius of the matrix A, λ ∈ (, ), n ∈ N,
and k(n) ≥ n is a certain number which exists for any n≥ n. Similarly, the condition

lim sup
n→∞

ρ(An+k–An+k– · · ·An) <  ()

is treated as a sufficient exponential stability condition for the trivial solution. This is not
true, as the example from [, Example ., pp.-] illustrates (here k = , k(n) = n);
see also the recent review [] and Example  below.

Example  Equation (), with

Am =

(
 .
. 

)
, Am+ =

(
 .
. 

)
, m = , , , . . . ()
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satisfies ρ(An) = .
√
 <  since both Am and Am+ have eigenvalues ±.

√
. However,

if we assume X = (, )T , then simple calculations lead to Xm = (, .m)T , thus the sys-
tem is unstable.

On the other hand, if we use in Example  the norm

‖A‖ = sup
‖X‖=

‖AX‖,

where ‖ · ‖ is the Euclidean vector norm, instead of the spectral radius, then ‖Amn‖ =
‖Am+‖ = . >  since ‖Am(, )T‖ = ‖Am+(, )T‖ = ., where BT is the transpose of B.
We will use the following result in the recovery of Theorem A, which was obtained in

[]; see also [, ].

Theorem B ([, Theorem ]) Let m ∈N and f : Z×R
m →R. If there exists λ ∈ (, ) such

that

∣∣f (n,u,u, . . . ,um)∣∣ ≤ λ max
≤j≤m

{|uj|} for all n ≥ n,

then

xn+ = f (n,xn,xn–, . . . ,xn–m+) for n≥ n

is globally exponentially stable.More precisely, any solution satisfies

|xn| ≤ λ(n–n)/m max
n–m+≤j≤n

{|xj|} for all n ≥ n.

2 Main results
For k ∈N, define a sequence

bk(n) :=

⎧⎨
⎩, k = ,∑m

�= |a�(n)|bk–(h�(n) – ), k ≥ 
()

for n≥ n + k(τ + ).

Theorem  (Correction of Theorem A) Suppose that there exists r ∈N such that

lim sup
n→∞

br(n) < .

Then () is exponentially stable.

Proof Let us prove for all k ∈ N that

∣∣x(n + )
∣∣ ≤ bk(n) max

n–k(τ+)≤j≤n

{∣∣x(j)∣∣} for all n≥ n + k(τ + ). ()
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We proceed by induction in k. From (), for k = , we have

∣∣x(n + )
∣∣ ≤

m∑
�=

∣∣a�(n)
∣∣∣∣x(h�(n)

)∣∣

≤
m∑
�=

∣∣a�(n)
∣∣ max
n–(τ+)≤j≤n

{∣∣x(j)∣∣}
= b(n) max

n–(τ+)≤j≤n

{∣∣x(j)∣∣} ()

for all n ≥ n + τ + . Thus, the claim is true for k = . Assume now that the claim is true
for some k ≥ . From () and (), for all n≥ n + (k + )(τ + ), we have

∣∣x(n + )
∣∣ ≤

m∑
�=

∣∣a�(n)
∣∣bk(h�(n) – 

)
max

h�(n)––k(τ+)≤j≤h�(n)–

{∣∣x(j)∣∣}

≤
m∑
�=

∣∣a�(n)
∣∣bk(h�(n) – 

)
max

n–(k+)(τ+)≤j≤n

{∣∣x(j)∣∣}
= bk+(n) max

n–(k+)(τ+)≤j≤n

{∣∣x(j)∣∣},
which shows that () is true when k is replaced with (k + ). Using () with k = r, we see
that the solution is exponentially stable by Theorem B. �

Theorem  with r =  immediately yields the following result.

Corollary  Assume that

lim sup
n→∞

m∑
�=

∣∣a�(n)
∣∣ < .

Then () is exponentially stable.

Remark  The claim of Theorem A for r =  is correct.

Setting r =  in Theorem , we obtain the following corollary, which is also proved in
[, Theorem .].

Corollary  Assume that

lim sup
n→∞

m∑
�=

∣∣a� (n)
∣∣ m∑

�=

∣∣a�

(
h� (n) – 

)∣∣ < .

Then () is exponentially stable.

Remark  Theorem A for the nondelay equation

x(n + ) = a(n)x(n) for n≥ n
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is correct. Indeed, Theorem  reduces to Theorem A since for k ≥ , we get

bk(n) =
k–∏
j=

∣∣a(n – j)
∣∣ for n≥ n + k.

Setting r =  in Theorem  gives us the following corollary.

Corollary  Assume that

lim sup
n→∞

m∑
�=

∣∣a� (n)
∣∣ m∑

�=

∣∣a�

(
h� (n) – 

)∣∣ m∑
�=

∣∣a�

(
h�

(
h� (n) – 

)
– 

)∣∣ < .

Then () is exponentially stable.

Example  Consider the delay difference equation () with (), where p,q ∈ R, which can
be written in the two equivalent forms:

x(n + ) = –a(n)x(n) – a(n)x(n – ) for n≥  ()

and

x(n + ) – x(n) = –
(
a(n) + 

)
x(n) – a(n)x(n – ) for n≥ , ()

where

a(n) =

⎧⎨
⎩p, n = l,

, n = l + 
and a(n) =

⎧⎨
⎩, n = l,

q, n = l + .

Computing {bk(n)} defined by (), we see that

bk(n) =

⎧⎨
⎩|pqk–|, n = l,

|qk|, n = l + 
for k ∈N,n≥ k.

Equation () is exponentially stable by Theorem  if |q| <  because there always exists
r ∈ N such that |pqr–| <  and |qr| < . From (), we see that |q| <  is the best possible
condition for the global exponential stability of () with ().
Application of a recent result [, Theorem ] to () gives us ( + |p|)|q| < , which

implies |q| < .
The so-called ‘/-test’ (see [] and [, Theorem A]) can be applied to () if p > – and

q > , and ensures global exponential stability when

p + q +  <


+


 ·  =




or equivalently p + q < –



for which  < q < / is necessary.
It is obvious that these two results and Corollary  cannot deliver any answer for the

exponential stability when p =  and q = /.
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As mentioned in Remark , Theorem A is valid for a nondelay scalar equation. Next,
any higher-order (of the order not exceeding d) equation (), with n – d < h�(n) ≤ n, can
be rewritten as the first-order system

X(n + ) = A(n)X(n), n = , , , . . . , ()

where X(n) ∈ R
d , A(n) are d × d matrices. Indeed, denote X() = (x(–d + ),x(–d +

), . . . ,x())T , X(n) = (x(nd – d + ),x(nd – d + ), . . . ,x(nd))T and rewrite () as

x(n) =
d∑
j=

b(n, j)x(n – j), n ∈ N, ()

where

b(n, j) =
∑

l∈{,...,m|hl(n)=n–j}
al(n).

Then we can define the matrix A() = (c(i, j))di= as follows:

x() =
d∑
j=

b(, j)x( – j) =
d∑
j=

c(, j)x( – j),

x() =
d∑
j=

b(, j)x( – j) =
d∑
j=

b(, j)x( – j) + b(, )
d∑
j=

b(, j)x( – j)

=
d–∑
j=

b(, j + )x( – j) +
d∑
j=

b(, )b(, j)x( – j) =
d∑
j=

c(, j)x( – j),

· · ·

x(d) =
d∑
j=

c(d, j)x( – j),

and X() = A()X(). Similarly, we construct A(n), n ∈ N and obtain system (). Since
‖X(n)‖ ≥ |x(j)|, j = nd–d+ ,nd–d+, . . . ,nd, exponential (asymptotical) stability of ()
implies the relevant stability of (). We recall that () is exponentially stable if there exist
n ∈N, L > , and μ ∈ (, ) such that ‖X(n)‖ ≤ Lμn‖X()‖, n≥ n.

Theorem  If there exist λ ∈ (, ), M > , and n ∈ N such that ‖A(n)‖ ≤ M and
‖∏n+k–

j=n A(j)‖ ≤ λ for every n ≥ n and for some positive integer k, then () is exponen-
tially stable.

Proof Without loss of generality, we can assumeM >  and
∏n–

j= ‖A(j)‖ ≤ M. Further, for
any n≥ n denote m = [ n–n–k ], where [t] is the integer part of t, and obtain the estimate

∥∥X(n)∥∥ =
∥∥A(n – ) · · ·A()X()∥∥ ≤ ∥∥A(n – ) · · ·A()∥∥∥∥X()∥∥

=

∥∥∥∥∥
n–∏

j=n+km

A(j) · · ·
n+k–∏
j=n

A(j)
n–∏
j=

A(j)

∥∥∥∥∥∥∥X()∥∥
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≤
∥∥∥∥∥

n–∏
j=n+km

A(j)

∥∥∥∥∥ · · ·
∥∥∥∥∥
n+k–∏
j=n

A(j)

∥∥∥∥∥
∥∥∥∥∥
n–∏
j=

A(j)

∥∥∥∥∥
∥∥X()∥∥

≤ MλmMk ≤ Mk+
(

λ

)+n/k(
λ/k)n∥∥X()∥∥ = Lμn∥∥X()∥∥

for n≥ n, where L =Mk+λ––n/k , μ = λ/k . �

Example  (Example  in []) If in ()

Am =



(
. .
. .

)
, Am+ =




(
. –.
–. .

)
, m = , , , . . .

then both Am and Am+ have the norms exceeding one (they have eigenvalues of  and
, respectively), but the product

AmAm+ = Am+Am =

(
. –.
–. .

)

has the norm ‖AmAm+‖ = ‖Am+Am‖ = . < , thus () is exponentially stable.

Example  Consider () with a -periodic matrix A(n), where Am+j =
(  –.
. 

)
, m =

, , , . . . , j = , , , Am =
(  –.
. 

)
. Then ‖Am+j‖ = . > , j = , , , but () is ex-

ponentially stable since An+An+An+An =
( . 

 .

)
for any n = , , , . . . , and λ =

‖An+An+An+An‖ = . < .

3 Discussion
The dynamics of higher-order difference equations with variable coefficients, as well as
of non-autonomous systems of difference equations, is much more complicated than that
of the relevant autonomous models; see, for example, [, ]. For example, the fact that
the spectral radius of each matrix is less than one does not imply exponential stability of
the system. On the other hand, as demonstrated in Example , non-autonomous systems,
where some matrices have norms exceeding one, can still be exponentially stable. The
challenge is to extend recursive results to other type of stability, for example, asymptotic
and lp stability; see, for example, [].
Regarding generalizations to some types of nonlinearmodels, the analogue ofTheorem 

can be found in [], while Theorem  can be reformulated for the nonlinear first-order
system

X(n + ) = Fn
(
X(n)

)
, n = , , , . . . , ()

in the following way, with the same proof repeated.

Theorem  If there exist λ ∈ (, ), k ∈ N, M > , and n ∈ N such that ‖Fn(X)‖ ≤ M‖X‖
and ‖Fn+k–(· · ·Fn+(Fn(X)) · · · )‖ ≤ λ‖X‖ for any X ∈R

d and n≥ n, then () is uniformly
exponentially stable.
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Again, the case of possible asymptotic stability when

∥∥Fn+k–(· · ·Fn+(Fn(X)) · · · )∥∥ ≤ λn‖X‖

and lim supn→∞ λn =  is still to be considered.
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